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Local Cohomology

R is a commutative Noetherian ring with 1.

Let f = f1, . . . , fl be generators for an ideal I ⊂ R.

The Čech complex on f is the complex

Č(f ;R) : 0→ R→
l⊕

i=1

Rfi →
⊕
i<j

Rfifj → · · · → Rf1···fl → 0.

The i-th local cohomology of M with support in I is

H i
I(M) = H i(Č•(f ;R)⊗R M) = Ȟ i(f ;M).



Background

The Bass numbers over a Stanley-Reisner ring of H i
I(M) are

finite. (Helm and Miller)

The local cohomology of the following rings have finitely

many associated primes:

local regular rings of characteristic 0 (Lyubeznik)

regular rings of prime characteristic (Huneke, Sharp)

smooth Z-algebras

(Bhatt, Blickle, Lyubeznik, Singh, Zhang.)



Stanley-Reisner Rings

Let k be a field.

S = k[x1, . . . , xn]

∆ is a simplicial complex on the vertex set V = {x1, . . . , xn}.
The Stanley-Reiser ideal of ∆ in S is

I∆ = 〈xi1 · · ·xir : {xi1 , . . . , xir} /∈ ∆}〉.

The Stanley-Reisner ring of ∆ in S is

k[∆] = S/I∆.



Simplicial Complexes

We call ∆ a T-space if for each face F ∈ ∆ and each vertex

v /∈ F , there is a facet H containing F and not containing {v}.
We say F may be separated from {v}.
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The star of a face F ∈ ∆ is star∆(F ) = {G ∈ ∆ : F ∪G ∈ ∆}.
The core of V is core(V ) = {v ∈ V : star∆ v 6= V }. The core of

∆ is core(∆) = ∆coreV .



Rings of differential operators

Differential operators on R are defined inductively as follows:

for each r ∈ R, the multiplication by r map r : R→ R is a

differential operator of order 0.

for n > 0, the differential operators or order less than or equal

to n are the additive maps δ : R→ R whose commutator

[r, δ] = r ◦ δ − δ ◦ r is a differential operator of order less than

or equal to n− 1.

Denote the ring of differential operators on R by D(R).

If R is an A-algebra, D(R;A) is the ring of A-linear differential

operators.



Rings of differential operators

Set ∂i = ∂
∂xi

to be the derivative with respect to xi.

Theorem (-, Madsen, Wheeler)

If core(∆) is a T -space, then the ring of differential operators

on k[∆] is

D = D(k[∆];k) = k[∆]〈xi∂
t
i : 1 ≤ i ≤ n, 0 ≤ t〉.

The ring of differential operators on k[x1, . . . , xn] is the n-th Weyl

algebra over k:

Dn = k〈x1 . . . , xn, ∂1, . . . , ∂n : [xi, xj ] = [∂i, ∂j ] = 0, [∂i, xj ] = δij〉.



D-modules

The Bernstein filtration on Dn is the filtration

F = F0 ⊂ F1 ⊂ F2 ⊂ · · ·

where Fi = k · {xa∂b :
∑

j aj +
∑

k bk ≤ i}.

A k-filtration on a D-module M is an ascending chain of k-vector

spaces

M0 ⊂M1 ⊂M2 ⊂ · · ·

satisfying

1.
⋃

iMi = M ,

2. for all i and j, FiMj ⊂Mi+j .



D-modules

A D-module M is holonomic if it has a k-filtration

M = M0 ⊂M1 ⊂ · · · such that for all i, dim(Mi) ≤ Cin.

Lemma (-, Madsen, Wheeler)

Let core(∆) be a T -space and let k[∆]. Then k[∆] is a

holonomic D-module.

Theorem (-, Madsen, Wheeler)

Let core(∆) be a T -space. Then for any f ∈ k[∆], k[∆]f is a

holonomic D-module.



Proof outline of Theorem:

Let d = deg(f).

For each k ≥ 0, let Mk =
⊕k

i=0Ri where Ri is the set of

homogeneous elements of degree i in R under the standard

grading. Then M = M0 ⊂M1 ⊂ · · · is a filtration.

Define M ′k = k{ g
fk : g ∈Mk(d+1)}. Then

M′ = M ′0 ⊂M ′1 ⊂ · · · is a k-filtration.

Since M′ is a k-filtration, then

dimk(M ′k) ≤ dimk(Mk(d+ 1)) ≤ C(k(d+ 1))r.

Set C ′ = C(d+ 1)r.



Finiteness result

Theorem (-, Madsen, Wheeler)

Let core(∆) be a T -space and let I be an ideal in k[∆]. Then

H i
I(k[∆]) has finitely many associated prime ideals.
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