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Neural activity and place fields

The freely moving rat (O'Keefe, 1979)
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Receptive field code

' ¢ c{o,1*
codewords:
‘ 1000 0100 0010 0001

1100 0110 1001 0011
010111010111
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activity pattern O ' O .

codeword 01 0 1

Let U = {Ui, ..., U} with U; C R2. The neural code associated to U is
cu={ee{o"[( ) U U u)#0n
i€supp(c) Jjésupp(c)

Note: The code C is the data that is returned from an experiment. There

is no knowledge of the sets in U.
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Drawing receptive fields

1 [ Neural code C:
100000 000010 000001
‘ 110000 101000 100100
'. 100010 100001 000011
’ 111000 110100 100011

Drawing realizations: Given a neural code, is there an algorithm to
draw a realization (a Euler diagram) with convex fields?

@ Convexity: Not all codes are realizable with convex place fields.
When is a neural code convexly realizable?
(Curto—Gross—Jeffries=Morrison—Omar—Rosen—Shiu—Youngs)

@ Dimension: What is the minimum dimension for which a convex
neural code is realizable? (Rosen—Zhang, full characterization for
dimension 1)
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Drawing Euler diagrams

Automatically drawing Euler diagrams using “nice” shapes is quite
tricky. It is a topic of current interest in the field of Information
Visualization.

¢ = {0000, 1000, 0100,1100,1110,1011, 1111}

ac

ab

A ~~ abcd

acd

Images from Stapleton—-Zhang—Howse—Rodgers 2013
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Drawing Euler diagrams

Automatically drawing Euler diagrams using “nice” shapes is quite
tricky. It is a topic of current interest in the field of Information
Visualization.

C = {1000, 0100, There exists an algorithm for
drawing Euler diagrams with circles
(Stapleton—Flower—Rodgers—Howse,

2013) for inductively pierced codes.

1100,1110,1011,1111}

Goal: Use toric ideals to iden-

@ tify inductively pierced codes.
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D =

0-piercings of D:
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D =

1-piercings of D:

QDD
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2-piercing of D:



1-inductively pierced diagrams
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k-inductively pierced

Definition

Let C be a neural code on n neurons. Let
N={X1,...; M} C€{1,2,...,n} = [n]. Then A\¢+1 € [n] is a k-piercing
of A in C if there exists c* € C such that

Q )\ ¢ supp(c*) fori< k+1
@ {supp(c) : Akt1 € supp(c)} = {supp(c*) U{ kr1} UA; © A; CA}
© {supp(c*)UA; : A; € A} C {supp(c) : ceC}.

Definition
A neural code C is k-inductively pierced if C has a 0,1,..., or k piercing
Aand C— A ={(c1,---,Er-1,Er, Crt1s---5Cn) = (C1y...,¢y) ECLs

k-inductively pierced.

We can explore k-inductively pierced codes using neural ideals and their
canonical form (Curto-lkskov—Veliz-Cuba—Youngs 2013) or toric ideals
of neural codes.
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Toric ideals of neural codes

o Let C ={cy,...,cm} be a neural code on n neurons.
o Let

dc :Klpe | c € €]+ Klx | i € {L,...,n}]

Pc — H Xj.

iesupp(c)

@ The toric ideal of the neural code C is Ig := ker ¢¢.

Example

¢ = {1000, 0100,

@ 1100,1110,1011, 1111}

le = (po110P1011 — P1111,

P1000P0100 — P1100)
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Detecting O-inductively pierced codes

Theorem (Gross-Obatake-Youngs)

Let C be well-formed (think: convexly realizable in dimension 2).

Then Ic = (0) if and only if the neural code C is 0-inductively
pierced.

Proof.

@ (=) Ic = (0) = realizations of C have no crossings =
0-inductively pierced.

@ (<) Prove by induction by using theory on toric ideals of
hypergraphs (Petrovi¢-Stasi 2014, Petrovi¢—Gross 2013).
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Necessary condition for 1-inductively pierced codes

Theorem (Gross-Obatake-Youngs)

Let C be well-formed. If the neural code C is 1-inductively pierced,
then the toric ideal Ic is generated by quadratics or Ic = (0).

Converse is not true!

o = {100,010,001, 110,101,011, 111}
1 2
e C is not l-inductively pierced
e lc = (pu1 — Ppiopoo1, P10 —
P100P010, P101 — P100POOL;, PO11 —
3 Po10P001)
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Necessary condition for 1-inductively pierced codes

Theorem (Gross-Obatake-Youngs)

Let C be well-formed. If the neural code C is 1-inductively pierced,
then the toric ideal Ic is generated by quadratics or Ic = (0).

Converse is not true!

e C ={100,010,001, 110,101,011, 111}
e C is not l-inductively pierced

e lc = (pi11 — P1ooPo10POOL, P110 —
P100P0O10, P101 — P100POOL;, PO11 —
Po10P001)
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Cubic signatures of 2-piercings

e C = {100,010,001,110, 101,011,111}

e Notice: p111 — p1oopoioPoor € lc-

Theorem (Gross-Obatake-Youngs)

Let C be well-formed. If C has a realization that contain three
circles that intersect as in the figure above, then lo contains a
cubic of the form p1112P000zP000z — P1002P0102zP001z OF
P1110...0 — P1000...0P0100...0P0010...0
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Using Grobner bases

Proposition (Gross-Obatake-Youngs)

A neural code C on 3 neurons is 1-inductively pierced if and only if
the Grobner basis of Io with respect to the term order determined
by the weight vector [0,0,0,1,1,1,0] and GRevLex contains only
binomials of degree 2 or less.

For all n, there exists a term order such that a code is 1-inductively
pierced if and only if the Grobner basis contains only binomials of
degree 2 or less.
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Thank you!
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