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What is a spherical variety?

Let

G be a reductive group, B ⊆ G be a Borel subgroup,

X be a G -variety,

and B(X ) denote the set of B-orbits in X .

If |B(X )| <∞, then X is called a spherical G -variety.
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Examples.

Simple examples include

toric varieties,

(partial) flag varieties,

symmetric varieties,

linear algebraic monoids.

There are many other important examples..

Our goal is to present a description of the equivariant K-theory for all
smooth projective spherical varieties and record some recent progress on
the geometry of the variety of complete quadrics.
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Equivariant Chow groups

Let X be a projective nonsingular spherical G -variety and T ⊆ G be a
maximal torus.

Theorem (Brion ’97)

The map i∗ : A∗T (X )Q → A∗T (XT )Q is injective. Moreover, the image of i∗

consists of families (fx)x∈XT such that

fx ≡ fy mod χ whenever x and y are connected by a T-curve with
weight χ.

fx − 2fy + fz ≡ 0 mod α2 whenever α is a positive root, x , y , z lie in
a connected component of X ker(α) which is isomorphic to P2.

fx − fy + fz − fw ≡ 0 mod α2 whenever α is a positive root, x , y , z ,w
lie in a connected component of X ker(α) which is isomorphic to a
rational ruled surface.
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Remarks

The underlying idea in Brion’s result is to study the fixed loci of all
codimension one subtori S ⊂ T . This point is exploited by Vezzosi and
Vistoli for K -theory:

Theorem (Vezzosi-Vistoli ’03)

Suppose D is a diagonalizable group acting on a smooth proper scheme X
defined over a perfect field; denote by T the toral component of D, that is
the maximal subtorus contained in D. Then the restriction homomorphism
on K-groups KD,∗(X )→ KD,∗(X

T ) is injective, and its image equals the
intersection of all images of the restriction homomorphisms
KD,∗(X

S)→ KD,∗(X
T ) for all subtori S ⊂ T of codimension 1.

Therefore, for a spherical G -variety X , we need to analyze X S . when S is
a codimension one subtorus of T .
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Equivariant K -theory

Let k denote the underlying base field that our schemes are defined over
and let R(T ) denote the representation ring of T .

Theorem (Banerjee-Can, around 2013, posted in 2016)

The T-equivariant K-theory KT ,∗(X ) is isomorphic to the ring of ordered
tuples

(fx)x∈XT ∈
∏

x∈XT

K∗(k)⊗ R(T )

satisfying the following congruence relations:
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Equivariant K -theory

Theorem (Banerjee-Can ’13, continued)

1) If there exists a T -stable curve with weight χ connecting x , y ∈ XT ,
then

fx − fy = 0 mod (1− χ).
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Equivariant K -theory

Theorem (Banerjee-Can ’13, continued)

2) If there exists a root χ such that an irreducible component Y ⊆ X kerχ

isomorphic to Y ' P2 connects x , y , z ∈ XT , then

fx − fy = 0 mod (1− χ),

fx − fz = 0 mod (1− χ),

fy − fz = 0 mod (1− χ2).

Moreover, in this case, there is an element in the Weyl group of (G ,T )
that fixes x and permutes y and z.
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Equivariant K -theory

Theorem (Banerjee-Can ’13, continued)

3) If there exists a root χ such that an irreducible component Y ⊆ X kerχ

isomorphic to Y ' P1 × P1 connects x , y , z , t ∈ XT , then

fx − fy = 0 mod (1− χ),

fy − fz = 0 mod (1− χ),

fz − ft = 0 mod (1− χ),

fx − ft = 0 mod (1− χ).

Moreover, in this case, there is an element in the Weyl group of (G ,T )
that fixes two and permutes the other two.
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Equivariant K -theory

Theorem (Banerjee-Can ’13, continued)

4) If there exists a root χ such that an irreducible component Y ⊆ X kerχ

isomorphic to a Hirzebruch surface Fn that connects x , y , z , t ∈ XT , then

fx − fy = 0 mod (1− χ),

fz − ft = 0 mod (1− χ),

fy − fz = 0 mod (1− χ2n),

fx − ft = 0 mod (1− χn).

Moreover, in this case, there is an element in the Weyl group of (G ,T )
that fixes the points x and t and permutes z and y.

Mahir Bilen Can EKT of Some Wonderful Compactifications April 16, 2016 7 / 42



Equivariant K -theory

∆1 for P1 × P1 ∆1 for P(sl2)

y = x

∆1 for Fn, n ≥ 1

y = −nx

y = x

Figure: Fans of the irreducible components Y ⊂ X S
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Equivariant K -theory

Theorem (Banerjee-Can ’13, continued)

Since W = W (G ,T ) acts on XT , it induces an action on∏
x∈XT K∗(k)⊗ R(T ).

The G-equivariant K-theory of X is given by the space of invariants:

KG ,∗(X ) = KT ,∗(X ) ∩

 ∏
x∈XT

KT ,∗(k)⊗ R(T )

W

.

Mahir Bilen Can EKT of Some Wonderful Compactifications April 16, 2016 9 / 42



Applications to wonderful compactifications

k : algebraically closed, characteristic 0;

G : semisimple simply-connected algebraic group;

θ : G → G an involutory automorphism;

H = G θ: the fixed point subgroup;

H̃: the normalizer of H in G .
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Prolongement magnifique de Demazure

g = Lie(G ),

h = Lie(H) with d = dim h,

Gr(g, d): grassmannian of d dimensional vector subspaces of g,

[h]: the point corresponding to h ⊂ g,

The wonderful compactification XG/H of G/H̃ is the Zariski closure of the
orbit

G · [h] ⊂ Gr(g, d).
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General properties of XG/H

De Concini-Procesi ’82:

XG/H is smooth, complete, and G -spherical.

The open orbit is G/H ↪→ XG/H .

There are finitely many boundary divisors X {α} which are G -stable
and indexed by elements of a system of simple roots, α ∈ ∆G/H .

Each G -orbit closure is of the form X I :=tα∈I X {α} for a subset
I ⊆ ∆G/H and moreover

X I ⊆ X J ⇐⇒ J ⊆ I .

There exists a unique closed G -orbit X∆G/H which is necessarily of
the form G/P for some parabolic subgroup P.
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First example, the group case.

Let G = G × G and θ : G→ G be the automorphism

θ(g1, g2) = (g2, g1).

The fixed subgroup H is the diagonal copy of G in G.

The open orbit is G/H ∼= G .

The closed orbit is isomorphic to G/B × G/B−, where B− is the
opposite Borel.
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Back to the general case.

Let G/P denote the closed orbit in XG/H .

P: parabolic subgroup opposite to θ(P)

L = P ∩ θ(P)

T ⊂ L a maximal torus

T0 = {t ∈ T : θ(t) = t}
T1 = {t ∈ T : θ(t) = t−1}
WG ,WH ,WL associated Weyl groups

ΦG ,ΦH ,ΦL the root systems of (G ,T ), (H,T0), (L,T )

The rank of G/H is rank(G/H) := dimT1
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Spherical pairs of minimal rank

G/H is called of minimal rank if

rank(G/H) + rank(H) = rank(G ).

Geometry of these varieties are studied by Tchoudjem in ’05 and
Brion-Joshua in ’08.

Theorem (Ressayre ’04)

Irreducible minimal rank spherical pairs (G ,H) with G semisimple and H
simple are

(G,H) with H simple.

(SL2n, Spn).

(SO2n, SO2n−1).

(E6,F4).

(SO7,G2).
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Little Weyl group

Let X (T ) denote the character group of T .

If p : X (T )→ X (T 0
1 ) is the restriction map, then

ΦG/H := p(ΦG )− {0}

is a root system, which is possibly non reduced.

∆G/H = {α− θ(α) : α ∈ ∆G −∆L} is a basis for ΦG/H .

The little Weyl group of G/H is defined as

WG/H := NG (T 0
1 )/ZG (T 0

1 ).
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Wonderful toric variety

There is a natural torus embedding T/T0 ↪→ G/H. The closure
Y := T/T0 ⊂ XG/H is a smooth projective toric variety. Furthermore,
Y = WG/H · Y0, where Y0 is the affine toric subvariety of Y associated
with the positive Weyl chamber dual of ∆G/H . Y0 has a unique T -fixed
point, denoted by z0.
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Lemma (Brion-Joshua, Tchoudjem)

(i) The T-fixed points of XG/H (resp. of Y ) are exactly the points w · z0

where w ∈WG/WL (resp. w ∈WH/WL = WG/H).

(ii) For any positive root α ∈ Φ+
G \ Φ+

L , there exists unique irreducible
T -stable curve Cα·z0 connecting z0 and αz0 . The torus T acts on
Cα·z0 via the character α. This curve is isomorphic to P1 and we call
it as a Type 1 curve.

(iii) For any simple root γ = α− θ(α) ∈ ∆G/H , there exists unique
irreducible T -stable curve Cγ·z0 connecting z0 and sαsθ(α) · z0. The
torus T acts on Cγ·z0 by the character γ. This curve is isomorphic to
P1 and we call it by a Type 2 curve.

(iv) The irreducible T -stable curves in X are precisely the WG -translates
of the curves Cα·z0 and Cγ·z0 . They are all isomorphic to P1.

(v) The irreducible T -stable curves in Y are the WG/H -translates of the
curves Cγ·z0 .
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Corollary

The minimal rank wonderful compactification XG/H is T -skeletal; there are
finitely many T-fixed points and finitely many T-stable curves.

Using these observations, in 2008 Brion and Joshua obtained a concrete
description of the equivariant Chow ring of a wonderful compactification of
minimal rank.

We do the same (actually to a finer degree) with the equivariant algebraic
K-theory.
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Corollary (Banerjee-Can ’13)

The T-equivariant K-theory KT ,∗(XG/H) of XG/H is isomorphic to the
space of tuples (fw ·z0) ∈

∏
w∈WG/WL

K∗(k)⊗ R(T ) such that

fw ·z0 − fw ′·z0 =

{
0 mod (1− α) if w−1w ′ = sα

0 mod (1− α · θ(α)−1) if w−1w ′ = (sα · sθ(α))±
.

The T-equivariant K-theory KT ,∗(Y ) of the toric variety Y is isomorphic
to the space of tuples (fw ·z0) ∈

∏
w∈WH/WL

K∗(k)⊗ R(T ) such that

fw ·z0 − fw ′·z0 = 0 mod (1− α · θ(α)−1) and w−1w ′ = (sα · sθ(α))±.
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Let WH denote the minimal coset representatives of WG/WH .

Theorem (Banerjee-Can ’15)

There is an isomorphism of rings∏
w∈WH

KT ,∗(Y ) ∼= KT ,∗(XG/H).

Moreover this is an isomorphism of K∗(k)⊗ R(T ) modules.

Corollary (Banerjee-Can ’15)

The G-equivariant K-theory KG ,∗(XG/H) of XG/H is isomorphic to
WH -invariants of the T-equivariant K-theory of the toric variety Y .
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A non T -skeletal example

Consider the automorphism θ : SLn → SLn defined by θ(g) = (g−1)>.
Then the fixed subgroup of θ is SOn, hence the symmetric variety G/G θ is

G/H := SLn/SOn.

The maximal torus of diagonal matrices in SLn is unisotropic with respect
to θ; T = T1, hence the set of restricted simple roots ∆G/H is the root
system of (SLn,T ).
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Let X0 denote the open set of the projectivization of Symn, the space of
symmetric n-by-n matrices, consisting of matrices with non-zero
determinant. Elements of X0 should be interpreted as (the defining
equations of) smooth quadric hypersurfaces in Pn−1. The group SLn acts
on X0 by change of variables defining the quadric hypersurfaces, which
translates to the action

g · A = gAg>

on Symn.

X0 is a homogeneous space under this SLn action and the stabilizer of the
quadric x2

1 + x2
2 + · · ·+ x2

n = 0 (equivalently, the class of the identity

matrix) is the normalizer group of SOn in SLn, which we denote by S̃On.
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Definition

The variety of complete quadrics Xn is the wonderful compactification of
SLn/S̃On.

Its classical definition (Schubert 1879) is as follows. A point P ∈ Xn is
described by the data of a flag

F : V0 = 0 ⊂ V1 ⊂ · · · ⊂ Vs−1 ⊂ Vs = Cn (1)

and a collection Q = (Q1, . . .Qs) of quadrics, where Qi is a quadric in
P(Vi ) whose singular locus is P(Vi−1).
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There are alternative descriptions of Xn:

Theorem (Semple 1948)

Xn is the closure of the image of the map

[A] 7→ ([A], [Λ2(A)], . . . , [Λn−1(A)]) ∈
n−1∏
i=1

P(Λi (Symn)).

Theorem (Vainsencher 1982)

Xn can be obtained by the following sequence of blow-ups: in the naive
compactification Pn−1 of X0, first blow up the locus of rank 1 quadrics;
then blow up the strict transform of the rank 2 quadrics; . . . ; then blow up
the strict transform of the rank n − 1 quadrics.
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The closed SLn-orbit in Xn is SLn/B and the dense open orbit is SLn/S̃On.
To describe the geometry of Xn, first, one needs to understand the
combinatorics of Borel orbits in Xn. Notation:

A composition of n is an ordered sequence µ = (µ1, . . . , µk) of
positive integers that sum to n.

Define set(µ) of a composition by

µ = (µ1, . . . , µk)↔ set(µ) := {µ1, µ1 + µ2, . . . , µ1 + · · ·+ µk−1},

This yields an equivalent parameterization of the G -orbits of Xn.

The G -orbit associated with the composition µ is denoted by Oµ.
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Let µ′ and µ be two compositions of n. In Zariski topology

Oµ′ ⊆ Oµ ⇐⇒ set(µ) ⊆ set(µ′).
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The B-orbits of Xn lying in the open orbit O(n) are parametrized by In, the
set of involutions in Sn.
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More generally, (as noticed by Springer ’04) the B-orbits in Oµ are
parameterized by combinatorial objects that we call µ-involutions.
Concisely, a µ-involution is a permutation of the set [n] written in one-line
notation and partitioned into strings by µ, so that each string is an
involution with respect to the relative ordering of its numbers. For
example, [26|8351|7|94] is a (2, 4, 1, 2)-involution and the string 8351 is
equivalent to the involution 4231.
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We denote by Iµ the set of µ-involutions. The identity µ-involution, whose
entries are given in the increasing order, is the representative of the dense
B-orbit in the G -orbit Oµ. At the other extreme, the B-orbits in the
closed orbit are parametrized by permutations and the inclusion relations
among B-orbit closures is just the opposite of the well-known
Bruhat-Chevalley ordering (so that the identity permutation corresponds
to the dense B-orbit).
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Associated to a µ-involution π is a distinguished complete quadric Qπ.
Viewed as a permutation, π ∈ Iµ has the decomposition π = uv with
u ∈ Sµ and v ∈ Sµ, where Sµ is the minimal length right coset
representatives of the parabolic subgroup Sµ in Sn.
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Suppose µ = (µ1, . . . , µk) and let ei denote the i-th standard basis vector
of Cn. Then the desired flag of Qπ is given by the subspaces Vi ,
i = 1, 2, . . . , k, which are spanned by eπ(j) for 1 ≤ j ≤ µ1 + µ2 + · · ·+ µi .

To construct the corresponding sequence of smooth quadrics, consider
(u1, u2, . . . , uk), the image of u under the isomorphism
Sµ ∼= Sµ1 × Sµ2 × · · · × Sµk . Since π is a µ-involution, each ui ∈ Iµi . Then
the smooth quadric in P(Vi/Vi−1) that defines Qπ is given by the
symmetric matrix in the permutation matrix representation of ui .
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Lemma (Banerjee-Can-Joyce ’16)

Let π = [π1| · · · |πk ] be a µ-involution and let Yπ be the corresponding
B-orbit. Then

Yπ has a T-fixed point if and only if for i = 1, . . . , k the length of πi (as a
string) is at most 2; if πi = i1i2 for numbers i1, i2 ∈ [n], then i1 > i2 (hence
πi corresponds to the nonsingular quadric xi1xi2).

Definition

We call a µ-involution as in the above lemma a barred permutation. The
number of barred permutations of [n] is denoted by tn, n ≥ 1. By
convention we set t0 = 1. The set of all barred permutations on [n] is
denoted by B(Sn).
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Theorem (Banerjee-Can-Joyce ’16)

The exponential generating series Fexp(x) :=
∑

n≥0
tn
n!x

n of the number of
T -fixed points in Xn is given by

Fexp(x) =
1 + x − x2/2− x3/2

(1− x − x2/2)2
=
−(x + 1)(x2 − 2)

(2x2 + 4x − 4)2
.

Corollary (Banerjee-Can-Joyce ’16)

The number of T -fixed points in Xn is equal to

an(n + 1)! + an−1n!,

where

an =


∑n/2

i=0 (n+1
2i+1)3i

2n if n + 1 = 2m + 1;∑(n−1)/2
i=0 (n+1

2i+1)3i

2n if n + 1 = 2m.
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Our next task is to understand the T -stable surfaces and curves in Xn:

Theorem (Banerjee-Can-Joyce ’16)

An irreducible component of X S , the fixed locus of a codimension-one
subtorus of T is either a P1 or a P2.

We can tell exactly how do these P1’s and P2’s fit together. For example,
when n = 3 we have:
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[2|13]

[2|1|3]

[12|3]

[1|2|3]

[1|23]

[1|3|2]

[13|2]

[3|1|2]

[3|12]

[3|2|1]

[23|1]

[2|3|1]

Figure: T -stable curves and surfaces in X3.Mahir Bilen Can EKT of Some Wonderful Compactifications April 16, 2016 33 / 42



Theorem (Banerjee-Can-Joyce ’16)

Let T ⊂ G = SLn denote maximal torus of diagonal matrices. The T
equivariant K-theory KT ,∗(Xn) is isomorphic to the ring of tuples
(fx) ∈

∏
x∈B(Sn) K∗(k)⊗ R(T ) satisfying the following congruence

conditions:

fx − fy = 0 mod (1− χ) when x , y are connected by a T stable
curve with weight χ.

fx − fy = fx − fz = 0 mod (1− χ) and fy − fz = 0 mod (1− χ2), χ

is a root and x , y , z lie on a component of the subvariety X
ker(χ)
n ,

which is isomorphic to P2. There is a permutation that fixes x and
permutes y and z.

Moreover, the symmetric group Sn acts on the torus fixed point set XT
n by

permuting them and the G equivariant K-theory is given by the space of
Sn-invariants in KT ,∗(Xn).
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Define τ : {µ-involutions} → {barred permutations} as follows: Suppose
π = π1|π2| . . . |πk . For each πj , order its cycles in lexicographic order on
the largest value in each cycle. Then add bars between each cycle. Since π
is a µ-involution, every cycle that occurs in each πj has length one or two.
Finally, convert one-cycles (i) into the numeral i and two-cycles (ij) with
i < j into the string ji . For example,

τ((68)|(25)(4)(9)|(13)(7)) = [86|4|52|9|31|7].

Theorem (Banerjee-Can-Joyce ’16)

There is a 1-PSG λ such that for any µ-involution π, the limit
lim
t→0

λ(t) · Qπ is the T-fixed quadric parameterized by τ(π).
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We now wish to define a map

σ : {barred permutations} → {µ-involutions}

which will have the following geometric interpretation.

Let Qα be the T -fixed quadric associated to a barred permutation α.
Then σ(α) will correspond to the distinguished quadric in the dense
B-orbit of the cell that contains Qα. In other words, the B-orbit of Qσ(α)

will have the largest dimension among all B-orbits that flow to Qα.
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First, we define the notion of ascents and descents in a barred permutation
α = [α1|α2| . . . |αk ]. First, define dj to be the largest value occurring in
αj , giving rise to a sequence d = (d1, d2, . . . , dk). For example, if
α = [86|9|52|4|7|31], then d = (8, 9, 5, 4, 7, 3). We say that π has a
descent (resp., ascent) at position i if d has a descent (resp., ascent) at
position i .
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The µ-involution σ(α) is constructed by first converting strings i of length
1 into one-cycles (i) and strings ji of length 2 into two-cycles (ij). Then
remove the bars at positions of ascent and keep the bars at positions of
descent in α. For example,

σ([86|4|52|9|31|7]) = (68)|(25)(4)(9)|(13)(7).
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Theorem (Banerjee-Can-Joyce ’16)

For any barred permutation α, the B-orbit of Qσ(α) has the largest
dimension among all B-orbits that flow to Qα.

We illustrate the resulting cell decomposition when n = 3 in the next
figure. The dimension of a cell corresponding to a vertex in the figure is
equal to the length of any chain from the bottom cell. A vertex
corresponding to cell C is connected by an edge to a vertex of a cell C ′ of
one dimension lower if and only if C ′ is contained in the closure of C .
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3|2|1

3|21 32|1

3|1|2 31|2 2|3|1

2|1|3 2|31 1|3|2

21|3 1|32

1|2|3

Figure: Cell decomposition of the complete quadrics for n = 3. The labels give
the barred permutation parametrizing the T -fixed point in the cell.
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∅,T

{1},T {2},T ∅,T ∅,T

{1},T {1} {2},T {2} ∅,T ∅,T

{1, 2} {1},T {1} {2},T {2} ∅,T

{1, 2} {1, 2} {1} {2}

{1, 2}
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Given a barred permutation α, let w(α) denote the permutation in
one-line notation that is obtained by removing all bars in α. Let inv(α)
denote the number of length 2 strings that occur and let asc(α) denote
the number of ascents in α.

Theorem (Banerjee-Can-Joyce ’16)

The dimension of the cell containing the T-fixed quadric parameterized by
α is `(w0)− `(w(α)) + inv(α) + asc(α).
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We found an algorithm to decide when two cells closures are contained in
each other by describing the Bruhat-Chevalley ordering on the Borel orbits
contained in the same G -orbit + by using W -sets of Brion.
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Appendix

Definition of algebraic K-theory:

C: a small category;

BC: the classifying complex of C, which, by definition, is the
topological realization of the simplicial complex whose simplicies are
chains of morphisms.

Definition

• nth K-group of C is the nth homotopy group of BC.
• If X is a G -variety, then its nth G -equivariant K-group is the nth
K-group of the (small) category of G -equivariant vector bundles on X .
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