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Introduction
A neural code C is a collection of codewords (0-1 vectors) of a given
length n; it captures the co-firing patterns of a set of neurons [2]. A
neural code is convexly realizable if there exist n convex sets in some
Rd so that each codeword in the code corresponds to a unique inter-
section carved out by the convex sets [1]. There are some methods
to determine whether a neural code is convexly realizable, however,
these methods do not describe how to draw a realization.
In this poster, we construct toric ideals [5, 4] from neural codes,

and we show how we can use these ideals, along with the theory
of inductive piercings and Euler diagrams [6], to draw realizations
for particular classes of codes. We analyze the Gröbner bases [3] of
these ideals in an effort to devise an algorithm for drawing these
realizations.

Receptive fields of neural codes
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The code C is the collection of the activity patterns of neurons that
we get from an experiment.
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Drawing realizations: Given a neural code, is there an algorithm
to draw a realization (an Euler diagram) with convex fields?

Drawing Euler diagrams
Automatically drawing Euler diagrams using “nice” shapes is quite
tricky. It is a topic of current interest in the field of Information
Visualization.
There exists an algorithm for drawing Euler diagrams with circles

[6] for inductively pierced codes.

Goal: Use toric ideals to identify inductively pierced codes.

0-, 1- inductively pierced diagrams

Toric ideals of neural codes
• Let C = {c1, . . . , cm} be a neural code on n neurons.

• Let

fC : K[pc | c 2 C] ! K[xi | i 2 {1, . . . , n}]

pc 7�! ’
i2supp(c)

xi.

• The toric ideal of the neural code C is

IC := ker fC.

Example

C = {100, 010, 110, 101}
IC = hp110 � p010p100i

Theorem 6.1 (Gross-O-Youngs). Let C be well-formed (think: convexly
realizable in dimension 2).

• The neural code C is inductively 0-pierced if and only if IC = h0i.

• If the neural code C is inductively 0 and 1 pierced then IC is h0i or gen-
erated by quadratics.

• If the neural code C is inductively 0, 1, and 2-pierced then IC is generated
by binomials of degree  3.

Experimentation performed using Macaulay 2 with packages 4ti2
and gfanInterface.

• Proofs rely on translations between neural codes and inductive
piercings and linear algebra.

• From computations, it seems like we should be able to read off a
drawing order (i.e. “a decomposition”) from the Gröbner bases.
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Let U = {U1, ...,Un} with Ui ⊂ R2. The neural code associated to U is

C(U) = {c ∈ {0, 1}n |
( ⋂
i∈supp(c)

Ui

)
\
( ⋃
j /∈supp(c)

Uj

)
6= ∅}.

Note: The code C is the data that is returned from an experiment. There

is no knowledge of the sets in U .
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draw a realization (a Euler diagram) with convex fields?

Convexity: Not all codes are realizable with convex place fields.
When is a neural code convexly realizable?
(Curto–Gross–Jeffries–Morrison–Omar–Rosen–Shiu–Youngs)

Dimension: What is the minimum dimension for which a convex
neural code is realizable? (Rosen–Zhang, full characterization for
dimension 1)
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Drawing Euler diagrams

Automatically drawing Euler diagrams using “nice” shapes is quite
tricky. It is a topic of current interest in the field of Information
Visualization.

C = {0000, 1000, 0100, 1100, 1110, 1011, 1111}
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The techniques of Flower and Howse [5] were ex-
tended to enhance the layout [20]. First, some modifica-
tions were made to the implementation of the generation
method; in our running example this gives the lefthand
diagram in Fig. 5, although the labels are not shown,
as opposed to the diagram in Fig. 4. Also Flower et
al. [20] used layout metrics and hill climbing algorithms
to improve the diagrams’ aesthetic qualities; the result
of the layout improvements applied to the lefthand
diagram in Fig. 5 can be seen on the right.

Fig. 5. Using the layout improvement methods of [20].

Further extensions to the generation methods of
Flower and Howse allow the drawing of abstract de-
scriptions that need not have a completely wellformed
embedding. This was done by Rodgers et al. [21], where
techniques to allow the generation of any abstract de-
scription were developed; output from the software of
Rodgers at al. can be seen in Fig. 6. All of the methods
described so far use a dual graph based approach and are
computationally complex, having an NP-complete step.
This means that some diagrams take a significant time
to draw.

Fig. 6. Generation using the methods of [21].

Indeed, the dual graph method requires one to choose
a dual graph from the infinitely many that are ca-
pable of generating the required Euler diagram. The
chosen graph directly impacts the aesthetic quality of
the drawn diagrams and finding a suitable dual can
be difficult. A substantial part of Rodgers et al. [21]
focusses on the task of finding a dual that minimizes the

number of times wellformedness conditions are broken
and guarantees the absence of certain conditions (such
as no non-simple curve and no ‘disconnected’ zones).
An alternative method for choosing a dual graph is
developed by Simonetto and Auber [22], which has been
implemented [6]. Output from that implementation can
be seen in Fig. 7, where the labels have been manually
added post drawing1.

Fig. 7. Generation using the methods of [6].

Fig. 8. Inductive generation using the methods of [23].

A different method was developed by Chow [24],
that draws so-called monotone Euler diagrams. Amongst
other restrictions, monotone diagrams must have
the intersection between all curves in the to-be-
generated Euler diagram being present; such diagrams
are called monotone. Many ‘pierced’ diagrams do
not have this intersection present so our method
is complementary to that of Chow. We do not
have access to Chow’s software implementation of
his generation method, so we refer the reader to
http://apollo.cs.uvic.ca/euler/DrawEuler/
index.html for images of automatically drawn
diagrams that can be compared, in terms of aesthetics,
with those in this paper.

Most recently, an inductive generation method has
been developed [23], which draws Euler diagrams by

1. We thank Paolo Simonetto for supplying this image.

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 3

The techniques of Flower and Howse [5] were ex-
tended to enhance the layout [20]. First, some modifica-
tions were made to the implementation of the generation
method; in our running example this gives the lefthand
diagram in Fig. 5, although the labels are not shown,
as opposed to the diagram in Fig. 4. Also Flower et
al. [20] used layout metrics and hill climbing algorithms
to improve the diagrams’ aesthetic qualities; the result
of the layout improvements applied to the lefthand
diagram in Fig. 5 can be seen on the right.

Fig. 5. Using the layout improvement methods of [20].

Further extensions to the generation methods of
Flower and Howse allow the drawing of abstract de-
scriptions that need not have a completely wellformed
embedding. This was done by Rodgers et al. [21], where
techniques to allow the generation of any abstract de-
scription were developed; output from the software of
Rodgers at al. can be seen in Fig. 6. All of the methods
described so far use a dual graph based approach and are
computationally complex, having an NP-complete step.
This means that some diagrams take a significant time
to draw.

Fig. 6. Generation using the methods of [21].

Indeed, the dual graph method requires one to choose
a dual graph from the infinitely many that are ca-
pable of generating the required Euler diagram. The
chosen graph directly impacts the aesthetic quality of
the drawn diagrams and finding a suitable dual can
be difficult. A substantial part of Rodgers et al. [21]
focusses on the task of finding a dual that minimizes the

number of times wellformedness conditions are broken
and guarantees the absence of certain conditions (such
as no non-simple curve and no ‘disconnected’ zones).
An alternative method for choosing a dual graph is
developed by Simonetto and Auber [22], which has been
implemented [6]. Output from that implementation can
be seen in Fig. 7, where the labels have been manually
added post drawing1.

Fig. 7. Generation using the methods of [6].

Fig. 8. Inductive generation using the methods of [23].

A different method was developed by Chow [24],
that draws so-called monotone Euler diagrams. Amongst
other restrictions, monotone diagrams must have
the intersection between all curves in the to-be-
generated Euler diagram being present; such diagrams
are called monotone. Many ‘pierced’ diagrams do
not have this intersection present so our method
is complementary to that of Chow. We do not
have access to Chow’s software implementation of
his generation method, so we refer the reader to
http://apollo.cs.uvic.ca/euler/DrawEuler/
index.html for images of automatically drawn
diagrams that can be compared, in terms of aesthetics,
with those in this paper.

Most recently, an inductive generation method has
been developed [23], which draws Euler diagrams by

1. We thank Paolo Simonetto for supplying this image.

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 3

The techniques of Flower and Howse [5] were ex-
tended to enhance the layout [20]. First, some modifica-
tions were made to the implementation of the generation
method; in our running example this gives the lefthand
diagram in Fig. 5, although the labels are not shown,
as opposed to the diagram in Fig. 4. Also Flower et
al. [20] used layout metrics and hill climbing algorithms
to improve the diagrams’ aesthetic qualities; the result
of the layout improvements applied to the lefthand
diagram in Fig. 5 can be seen on the right.

Fig. 5. Using the layout improvement methods of [20].

Further extensions to the generation methods of
Flower and Howse allow the drawing of abstract de-
scriptions that need not have a completely wellformed
embedding. This was done by Rodgers et al. [21], where
techniques to allow the generation of any abstract de-
scription were developed; output from the software of
Rodgers at al. can be seen in Fig. 6. All of the methods
described so far use a dual graph based approach and are
computationally complex, having an NP-complete step.
This means that some diagrams take a significant time
to draw.

Fig. 6. Generation using the methods of [21].

Indeed, the dual graph method requires one to choose
a dual graph from the infinitely many that are ca-
pable of generating the required Euler diagram. The
chosen graph directly impacts the aesthetic quality of
the drawn diagrams and finding a suitable dual can
be difficult. A substantial part of Rodgers et al. [21]
focusses on the task of finding a dual that minimizes the

number of times wellformedness conditions are broken
and guarantees the absence of certain conditions (such
as no non-simple curve and no ‘disconnected’ zones).
An alternative method for choosing a dual graph is
developed by Simonetto and Auber [22], which has been
implemented [6]. Output from that implementation can
be seen in Fig. 7, where the labels have been manually
added post drawing1.

Fig. 7. Generation using the methods of [6].

Fig. 8. Inductive generation using the methods of [23].

A different method was developed by Chow [24],
that draws so-called monotone Euler diagrams. Amongst
other restrictions, monotone diagrams must have
the intersection between all curves in the to-be-
generated Euler diagram being present; such diagrams
are called monotone. Many ‘pierced’ diagrams do
not have this intersection present so our method
is complementary to that of Chow. We do not
have access to Chow’s software implementation of
his generation method, so we refer the reader to
http://apollo.cs.uvic.ca/euler/DrawEuler/
index.html for images of automatically drawn
diagrams that can be compared, in terms of aesthetics,
with those in this paper.

Most recently, an inductive generation method has
been developed [23], which draws Euler diagrams by

1. We thank Paolo Simonetto for supplying this image.

Images from Stapleton–Zhang–Howse–Rodgers 2013

Elizabeth Gross, SJSU Toric ideals of neural codes



Drawing Euler diagrams

Automatically drawing Euler diagrams using “nice” shapes is quite
tricky. It is a topic of current interest in the field of Information
Visualization.

C = {1000, 0100,

1100, 1110, 1011, 1111}

There exists an algorithm for
drawing Euler diagrams with circles
(Stapleton–Flower–Rodgers–Howse,
2013) for inductively pierced codes.

Goal: Use toric ideals to iden-
tify inductively pierced codes.

Elizabeth Gross, SJSU Toric ideals of neural codes



0-piercings

D =

0-piercings of D:
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1-piercings

D =

1-piercings of D:
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2-piercings

D =

2-piercing of D:
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1-inductively pierced diagrams
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k-inductively pierced

Definition

Let C be a neural code on n neurons. Let
Λ = {λ1, . . . , λk} ⊆ {1, 2, . . . , n} = [n]. Then λk+1 ∈ [n] is a k-piercing
of Λ in C if there exists c∗ ∈ C such that

1 λi /∈ supp(c∗) for i ≤ k + 1

2 {supp(c) : λk+1 ∈ supp(c)} = {supp(c∗) ∪ {λk+1} ∪ Λi : Λi ⊆ Λ}
3 {supp(c∗) ∪ Λi : Λi ∈ Λ} ⊆ {supp(c) : c ∈ C}.

Definition

A neural code C is k-inductively pierced if C has a 0, 1, . . . , or k piercing
λ and C − λ = {(c1, . . . , cλ−1, ĉλ, cλ+1, . . . , cn) : (c1, . . . , cn) ∈ C} is
k-inductively pierced.

We can explore k-inductively pierced codes using neural ideals and their

canonical form (Curto–Ikskov–Veliz-Cuba–Youngs 2013) or toric ideals

of neural codes.
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Toric ideals of neural codes

Let C = {c1, . . . , cm} be a neural code on n neurons.

Let

φC : K[pc | c ∈ C]→ K[xi | i ∈ {1, . . . , n}]

pc 7→
∏

i∈supp(c)

xi .

The toric ideal of the neural code C is IC := ker φC .

Example

C = {1000, 0100,

1100, 1110, 1011, 1111}
IC = 〈p0110p1011 − p1111,

p1000p0100 − p1100〉
Elizabeth Gross, SJSU Toric ideals of neural codes



Detecting 0-inductively pierced codes

Theorem (Gross-Obatake-Youngs)

Let C be well-formed (think: convexly realizable in dimension 2).
Then IC = 〈0〉 if and only if the neural code C is 0-inductively
pierced.

Proof.

(⇒) IC = 〈0〉 ⇒ realizations of C have no crossings ⇒
0-inductively pierced.

(⇐) Prove by induction by using theory on toric ideals of
hypergraphs (Petrović–Stasi 2014, Petrović–Gross 2013).

Elizabeth Gross, SJSU Toric ideals of neural codes



Necessary condition for 1-inductively pierced codes

Theorem (Gross-Obatake-Youngs)

Let C be well-formed. If the neural code C is 1-inductively pierced,
then the toric ideal IC is generated by quadratics or IC = 〈0〉.

Fact

Converse is not true!

1 2

3

• C = {100, 010, 001, 110, 101, 011, 111}
• C is not 1-inductively pierced

• IC = 〈p111 − p110p001, p110 −
p100p010, p101 − p100p001, p011 −
p010p001〉
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1 2

3
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Cubic signatures of 2-piercings

1 2

3

• C = {100, 010, 001, 110, 101, 011, 111}
• Notice: p111 − p100p010p001 ∈ IC .

Theorem (Gross-Obatake-Youngs)

Let C be well-formed. If C has a realization that contain three
circles that intersect as in the figure above, then IC contains a
cubic of the form p111zp000zp000z − p100zp010zp001z or
p1110...0 − p1000...0p0100...0p0010...0

Elizabeth Gross, SJSU Toric ideals of neural codes



Using Gröbner bases

Proposition (Gross-Obatake-Youngs)

A neural code C on 3 neurons is 1-inductively pierced if and only if
the Gröbner basis of IC with respect to the term order determined
by the weight vector [0, 0, 0, 1, 1, 1, 0] and GRevLex contains only
binomials of degree 2 or less.

Conjecture

For all n, there exists a term order such that a code is 1-inductively
pierced if and only if the Gröbner basis contains only binomials of
degree 2 or less.
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Thank you!
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