Implicitization of tensor product surfaces in the presence of a generic set of basepoints

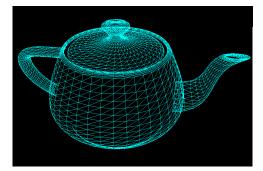
Eliana Duarte

University of Illinois Urbana-Champaign

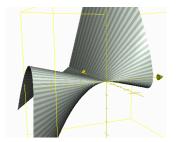
April 16, 2016

Eliana Duarte (UIUC)

Algebraic surfaces in computer graphics



Different ways to describe algebraic surfaces



 $r(t, u) = (u, t^{2}, t^{2}u + tu)$ $X^{2}Y - X^{2}Y^{2} + 2XYZ - Z^{2} = 0$

Parametric For any pair $(s, t) \in \mathbb{R}^2$ you associate a point $r(s, t) \in \mathbb{R}^3$ that lies in the surface.

Implicit The surface is described as the set of all points $(x, y, z) \in \mathbb{R}^3$ that satisfy an equation.

Implicitization meets commutative algebra and algebraic geometry

$$\mathbb{A}^2 \to \mathbb{A}^3 \Longrightarrow \lambda : \mathbb{P}^1 \times \mathbb{P}^1 \longrightarrow \mathbb{P}^3$$

A tensor product surface (TPS) is the closed image of a map $\lambda : \mathbb{P}^1 \times \mathbb{P}^1 \longrightarrow \mathbb{P}^3$.

Goal

Given a generically finite rational map $\lambda : \mathbb{P}^1 \times \mathbb{P}^1 \longrightarrow \mathbb{P}^3$ with basepoints the goal is to understand the syzygies of the defining polynomials of λ to set up faster algorithms that compute the implicit equation of $\overline{\operatorname{im} \lambda}$.

Notation for TPS

- R = k[s, t, u, v] with grading deg(s, t) = (1, 0) and deg(u, v) = (0, 1).
- A map λ : P¹ × P¹→ P³ is determined by four elements f₀,..., f₃ ∈ R_(a,b) without common factors.
- k[X, Y, Z, W] is the coordinate ring for P³.
- B = V(f₀,..., f₃) ⊂ P¹ × P¹ is the set of basepoints of U.

Example

$$f_{0} = s^{2}v$$

$$f_{1} = stv$$

$$f_{2} = stu \in R_{(2,1)}$$

$$f_{3} = t^{2}u$$

$$U := \{f_{0}, \dots, f_{3}\}$$

$$U \text{ defines a rational map } \lambda_{U} : \mathbb{P}^{1} \times \mathbb{P}^{1} \longrightarrow \mathbb{P}^{3}$$

$$[s, t, u, v] \mapsto [f_{0}, f_{1}, f_{2}, f_{3}].$$

$$X_{U} := \overline{\lambda_{U}} = V(XW - YZ)$$

$$I_{U} = \langle f_{0}, \dots, f_{3} \rangle \subset R$$

Rees-Algebra techniques to find implicit equations

•
$$I_U = \langle f_0, \ldots, f_3 \rangle \subset R$$
, we have a map

$$R[X, Y, Z, W] \xrightarrow{\beta} R[t]$$

 $\operatorname{Rees}_{R}(I_{U}) = R[X, Y, Z, W] / \ker \beta, \quad (\ker \beta)_{0} = (H).$

• $\operatorname{Rees}_R(I_U)$ is in general hard to study so we look at $\operatorname{Sym}_R(I_U)$

$$R[X, Y, Z, W] \xrightarrow{\alpha} \operatorname{Sym}_{R}(I_{U})$$

 $\operatorname{Sym}_{R}(I_{U}) = R[X, Y, Z, W]/\operatorname{Syz} I_{U}.$

• If $\lambda_U : \mathbb{P}^1 \times \mathbb{P}^1 \longrightarrow \mathbb{P}^3$ has finitely many local complete intersection basepoints, then $\operatorname{Sym}_R(I_U)$ and $\operatorname{Rees}_R(I_U)$ are "the same". Thus we may find $(\ker \beta)_0$ by looking at $\operatorname{Sym}_R(I_U)$ which ultimately means studying $\operatorname{Syz} I_U$.

Implicit equations via syzygies

Theorem[Botbol 2011]

Let $U = \text{Span}\{f_0, \ldots, f_3\} \subset R_{(a,b)}$ and $\lambda_U : \mathbb{P}^1 \times \mathbb{P}^1 \longrightarrow \mathbb{P}^3$ the rational map defined by U. Then the syzygies of I_U in degree $\nu = (2a - 1, b - 1)$ determine a complex \mathcal{Z}_{ν} such that

$$\det \mathcal{Z}_
u = {\it H}^{{\sf deg}\,\lambda_U}$$

where *H* denotes the irreducible implicit equation of X_U .

$$\begin{aligned} \mathcal{Z}_{\nu} : & 0 \longrightarrow (\mathcal{Z}_{2})_{\nu} \xrightarrow{d_{2}} (\mathcal{Z}_{1})_{\nu} \xrightarrow{d_{1}} (\mathcal{Z}_{0})_{\nu} \longrightarrow 0 \\ & \det \mathcal{Z}_{\nu} = \frac{\det d_{1}}{\det d_{2}} \end{aligned}$$

Points in $\mathbb{P}^1\times\mathbb{P}^1$

STRATEGY: To understand λ_U when U has basepoints we study the ideals of R corresponding to points in $\mathbb{P}^1 \times \mathbb{P}^1$.

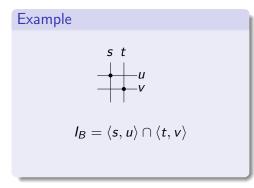
•
$$P = A \times C \in \mathbb{P}^1 \times \mathbb{P}^1$$

• Take $h \in R_{(1,0)}$, h(A) = 0, and $q \in R_{(0,1)}$, q(C) = 0. Then

 $I_P = \langle h, q \rangle$

• If $B = \{P_1, ..., P_r\}$, then

$$I_B = \bigcap_{i=1}^r I_{P_i}$$



TPS with a generic set of basepoints

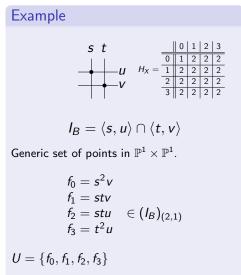
• The bigraded Hilbert function of *B* is defined by

 $H_B(i,j) = \dim_k R_{(i,j)} - \dim_k (I_B)_{(i,j)}$

• B is said to be generic if

 $H_B(i,j) = \min\{(i+1)(j+1), r\}$

 Take U to be a generic 4-dimensional vector subspace of (I_B)_(a,1)



Example with two generic basepoints $a = 2, r = 2, U = \{f_0, f_1, f_2, f_3\}$

$$f_0 = s^2 v \quad f_2 = stu$$

$$f_1 = stv \quad f_3 = t^2 u$$

• Using Bótbol's results, find a basis for the syzygies in bidegree (2a - 1, b - 1) = (3, 0), and use it to set up the complex Z_{ν} .

۲

Syz
$$I_U = \begin{pmatrix} -t & 0 & 0 \\ s & 0 & -u \\ 0 & t & v \\ 0 & -s & 0 \end{pmatrix}$$

• We write $-t \cdot X + s \cdot Y = 0$ and use $\{s^2, st, t^2\}$ to bump up, e.g.

$$-s^2t\cdot X+s^3\cdot Y=0$$

Example with two generic basepoints

• Fix $R_{(3,0)} = \{s^3, s^2t, st^2, t^3\}$ and write the coefficient vectors of the syzygies w.r.t this basis.

$$d_{1} = \begin{pmatrix} Y & 0 & 0 & W & 0 & 0 \\ -X & Y & 0 & -Z & W & 0 \\ 0 & -X & Y & 0 & -Z & W \\ 0 & 0 & -X & 0 & 0 & -Z \end{pmatrix}$$
$$-s^{2}t \cdot X + s^{3} \cdot Y = 0$$

• Proceed in the same way for all syzygies in bidegree (3,0) to obtain the rest of the columns of *M*.

٠

• We obtain the complex

$$\mathcal{Z}_{\nu}: 0 \longrightarrow (\mathcal{Z}_{2})_{\nu} \xrightarrow{\begin{pmatrix} W & 0 \\ -Z & W \\ 0 & -Z \\ -Y & 0 \\ 0 & X \end{pmatrix}} (\mathcal{Z}_{1})_{\nu} \xrightarrow{\begin{pmatrix} Y & 0 & 0 & W & 0 & 0 \\ -X & Y & 0 & -Z & W & 0 \\ 0 & -X & Y & 0 & -Z & W \\ 0 & 0 & -X & 0 & 0 & -Z \end{pmatrix}} (\mathcal{Z}_{0})_{\nu}$$

• $d_2 = \ker d_1$, dim ker $d_1 = 2 = \#$ of basepoints.

$$\det \mathcal{Z}_{\nu} = \frac{\begin{vmatrix} Y & 0 & 0 & W \\ -X & Y & 0 & -Z \\ 0 & -X & Y & 0 \\ 0 & 0 & -X & 0 \end{vmatrix}}{\begin{vmatrix} X & -Y \\ 0 & X \end{vmatrix}} = \frac{-X^2 Y Z + X^3 W}{X^2} = X W - Y Z$$

The Main theorem tells us that for any bidegree (a, 1) and any set of r generic basepoints, then d_1 is always determined by two syzygies.

Eliana Duarte (UIUC)

Implicitization

Main Theorem (-):

Let $(I_B)_{(a,1)}$ be the *k*-vector space of forms of bidegree (a, 1) that vanish at a generic set *B* of r = 2k + 1 points in $\mathbb{P}^1 \times \mathbb{P}^1$. Take *U* to be a generic 4-dimensional vector subspace of $(I_B)_{(a,1)}$ and $\lambda_U : \mathbb{P}^1 \times \mathbb{P}^1 \longrightarrow \mathbb{P}^3$ the rational map determined by *U*. Then the complex \mathcal{Z}_{ν} , $\nu = (2a - 1, 0)$ is determined by two syzygies S_1, S_2 of (f_0, \ldots, f_3) .

- If r = 2k then deg $S_1 = \deg S_2 = (a k, 0)$.
- If r = 2k + 1 then deg $S_1 = (a k, 0) \text{ deg } S_2 = (a (k + 1), 0)$.
- The syzygies S_1 , S_2 span a free module.

Main Theorem (-):

Let $(I_B)_{(a,1)}$ be the *k*-vector space of forms of bidegree (a, 1) that vanish at a generic set *X* of r = 2k + 1 points in $\mathbb{P}^1 \times \mathbb{P}^1$. Take *U* to be a generic 4-dimensional vector subspace of $(I_B)_{(a,1)}$ and $\lambda_U : \mathbb{P}^1 \times \mathbb{P}^1 \longrightarrow \mathbb{P}^3$ the rational map determined by *U*. Then the complex \mathcal{Z}_{ν} , $\nu = (2a - 1, 0)$ is determined by two syzygies S_1, S_2 of (f_0, \ldots, f_3) .

Corollary

If $B = \emptyset$ then d_1 is determined by two syzygies of (f_0, \ldots, f_3) in bidegee (a, 0).

Questions

What happens for (a, b), b > 1? What if U is not generic? What if the basepoints have multiplicities?

