Outline	Matrix Schubert varieties	Toric matrix Schubert varieties	Root polytopes and matrix Schubert varieties

Toric matrix Schubert varieties

Laura Escobar

University of Illinois at Urbana-Champaign

Special Session on Commutative Algebra and Its Interactions with Combinatorics and Algebraic Geometry Fargo, ND

April 16, 2016

3

< 日 > < 回 > < 回 > < 回 > < 回 > <

Joint work with Karola Mészáros (Cornell University)

э

<ロ> <同> <同> < 回> < 回>

Outline	Matrix Schubert varieties	Toric matrix Schubert varieties	Root polytopes and matrix Schubert varieties

- Toric and Schubert varieties are important examples of orbit closures in combinatorial algebraic geometry.
- Matrix Schubert varieties were introduced by Fulton to study degeneraci loci of flagged vector bundles.
- Knutson and Miller showed that Schubert polynomials are multidegrees of matrix Schubert varieties, and, using Gröbner bases and pipe dream complexes, studied the combinatorics of Schubert polynomials and determinant ideals building up on work by Fomin-Kirillov and Bergeron-Billey.
- There is a stratification of the flag variety by Schubert varieties and thus the cohomology of flag varieties is spanned by Schubert varieties.

In the first part of this talk I give a classification of the matrix Schubert varieties that are toric (with respect to a natural torus action).

イロト 不得 とくほ とくほ とうほう

Outline	Matrix Schubert varieties	Toric matrix Schubert varieties	Root polytopes and matrix Schubert varieties
Matrice	S		

Notation

- $M_n = n \times n$ matrices over \mathbb{C} .
- $GL_n(\mathbb{C}) =$ invertible matrices in M_n .
- $B_+ =$ upper triangular matrices in M_n .
- $B_- =$ lower triangular matrices in M_n .

Group action

- ▶ The multiplications XM with $X \in B_-$ and $M \in M_n$ correspond to downward row operations.
- ▶ The multiplications MY with $Y \in B_+$ and $M \in M_n$ correspond to rightward column operations.
- ► Let $B_- \times B_+$ act on M_n by $(X, Y) \cdot M := XMY^{-1}$. This is indeed an action because $(V, W) \cdot ((X, Y) \cdot M) = (VX)M(WY)^{-1} = (VX, WY) \cdot M$.

イロト 不得 とくほ とくほ とうほう

Permutation matrices

Given a permutation $\pi \in S_n$, we also denote by π its permutation matrix.

Example

 $\pi = [3, 1, 4, 2] \in S_4$ corresponds to the permutation matrix

$$\pi = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \in GL_n(\mathbb{C})$$

We denote by $B_{-}\pi B_{+}$ the $B_{-} \times B_{+}$ -orbit of π .

For each $M \in GL_n(\mathbb{C})$ there exists a unique $\pi \in S_n$ such that $M \in B_-\pi B_+$.

3

イロト 不同 トイヨト イヨト

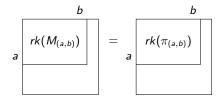
Orbits of permutation matrices

Given a permutation $\pi \in S_n$, we also denote by π its permutation matrix.

For each $M \in GL_n(\mathbb{C})$ there exists a unique $\pi \in S_n$ such that $M \in B_-\pi B_+$.

Criterion

 $M \in B_{-}\pi B_{+}$ if and only if for all $(a, b) \in [n]^2$, the rank of $M_{(a,b)}$ equals the number of 1's in the NW-most $a \times b$ -rectangle in π .



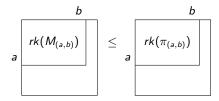
(日) (同) (三) (三)

Definition

A matrix Schubert variety is a $(B_- \times B_+)$ -orbit closure $\overline{X_{\pi}} := \overline{B_- \pi B_+} \subset M_n$.

Theorem (Fulton, '92)

 $\overline{X_{\pi}}$ is an irreducible affine variety of dimension $n^2 - \ell(\pi)$ and defined as a scheme by the n^2 equations.



(日) (同) (三) (三)

Example

Given $\pi = [3, 1, 4, 2] \in S_4$ corresponding to the permutation matrix

$$\pi = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \in GL_n(\mathbb{C}),$$

then

$$M = \begin{bmatrix} m_{(1,1)} & m_{(1,2)} & m_{(1,3)} & m_{(1,4)} \\ m_{(2,1)} & m_{(2,2)} & m_{(2,3)} & m_{(2,4)} \\ m_{(3,1)} & m_{(3,2)} & m_{(3,3)} & m_{(3,4)} \\ m_{(4,1)} & m_{(4,2)} & m_{(4,3)} & m_{(4,4)} \end{bmatrix} \in \overline{X_{[3,1,4,2]}}$$

э

Example

Given $\pi = [3, 1, 4, 2] \in S_4$ corresponding to the permutation matrix

$$\pi = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \in GL_n(\mathbb{C}),$$

then

$$M = \begin{bmatrix} 0 & m_{(1,2)} & m_{(1,3)} & m_{(1,4)} \\ m_{(2,1)} & m_{(2,2)} & m_{(2,3)} & m_{(2,4)} \\ m_{(3,1)} & m_{(3,2)} & m_{(3,3)} & m_{(3,4)} \\ m_{(4,1)} & m_{(4,2)} & m_{(4,3)} & m_{(4,4)} \end{bmatrix} \in \overline{X_{[3,1,4,2]}}$$

э

Example

Given $\pi = [3, 1, 4, 2] \in S_4$ corresponding to the permutation matrix

$$\pi = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \in GL_n(\mathbb{C}),$$

then

$$M = \begin{bmatrix} 0 & m_{(1,2)} & m_{(1,3)} & m_{(1,4)} \\ 0 & m_{(2,2)} & m_{(2,3)} & m_{(2,4)} \\ m_{(3,1)} & m_{(3,2)} & m_{(3,3)} & m_{(3,4)} \\ m_{(4,1)} & m_{(4,2)} & m_{(4,3)} & m_{(4,4)} \end{bmatrix} \in \overline{X_{[3,1,4,2]}}$$

Э

Example

Given $\pi = [3, 1, 4, 2] \in S_4$ corresponding to the permutation matrix

$$\pi = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \in GL_n(\mathbb{C}),$$

then

$$M = \begin{bmatrix} 0 & * & m_{(1,3)} & m_{(1,4)} \\ 0 & m_{(2,2)} & m_{(2,3)} & m_{(2,4)} \\ m_{(3,1)} & m_{(3,2)} & m_{(3,3)} & m_{(3,4)} \\ m_{(4,1)} & m_{(4,2)} & m_{(4,3)} & m_{(4,4)} \end{bmatrix} \in \overline{X_{[3,1,4,2]}}$$

Э

Example

Given $\pi = [3, 1, 4, 2] \in S_4$ corresponding to the permutation matrix

$$\pi = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \in GL_n(\mathbb{C}),$$

then

$$M = \begin{bmatrix} 0 & 1 & m_{(1,3)} & m_{(1,4)} \\ 0 & m_{(2,2)} & m_{(2,3)} & m_{(2,4)} \\ m_{(3,1)} & m_{(3,2)} & m_{(3,3)} & m_{(3,4)} \\ m_{(4,1)} & m_{(4,2)} & m_{(4,3)} & m_{(4,4)} \end{bmatrix} \in \overline{X_{[3,1,4,2]}}$$

Э

Example

Given $\pi = [3, 1, 4, 2] \in S_4$ corresponding to the permutation matrix

$$\pi = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \in GL_n(\mathbb{C}),$$

then

$$M = \begin{bmatrix} 0 & 1 & 2 & m_{(1,4)} \\ 0 & 3 & m_{(2,3)} & m_{(2,4)} \\ m_{(3,1)} & m_{(3,2)} & m_{(3,3)} & m_{(3,4)} \\ m_{(4,1)} & m_{(4,2)} & m_{(4,3)} & m_{(4,4)} \end{bmatrix} \in \overline{X_{[3,1,4,2]}}$$

Э

Example

Given $\pi = [3, 1, 4, 2] \in S_4$ corresponding to the permutation matrix

$$\pi = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \in GL_n(\mathbb{C}),$$

then

$$M = \begin{bmatrix} 0 & 1 & 2 & m_{(1,4)} \\ 0 & 3 & 6 & m_{(2,4)} \\ m_{(3,1)} & m_{(3,2)} & m_{(3,3)} & m_{(3,4)} \\ m_{(4,1)} & m_{(4,2)} & m_{(4,3)} & m_{(4,4)} \end{bmatrix} \in \overline{X_{[3,1,4,2]}}$$

Э

Some of the n^2 rank equations are redundant. Fulton gave a set of at most $\ell(\pi)$ -many equations that define $\overline{X_{\pi}}$.

Definition

The diagram $D(\pi)$ of $\pi \in S_n$ consists of the entries in the $n \times n$ -matrix that remain after we cross out the entries S and E of each 1 in the permutations matrix π .

Example

 $D([3,1,4,2]) = \{(1,1),(2,1),(2,3)\}$

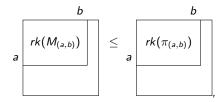
(日) (同) (三) (三)

Some of the n^2 rank equations are redundant. Fulton gave a set of at most $\ell(\pi)$ -many equations that define $\overline{X_{\pi}}$.

Definition

The diagram $D(\pi)$ of $\pi \in S_n$ consists of the entries in the $n \times n$ -matrix that remain after we cross out the entries S and E of each 1 in the permutations matrix π .

Theorem (Fulton, '92) The ideal defining $\overline{X_{\pi}}$ is generated by the equations



for
$$(a, b) \in Ess(\pi) := \{SE \text{ corners of } D(\pi)\}.$$

프 (프)

Some of the n^2 rank equations are redundant. Fulton gave a set of at most $\ell(\pi)$ -many equations that define $\overline{X_{\pi}}$.

Definition

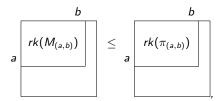
The diagram $D(\pi)$ of $\pi \in S_n$ consists of the entries in the $n \times n$ -matrix that remain after we cross out the entries S and E of each 1 in the permutations matrix π .

Example

$$\begin{split} & \underbrace{\textit{Ess}}([3,1,4,2]) = \{(2,1),(2,3)\} \text{ and } \\ & \overline{X_{\pi}} = \textit{V}\left(\langle \textit{x}_{(1,1)},\textit{x}_{(2,1)},\textit{x}_{(1,2)}\textit{x}_{(2,3)} - \textit{x}_{(1,3)}\textit{x}_{(2,2)}\rangle\right) \end{split}$$

(日) (同) (三) (三)

Theorem (Fulton, '92) The ideal l_{π} defining $\overline{X_{\pi}}$ is generated by the equations



for $(a, b) \in Ess(\pi) := \{SE \text{ corners of } D(\pi)\}.$

Straightforward observations

- If (a, b) is in the connected component of (1, 1) in $D(\pi)$ then $m_{(a,b)} = 0$.
- If (a, b) is not NW of any entry in $D(\pi)$, then $m_{(a,b)}$ is free.

UIUC

Outline	Matrix Schubert varieties	Toric matrix Schubert varieties	Root polytopes and matrix Schubert varieties

Example

Given $\pi = [3, 1, 4, 2] \in S_4$ with diagram and essential set

then

$$M = \begin{bmatrix} 0 & ? & ? & * \\ 0 & ? & ? & * \\ * & * & * & * \\ * & * & * & * \end{bmatrix} \in \overline{X_{[3,1,4,2]}}$$

here * denotes a free entry

2

< ロ > < 回 > < 回 > < 回 > < 回 > <

Decomposition of $\overline{X_{\pi}}$

Definition

Let Y_{π} be the variety obtained by restricting $\overline{X_{\pi}}$ to the entries NW of some entry of $D(\pi)$. Let V_{π} be the variety obtained by restricting $\overline{X_{\pi}}$ to the entries not NW of any entry in $D(\pi)$.

Example

Given $\pi = [3, 1, 4, 2] \in S_4$, then Y_{π} and V_{π} have the coordinates restricted to the entries in the shading region below

イロト イポト イヨト イヨト

Decomposition of $\overline{X_{\pi}}$

Definition

Let Y_{π} be the variety obtained by restricting $\overline{X_{\pi}}$ to the entries NW of some entry of $D(\pi)$. Let V_{π} be the variety obtained by restricting $\overline{X_{\pi}}$ to the entries not NW of any entry in $D(\pi)$.

Observations

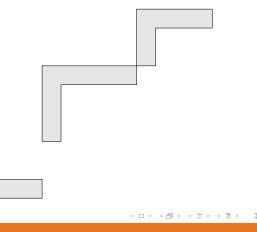
- $\blacktriangleright \overline{X_{\pi}} = Y_{\pi} \times V_{\pi}$
- $V_{\pi} = \mathbb{C}^{\text{something}}$
- $Y_{\pi} = V(I_{\pi})$ with $I_{\pi} \subset \mathbb{C}[x_{(i,j)} \mid (i,j) \text{ is NW of some entry of } D(\pi)].$
- dim $(Y_{\pi}) = |NW(\pi)| |D(\pi)|$, where $NW(\pi) := \{entries \ NW \ of \ some \ entry \ in \ D(\pi)\}$

イロト 不得 とくほ とくほ とうほう

Toric matrix Schubert ideals

Theorem (E.-Mészáros, '15)

 Y_{π} is a toric variety (with respect to a natural torus) if and only if $NW(\pi) - D(\pi)$ consists of disjoint hooks that do not share a row or a column with each other.



Toric varieties

- T^n = diagonal matrices in $GL_n(\mathbb{C}) \subset B_- \cap B_+$.
- $T^{2n} = T^n \times T^n$ acts on M_n by $(X, Y) \cdot M = XMY^{-1}$.

Definition

a normal variety X is a *toric variety* with respect to a T-torus action, if $X = \overline{T \cdot x}$ for some $x \in X$.

3

イロト イポト イヨト イヨト

When is Y_{π} a toric variety?

- Since Y_{π} is an irreducible variety, if there exists an $x \in Y_{\pi}$ such that $\dim(\overline{T^{2n} \cdot x}) = \dim(Y_{\pi})$, then Y_{π} is a toric variety with respect to T^{2n} .
- Since T²ⁿ ⋅ x is an affine toric variety, it corresponds to a cone. For x ∈ Y_π is a general point, the cone is spanned by the *T*-weights of the action.
- dim $(\overline{T^{2n} \cdot x})$ equals the dimension of this cone.

The cone for a general point $x \in Y_{\pi}$

Let e_1, \ldots, e_n be the standard basis for $\mathbb{R}^n \times 0$ and f_1, \ldots, f_n be the standard basis for $0 \times \mathbb{R}^n$.

The cone corresponding to $\overline{T^{2n} \cdot x}$ is spanned by the vectors $e_i - f_j$ such that $(i, j) \in NW(\pi)$ and not in the connected component of (1, 1).

イロト 不得 とくき とくき とうせい

When is Y_{π} a toric variety?

Theorem (E.-Mészáros, '15)

 Y_{π} is a toric variety (with respect to a natural torus) if and only if $NW(\pi) - D(\pi)$ consists of disjoint hooks that do not share a row or a column with each other.

Corollary

If $NW(\pi) - D(\pi)$ is a hook, then Y_{π} is a toric variety with respect to T^{2n} .

< ロ > < 回 > < 回 > < 回 > < 回 > .

When is Y_{π} a toric variety?

Corollary

If $NW(\pi) - D(\pi)$ is a hook, then Y_{π} is a toric variety with respect to T^{2n} .

Proof.

Since dim(Y_{π}) equals the size of the hook, it suffices to show that the dimension of the cone equals the size of the hook. The vectors corresponding to the entries of the hook are

$$\begin{array}{c|cccc} e_i - f_j & e_i - f_{j+c} & \cdots & e_i - f_{j+1} \\ \hline \\ e_{i+1} - f_j & & \\ \vdots & & \\ e_{i+r} - f_j & & \\ \end{array}$$

and these vectors are linearly independent. Thus the dimension of the cone is at least the size of the hook and so it follows that $Y_{\pi} = \overline{T^{2n} \cdot x}$ for a general $x \in Y_{\pi}$.

<ロ> <同> <同> < 同> < 同>

Root polytopes and cone(Y_{π})

Recall the cone for a general point $x \in Y_{\pi}$

The cone corresponding to $\overline{T^{2n} \cdot x}$ is spanned by the vectors $e_i - f_j$ such that $(i,j) \in NW(\pi)$ and not in the connected component of (1,1).

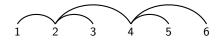
We now relate the polytope

 $\Phi(Y_{\pi}) := convexhull\{e_i - f_j \mid (i, j) \in NW(\pi) - (conn \ component \ of \ (1, 1))\}$ to acyclic root polytopes.

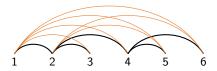
・ロト ・回ト ・ヨト ・ヨト

Root polytopes

Given an acyclic graph $\gamma = (E(\gamma), V(\gamma))$,



take its transitive closure $\overline{\gamma}$

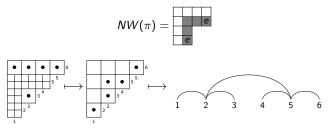


The *root polytope* of an acyclic graph γ is convexhull $\{0, e_i - e_j | (i, j) \in E(\overline{\gamma})\}$.

Root polytopes and $\Phi(Y_{\pi})$

Example

Let $\pi = [1, 5, 3, 4, 2]$, then we obtain a graph γ_{π} associated to π by the following procedure:



Theorem (E.-Mészáros, '15)

Suppose that $\pi(1) = 1$, then the root polytope of γ_{π} is obtained from $\Phi(Y_{\pi}) = convexhull\{e_i - f_j \mid (i, j) \in NW(\pi) - (conn \ component \ of (1, 1))\}$ by setting $e_i = f_j$ for all $(i, j) \in Ess(\pi)$.

<ロ> <同> <同> < 同> < 同>

Pipe dream complexes via triangulations of root polytopes

Canonical triagulations of root polytopes, defined by Mészáros, give regular triangulations of the polytopes $\Phi(Y_{\pi}) = convexhull\{e_i - f_i \mid (i, j) \in NW(\pi) - (conn \ component \ of (1, 1))\}.$

These triangulations realize pipe dream complexes when $\pi=1\pi'$ with π' dominant.

Theorem (E.-Mészáros, 2015)

Let $\Delta_1, \ldots, \Delta_k$ be the top dimensional simplices in the canonical triangulation of $P(\gamma_{\pi})$, the root polytope of γ_{π} , for $\pi = 1\pi'$, where π' is dominant. Then the preimages of these simplices under the map

$$\Phi(Y_{\pi}) \rightarrow P(\gamma_{\pi}), \text{ set } e_i = f_j \text{ for } (i,j) \in Ess(\pi)$$

are the top dimensional simplices in a triangulation of $\Phi(\mathbb{P}(Y_{\pi}))$ which yields geometric realization of the pipe dream complex of π .

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

Outline	Matrix Schubert varieties	Toric matrix Schubert varieties	Root polytopes and matrix Schubert varieties

Thank you!

2

< ロ > < 回 > < 回 > < 回 > < 回 >