Toric ideals of neural codes

Elizabeth Gross San José State University

Joint work with Nida Obatake (SJSU) Nora Youngs (Harvey Mudd)

Neural activity and place fields

The freely moving rat (O'Keefe, 1979)

Receptive field code

 $\mathcal{C} \subset \{0,1\}^4$

codewords: 1000 0100 0010 0001 1100 0110 1001 0011 0101 1101 0111

Let $\mathcal{U} = \{U_1, ..., U_n\}$ with $U_i \subset \mathbb{R}^2$. The neural code associated to \mathcal{U} is

$$\mathcal{C}(\mathcal{U}) = \{ c \in \{0,1\}^n \, | \, ig(igcap_{i \in \mathrm{supp}(c)} U_i ig) ackslash igl(igcup_{j \notin \mathrm{supp}(c)} U_j igr)
eq \emptyset \}.$$

Note: The code C is the data that is returned from an experiment. There is no knowledge of the sets in U.

Drawing receptive fields

Drawing realizations: Given a neural code, is there an algorithm to draw a realization (a Euler diagram) with convex fields?

- **Convexity:** Not all codes are realizable with convex place fields. When is a neural code convexly realizable? (Curto–Gross–Jeffries–Morrison–Omar–Rosen–Shiu–Youngs)
- Dimension: What is the minimum dimension for which a convex neural code is realizable? (Rosen–Zhang, full characterization for dimension 1)

Drawing Euler diagrams

Automatically drawing Euler diagrams using "nice" shapes is quite tricky. It is a topic of current interest in the field of Information Visualization.

 $\mathcal{C} = \{0000, 1000, 0100, 1100, 1110, 1011, 1111\}$

Images from Stapleton–Zhang–Howse–Rodgers 2013

Automatically drawing Euler diagrams using "nice" shapes is quite tricky. It is a topic of current interest in the field of Information Visualization.

 $\mathcal{C} = \{1000, 0100,$

 $1100, 1110, 1011, 1111 \}$

Goal: Use toric ideals to identify inductively pierced codes.

0-piercings

D =

0-piercings of *D*:

÷

1-piercings

D =

1-piercings of *D*:

< ≣ >

2-piercings

D =

2-piercing of *D*:

æ

'≣ ▶

-∢ ≣⇒

1-inductively pierced diagrams

k-inductively pierced

Definition

Let C be a neural code on n neurons. Let $\Lambda = \{\lambda_1, \ldots, \lambda_k\} \subseteq \{1, 2, \ldots, n\} = [n]$. Then $\lambda_{k+1} \in [n]$ is a k-piercing of Λ in C if there exists $\mathbf{c}^* \in C$ such that

$$\ \, {\bf 0} \ \, \lambda_i \notin {\rm supp}({\bf c}^*) \ \, {\rm for} \ \, i \leq k+1$$

$$\Im \ \{ \mathsf{supp}(\mathbf{c}^*) \cup \Lambda_i \ : \ \Lambda_i \in \Lambda \} \subseteq \{ \mathsf{supp}(\mathbf{c}) \ : \ \mathbf{c} \in \mathcal{C} \}.$$

Definition

A neural code C is *k*-inductively pierced if C has a $0, 1, \ldots$, or *k* piercing λ and $C - \lambda = \{(c_1, \ldots, c_{\lambda-1}, \hat{c}_{\lambda}, c_{\lambda+1}, \ldots, c_n) : (c_1, \ldots, c_n) \in C\}$ is *k*-inductively pierced.

We can explore *k*-inductively pierced codes using neural ideals and their canonical form (Curto–Ikskov–Veliz-Cuba–Youngs 2013) or **toric ideals of neural codes**.

Toric ideals of neural codes

Let C = {c₁,..., c_m} be a neural code on n neurons.
Let

$$\phi_{\mathcal{C}} : \mathbb{K}[p_c \mid c \in \mathcal{C}] \to \mathbb{K}[x_i \mid i \in \{1, \dots, n\}]$$
$$p_c \mapsto \prod_{i \in \text{supp}(c)} x_i.$$

• The toric ideal of the neural code C is $I_C := \ker \phi_C$.

Let C be well-formed (think: convexly realizable in dimension 2). Then $I_{C} = \langle 0 \rangle$ if and only if the neural code C is 0-inductively pierced.

Proof.

- (\Rightarrow) $I_{\mathcal{C}} = \langle 0 \rangle \Rightarrow$ realizations of \mathcal{C} have no crossings \Rightarrow 0-inductively pierced.
- (⇐) Prove by induction by using theory on toric ideals of hypergraphs (Petrović–Stasi 2014, Petrović–Gross 2013).

Let C be well-formed. If the neural code C is 1-inductively pierced, then the toric ideal I_C is generated by quadratics or $I_C = \langle 0 \rangle$.

Fact

Converse is not true!

- $\bullet \ \mathcal{C} = \{100, 010, 001, 110, 101, 011, 111\}$
- $\bullet \ \mathcal{C}$ is not 1-inductively pierced
- $l_{\mathcal{C}} = \langle p_{111} p_{110}p_{001}, p_{110} p_{100}p_{010}, p_{101} p_{100}p_{001}, p_{011} p_{010}p_{001} \rangle$

Let C be well-formed. If the neural code C is 1-inductively pierced, then the toric ideal I_C is generated by quadratics or $I_C = \langle 0 \rangle$.

Fact

Converse is not true!

- $\bullet \ \mathcal{C} = \{100, 010, 001, 110, 101, 011, 111\}$
- $\bullet \ \mathcal{C}$ is not 1-inductively pierced
- $l_{\mathcal{C}} = \langle p_{111} p_{100} p_{010} p_{001}, p_{110} p_{100} p_{010}, p_{101} p_{100} p_{001}, p_{011} p_{010} p_{001} \rangle$

- $\bullet \ \mathcal{C} = \{100, 010, 001, 110, 101, 011, 111\}$
- Notice: $p_{111} p_{100}p_{010}p_{001} \in I_C$.

Let C be well-formed. If C has a realization that contain three circles that intersect as in the figure above, then I_{C} contains a cubic of the form $p_{111z}p_{000z}p_{000z} - p_{100z}p_{010z}p_{001z}$ or $p_{1110...0} - p_{1000...0}p_{0100...0}$

Proposition (Gross-Obatake-Youngs)

A neural code C on 3 neurons is 1-inductively pierced if and only if the Gröbner basis of I_C with respect to the term order determined by the weight vector [0,0,0,1,1,1,0] and GRevLex contains only binomials of degree 2 or less.

Conjecture

For all n, there exists a term order such that a code is 1-inductively pierced if and only if the Gröbner basis contains only binomials of degree 2 or less. Thank you!

æ