Conductor ideals of affine monoids and K-theory

Joseph Gubeladze San Francisco State University

AMS Special Session: Combinatorial Ideals and Applications

Fargo, 2016

Outline

- Frobenius number of a numerical semigroup
- Affine monoid, normalization, seminormalization
- Conductor ideals & gaps in affine monoids
- Crash course in K -theory
- Affine monoid rings and their ${\it K}$ -theory
- Nilpotence of higher K -theory of toric varieties
- Conjecture

Numerical semigroup is a sub-semigroup $S\subset\mathbb{Z}_{\geq0}$ such that the set of gaps $\mathbb{Z}\setminus S$ is finite

Numerical semigroup is a sub-semigroup $S\subset\mathbb{Z}_{\geq0}$ such that the set of gaps $\mathbb{Z}\setminus S$ is finite

The Frobenius number of a numerical semigroup S is the largest gap of S

Numerical semigroup is a sub-semigroup $S \subset \mathbb{Z}_{\geq 0}$ such that the set of gaps $\mathbb{Z} \setminus S$ is finite

The Frobenius number of a numerical semigroup S is the largest gap of S

Every numerical semigroup S is generated by finitely many integers a_1, \ldots, a_n with $gcd(a_1, \ldots, a_n) = 1$

Numerical semigroup is a sub-semigroup $S \subset \mathbb{Z}_{\geq 0}$ such that the set of gaps $\mathbb{Z} \setminus S$ is finite

The Frobenius number of a numerical semigroup S is the largest gap of S

Every numerical semigroup S is generated by finitely many integers a_1, \ldots, a_n with $gcd(a_1, \ldots, a_n) = 1$

Computing the Frobenius number of $g(a_1, \ldots, a_n)$ of $\mathbb{Z}_{\geq 0}a_1 + \cdots + \mathbb{Z}_{\geq 0}a_n$ is **hard**. The only value of n for which there is a formula is n = 2:

 $g(a_1, a_2) = a_1 a_2 - a_1 - a_2$

Numerical semigroup is a sub-semigroup $S \subset \mathbb{Z}_{\geq 0}$ such that the set of gaps $\mathbb{Z} \setminus S$ is finite

The Frobenius number of a numerical semigroup S is the largest gap of S

Every numerical semigroup S is generated by finitely many integers a_1, \ldots, a_n with $gcd(a_1, \ldots, a_n) = 1$

Computing the Frobenius number of $g(a_1, \ldots, a_n)$ of $\mathbb{Z}_{\geq 0}a_1 + \cdots + \mathbb{Z}_{\geq 0}a_n$ is **hard**. The only value of n for which there is a formula is n = 2:

 $g(a_1, a_2) = a_1 a_2 - a_1 - a_2$

Huge existing literature – Postage Stamp Problem, Coin Problem, McNugget Problem (special case), Arnold Conjecture (on asymptotics of $g(a_1, \ldots, a_n)$), etc

An affine monoid is a finitely generated submonoid $M \subset \mathbb{Z}^d$ A positive affine monoid is an affine monoid with no non-zero $\pm x \in M$

An affine monoid is a finitely generated submonoid $M \subset \mathbb{Z}^d$ A positive affine monoid is an affine monoid with no non-zero $\pm x \in M$ A positive affine monoid $M \subset \mathbb{Z}^d$ defines a rational polyhedral cone

 $C(M) := \mathbb{R}_{\geq 0} M \subset \mathbb{R}^d$

An affine monoid is a finitely generated submonoid $M \subset \mathbb{Z}^d$ A positive affine monoid is an affine monoid with no non-zero $\pm x \in M$ A positive affine monoid $M \subset \mathbb{Z}^d$ defines a rational polyhedral cone

 $C(M) := \mathbb{R}_{\geq 0} M \subset \mathbb{R}^d$

The subgroup of \mathbb{Z}^d , generated by M , is the group of differences of M and denoted ${\rm gp}(M)$

An affine monoid is a finitely generated submonoid $M \subset \mathbb{Z}^d$ A positive affine monoid is an affine monoid with no non-zero $\pm x \in M$ A positive affine monoid $M \subset \mathbb{Z}^d$ defines a rational polyhedral cone

 $C(M) := \mathbb{R}_{\geq 0} M \subset \mathbb{R}^d$

The subgroup of \mathbb{Z}^d , generated by M, is the group of differences of M and denoted gp(M)A (positive) affine monoid M is normal if

 $x \in \operatorname{gp}(M)$ & $nx \in C(M)$ for some $n \implies x \in M$

An affine monoid is a finitely generated submonoid $M \subset \mathbb{Z}^d$ A positive affine monoid is an affine monoid with no non-zero $\pm x \in M$ A positive affine monoid $M \subset \mathbb{Z}^d$ defines a rational polyhedral cone

 $C(M) := \mathbb{R}_{\geq 0} M \subset \mathbb{R}^d$

The subgroup of \mathbb{Z}^d , generated by M, is the group of differences of M and denoted gp(M)A (positive) affine monoid M is normal if

 $x \in \operatorname{gp}(M)$ & $nx \in C(M)$ for some $n \implies x \in M$

A (positive) affine monoid M is seminormal if

 $x \in \operatorname{gp}(M) \& 2x, 3x \in M \text{ for some } n \implies x \in M$

All affine affine monoids from this point on are positive

All affine affine monoids from this point on are positive

The normalization of M is the smallest normal submonoid $\bar{M}\subset\mathbb{Z}^d$ containing M, i.e., $\bar{M}=C(M)\cap\mathrm{gp}(M)$ – 'saturation' of M

All affine affine monoids from this point on are positive

The normalization of M is the smallest normal submonoid $\bar{M}\subset\mathbb{Z}^d$ containing M, i.e., $\bar{M}=C(M)\cap\mathrm{gp}(M)$ – 'saturation' of M

The seminormalization of M is the smallest seminormal submonoid $\mathrm{sn}(M)\subset\mathbb{Z}^d$ containing M , i.e.,

$$\bar{M} = \{ x \in \mathbb{Z}^d \mid 2x, 3x \in M \}$$

- 'saturation' of M along the rational rays inside the cone C(M)

All affine affine monoids from this point on are positive

The normalization of M is the smallest normal submonoid $\bar{M}\subset\mathbb{Z}^d$ containing M, i.e., $\bar{M}=C(M)\cap {\rm gp}(M)$ – 'saturation' of M

The seminormalization of M is the smallest seminormal submonoid $\mathrm{sn}(M)\subset \mathbb{Z}^d$ containing M , i.e.,

$$\bar{M} = \{ x \in \mathbb{Z}^d \mid 2x, 3x \in M \}$$

- 'saturation' of M along the rational rays inside the cone C(M)

REMARK. $F \cap \operatorname{sn}(M) = \operatorname{sn}(F \cap M)$ for every face $F \subset C(M)$

All affine affine monoids from this point on are positive

The normalization of M is the smallest normal submonoid $\bar{M}\subset\mathbb{Z}^d$ containing M, i.e., $\bar{M}=C(M)\cap {\rm gp}(M)$ – 'saturation' of M

The seminormalization of M is the smallest seminormal submonoid $\mathrm{sn}(M)\subset\mathbb{Z}^d$ containing M , i.e.,

$$\bar{M} = \{ x \in \mathbb{Z}^d \mid 2x, 3x \in M \}$$

- 'saturation' of M along the rational rays inside the cone C(M)

REMARK. $F \cap \operatorname{sn}(M) = \operatorname{sn}(F \cap M)$ for every face $F \subset C(M)$

FACT. $\overline{M} \cap \operatorname{int} C(M) = \operatorname{sn}(M) \cap \operatorname{int} C(M)$

The conductor ideal of an affine monoid M is

 $c_{\bar{M}/M} := \{ x \in \bar{M} \mid x + \bar{M} \subset M \} \subset M$

It is an ideal of M because $\mathbf{c}_{\bar{M}/M} + M \subset M$

The conductor ideal of an affine monoid M is

$$c_{\bar{M}/M} := \{ x \in \bar{M} \mid x + \bar{M} \subset M \} \subset M$$

It is an ideal of M because $\mathbf{c}_{\bar{M}/M} + M \subset M$

FACT. $c_{\overline{M}/M} \neq \emptyset$

The conductor ideal of an affine monoid M is

 $c_{\bar{M}/M} := \{ x \in \bar{M} \mid x + \bar{M} \subset M \} \subset M$

It is an ideal of M because $\mathbf{c}_{\bar{M}/M} + M \subset M$

FACT. $c_{\overline{M}/M} \neq \emptyset$

Proof. Let \overline{M} is module finite over M. Let $\{x_1 - y_1, \ldots, x_n - y_n\} \subset \operatorname{gp}(M)$ be a generating set $x_i, y_i \in M$. Then $y_1 + \cdots + y_n \in \operatorname{c}_{\overline{M}/M}$. \Box

The conductor ideal of an affine monoid M is

 $c_{\bar{M}/M} := \{ x \in \bar{M} \mid x + \bar{M} \subset M \} \subset M$

It is an ideal of M because $\mathbf{c}_{\bar{M}/M} + M \subset M$

FACT. $c_{\overline{M}/M} \neq \emptyset$

Proof. Let \overline{M} is module finite over M. Let $\{x_1-y_1, \ldots, x_n-y_n\} \subset \operatorname{gp}(M)$ be a generating set $x_i, y_i \in M$. Then $y_1 + \cdots + y_n \in \operatorname{c}_{\overline{M}/M}$. \Box (Katthän, 2015)

$$\overline{M} \setminus M = \bigcup_{j=1}^{l} (q_j + \operatorname{gp}(M \cap F)) \cap C(M),$$

where the F_j are faces of the cone C(M) and $q_j \in \overline{M}$

The elements of $\operatorname{sn}(M) \setminus M$ are gaps of M . Different from the set $\bar{M} \setminus M$

The elements of $\operatorname{sn}(M) \setminus M$ are gaps of M . Different from the set $\bar{M} \setminus M$

For a numerical semigroup S , this is the same as $ar{S}\setminus S$

The elements of $\operatorname{sn}(M) \setminus M$ are gaps of M . Different from the set $\bar{M} \setminus M$

For a numerical semigroup S , this is the same as $ar{S}\setminus S$

Moreover, $\mathbf{c}_{\bar{S}/S} = g(S) + \mathbb{Z}_{>0}$, where g(S) is the Frobenius number of S

The elements of $\operatorname{sn}(M) \setminus M$ are gaps of M . Different from the set $\bar{M} \setminus M$

For a numerical semigroup S , this is the same as $ar{S}\setminus S$

Moreover, $c_{\bar{S}/S} = g(S) + \mathbb{Z}_{>0}$, where g(S) is the Frobenius number of S

(Reid-Roberts, 2001) Let $\{v_1, \ldots, v_d, v_{d+1}\} \subset \mathbb{Z}_{\geq 0}^d$ be a circuit (no d elements are linearly dependent) and $M = \mathbb{Z}_{\geq 0}v_1 + \cdots + \mathbb{Z}_{\geq 0}v_1$.

The elements of $\operatorname{sn}(M) \setminus M$ are gaps of M . Different from the set $\bar{M} \setminus M$

For a numerical semigroup S , this is the same as $ar{S}\setminus S$

Moreover, $\mathbf{c}_{\bar{S}/S} = g(S) + \mathbb{Z}_{>0}$, where g(S) is the Frobenius number of S

(Reid-Roberts, 2001) Let $\{v_1, \ldots, v_d, v_{d+1}\} \subset \mathbb{Z}_{\geq 0}^d$ be a circuit (no d elements are linearly dependent) and $M = \mathbb{Z}_{\geq 0}v_1 + \cdots + \mathbb{Z}_{\geq 0}v_1$. Then

 $c_{\overline{M}/M} = g + \big(\operatorname{int} C(M) \cap \operatorname{gp}(M)\big)$

The elements of $\operatorname{sn}(M) \setminus M$ are gaps of M . Different from the set $\bar{M} \setminus M$

For a numerical semigroup S , this is the same as $ar{S}\setminus S$

Moreover, $c_{\bar{S}/S} = g(S) + \mathbb{Z}_{>0}$, where g(S) is the Frobenius number of S

(Reid-Roberts, 2001) Let $\{v_1, \ldots, v_d, v_{d+1}\} \subset \mathbb{Z}_{\geq 0}^d$ be a circuit (no d elements are linearly dependent) and $M = \mathbb{Z}_{\geq 0}v_1 + \cdots + \mathbb{Z}_{\geq 0}v_1$. Then

$$c_{\bar{M}/M} = g + \big(\operatorname{int} C(M) \cap \operatorname{gp}(M)\big)$$

where

$$g = \left(\sum_{i=1}^{d+1} d_i v_i\right)/2 - \sum_{i=1}^{d+1} v_i$$

 d_i being the order of \mathbb{Z}^d modulo $v_1, \ldots, v_{i-1}, v_{i+1}, \ldots, v_{d+1}$

Grothendieck's group $K_0(R)$ of a ring R measures how far the projective R -modules overall are from being free (actually, stably free, which is a certain functorial weakening of 'free'')

Grothendieck's group $K_0(R)$ of a ring R measures how far the projective R -modules overall are from being free (actually, stably free, which is a certain functorial weakening of 'free'')

Bass-Whitead group $K_1(R)$ measures how far the invertible matrices over R overall are from being diagonalizable via elementary row (or column) transformations. (Again, in the stable sense)

Grothendieck's group $K_0(R)$ of a ring R measures how far the projective R -modules overall are from being free (actually, stably free, which is a certain functorial weakening of 'free'')

Bass-Whitead group $K_1(R)$ measures how far the invertible matrices over R overall are from being diagonalizable via elementary row (or column) transformations. (Again, in the stable sense)

Milnor's group $K_2(R)$ measures how many *essentially* different diagonalizations overall there exist for all possible diagonalizable invertible R -matrices

Grothendieck's group $K_0(R)$ of a ring R measures how far the projective R -modules overall are from being free (actually, stably free, which is a certain functorial weakening of 'free'')

Bass-Whitead group $K_1(R)$ measures how far the invertible matrices over R overall are from being diagonalizable via elementary row (or column) transformations. (Again, in the stable sense)

Milnor's group $K_2(R)$ measures how many *essentially* different diagonalizations overall there exist for all possible diagonalizable invertible R -matrices

Higher groups $K_i(R)$ do not admit transparent definitions in terms of classical algebraic objects, they are higher homotopy variants of K_0 , K_1 , K_2

Grothendieck's group $K_0(R)$ of a ring R measures how far the projective R -modules overall are from being free (actually, stably free, which is a certain functorial weakening of 'free'')

Bass-Whitead group $K_1(R)$ measures how far the invertible matrices over R overall are from being diagonalizable via elementary row (or column) transformations. (Again, in the stable sense)

Milnor's group $K_2(R)$ measures how many essentially different diagonalizations overall there exist for all possible diagonalizable invertible R -matrices

Higher groups $K_i(R)$ do not admit transparent definitions in terms of classical algebraic objects, they are higher homotopy variants of K_0 , K_1 , K_2

Informally, these groups are syzygies between elementary transformation of invertibe matricces over R. Formally, they are higher homotopy groups of a certain K -theoretical space, associated to R (Quillen, the 1970s)

K-theory of monoid rings

Let R be a (commutative) regular ring and $M \subset \mathbb{Z}^d$ an affine monoid

Let R be a (commutative) regular ring and $M \subset \mathbb{Z}^d$ an affine monoid

(Grothendieck) $K_0(R) = K_0(R[X_1, ..., X_d]) \quad (= K_0(R[\mathbb{Z}_{\geq 0}^d]))$

Let R be a (commutative) regular ring and $M \subset \mathbb{Z}^d$ an affine monoid (Grothendieck) $K_0(R) = K_0(R[X_1, \dots, X_d])$ $(= K_0(R[\mathbb{Z}_{\geq 0}^d]))$ (Quillen) $K_*(R) = K_*(R[X_1, \dots, X_d])$ $(= K_*(R[\mathbb{Z}_{\geq 0}^d]))$

Let R be a (commutative) regular ring and $M \subset \mathbb{Z}^d$ an affine monoid (Grothendieck) $K_0(R) = K_0(R[X_1, \dots, X_d])$ $(= K_0(R[\mathbb{Z}_{\geq 0}^d]))$ (Quillen) $K_*(R) = K_*(R[X_1, \dots, X_d])$ $(= K_*(R[\mathbb{Z}_{\geq 0}^d]))$

(G., 1988) $K_0(R) = K_0(R[M])$ iff $M = \operatorname{sn}(M)$

Let R be a (commutative) regular ring and $M \subset \mathbb{Z}^d$ an affine monoid (Grothendieck) $K_0(R) = K_0(R[X_1, \dots, X_d])$ $(= K_0(R[\mathbb{Z}_{\geq 0}^d]))$ (Quillen) $K_*(R) = K_*(R[X_1, \dots, X_d])$ $(= K_*(R[\mathbb{Z}_{\geq 0}^d]))$ (G., 1988) $K_0(R) = K_0(R[M])$ iff $M = \operatorname{sn}(M)$ Corollary: $K_0(R[M])/K_0(R) \cong R(\operatorname{sn}(M) \setminus M)$ when $\mathbb{Q} \subset R$

Let R be a (commutative) regular ring and $M \subset \mathbb{Z}^d$ an affine monoid (Grothendieck) $K_0(R) = K_0(R[X_1, \dots, X_d])$ $(= K_0(R[\mathbb{Z}_{\geq 0}^d]))$ (Quillen) $K_*(R) = K_*(R[X_1, \dots, X_d])$ $(= K_*(R[\mathbb{Z}_{\geq 0}^d]))$ (G., 1988) $K_0(R) = K_0(R[M])$ iff $M = \operatorname{sn}(M)$ Corollary: $K_0(R[M])/K_0(R) \cong R(\operatorname{sn}(M) \setminus M)$ when $\mathbb{Q} \subset R$ (G., 1992) $K_*(R) = K_*(R[M])$ iff $M \cong \mathbb{Z}_{\geq 0}^r$ for some $r \ge 0$

Let R be a (commutative) regular ring and $M \subset \mathbb{Z}^d$ an affine monoid (Grothendieck) $K_0(R) = K_0(R[X_1, ..., X_d]) \quad (= K_0(R[\mathbb{Z}_{\geq 0}^d]))$ (Quillen) $K_*(R) = K_*(R[X_1, \dots, X_d]) \quad (= K_*(R[\mathbb{Z}_{\geq 0}^d]))$ (G., 1988) $K_0(R) = K_0(R[M])$ iff $M = \operatorname{sn}(M)$ **Corollary:** $K_0(R[M])/K_0(R) \cong R(\operatorname{sn}(M) \setminus M)$ when $\mathbb{Q} \subset R$ (G., 1992) $K_*(R) = K_*(R[M])$ iff $M \cong \mathbb{Z}_{>0}^r$ for some $r \ge 0$ (G., 2005) Assume $\mathbb{Q} \subset \mathbb{R}$ and $c \geq 2$. Then high iterations of the homothety M o M , defined by $m \mapsto cm$, kill $K_*(R[M])/K_*(R)$

Let R be a (commutative) regular ring and $M \subset \mathbb{Z}^d$ an affine monoid (Grothendieck) $K_0(R) = K_0(R[X_1, ..., X_d]) \quad (= K_0(R[\mathbb{Z}_{>0}^d]))$ (Quillen) $K_*(R) = K_*(R[X_1, \dots, X_d]) \quad (= K_*(R[\mathbb{Z}_{\geq 0}^d]))$ (G., 1988) $K_0(R) = K_0(R[M])$ iff $M = \operatorname{sn}(M)$ **Corollary:** $K_0(R[M])/K_0(R) \cong R(\operatorname{sn}(M) \setminus M)$ when $\mathbb{Q} \subset R$ (G., 1992) $K_*(R) = K_*(R[M])$ iff $M \cong \mathbb{Z}_{>0}^r$ for some $r \ge 0$ (G., 2005) Assume $\mathbb{Q} \subset \mathbb{R}$ and $c \geq 2$. Then high iterations of the homothety M o M , defined by $m \mapsto cm$, kill $K_*(R[M])/K_*(R)$

(Cortiñas, Haesemayer, Walker, Weibel, announced in 2016) The condition $\mathbb{Q} \subset \mathbb{R}$ in the statement above can be dropped

Conjecture. R a regular ring, containing \mathbb{Q} : for every finitely generated monomial algebra R[M] without nontrivial units we have the equality

Conjecture. R a regular ring, containing \mathbb{Q} : for every finitely generated monomial algebra R[M] without nontrivial units we have the equality

 $K_i(R[M])/K_i(R) \cong$ (a finitely generated M -graded thin R[M] -module)

and on this module the map $M\to M$, $m\mapsto cm$, acts by dilating the M -degrees by factor c .

Conjecture. R a regular ring, containing \mathbb{Q} : for every finitely generated monomial algebra R[M] without nontrivial units we have the equality

 $K_i(R[M])/K_i(R) \cong$ (a finitely generated M -graded thin R[M] -module)

and on this module the map $M\to M$, $m\mapsto cm$, acts by dilating the M -degrees by factor c .

Informally, the mentioned thinness means that every element of $K_i(R[M])/K_i(R)$ is pushed by sufficiently high iterations of the map $M \to M$, $m \mapsto cm$, to the M-graded zero zone. In particular, this conjecture implies the aforementioned nilpotence of $K_i(R[M])/K_i(R)$.

Conjecture. R a regular ring, containing \mathbb{Q} : for every finitely generated monomial algebra R[M] without nontrivial units we have the equality

 $K_i(R[M])/K_i(R) \cong$ (a finitely generated M -graded thin R[M] -module)

and on this module the map $M\to M$, $m\mapsto cm$, acts by dilating the M -degrees by factor c .

Informally, the mentioned thinness means that every element of $K_i(R[M])/K_i(R)$ is pushed by sufficiently high iterations of the map $M \to M$, $m \mapsto cm$, to the M-graded zero zone. In particular, this conjecture implies the aforementioned nilpotence of $K_i(R[M])/K_i(R)$.

It is known that $K_i(R[M])/K_i(R)$ is an R-module; this follows from the Bloch-Stienstra action of the big Witt vectors.

REFERENCES

J. Gubeladze, *K-theory of toric varieties revisited* (survey), J. Homotopy Relat. Struct. 9 (2014), 9–23, and many references therein

L. Katthän, *Non-normal affine monoid algebras*, manuscripta math. 146, (2015) 223–233

L. Reid and L. Roberts, *Monomial Subrings in Arbitrary Dimension*, Journal of Algebra 236, (2001)707–730

REFERENCES

J. Gubeladze, *K-theory of toric varieties revisited* (survey), J. Homotopy Relat. Struct. 9 (2014), 9–23, and many references therein

L. Katthän, *Non-normal affine monoid algebras*, manuscripta math. 146, (2015) 223–233

L. Reid and L. Roberts, *Monomial Subrings in Arbitrary Dimension*, Journal of Algebra 236, (2001)707–730

Thank you