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Frobenius number of a numerical semigroup

Numerical semigroup is a sub-semigroup S ⊂ Z≥0 such that the set of gaps
Z \ S is finite

The Frobenius number of a numerical semigroup S is the largest gap of S

Every numerical semigroup S is generated by finitely many integers
a1, . . . , an with gcd(a1, . . . , an) = 1

Computing the Frobenius number of g(a1, . . . , an) of Z≥0a1 + · · ·+Z≥0an
is hard. The only value of n for which there is a formula is n = 2 :

g(a1, a2) = a1a2 − a1 − a2
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Frobenius number of a numerical semigroup

Numerical semigroup is a sub-semigroup S ⊂ Z≥0 such that the set of gaps
Z \ S is finite

The Frobenius number of a numerical semigroup S is the largest gap of S

Every numerical semigroup S is generated by finitely many integers
a1, . . . , an with gcd(a1, . . . , an) = 1

Computing the Frobenius number of g(a1, . . . , an) of Z≥0a1 + · · ·+Z≥0an
is hard. The only value of n for which there is a formula is n = 2 :

g(a1, a2) = a1a2 − a1 − a2

Huge existing literature – Postage Stamp Problem, Coin Problem,
McNugget Problem (special case), Arnold Conjecture (on asymptotics
of g(a1, . . . , an) ), etc
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Affine monoids, normalization, seminormalization

An affine monoid is a finitely generated submonoid M ⊂ Zd

A positive affine monoid is an affine monoid with no non-zero ±x ∈M

Conductors and K-theory • Joseph Gubeladze 8



Affine monoids, normalization, seminormalization

An affine monoid is a finitely generated submonoid M ⊂ Zd

A positive affine monoid is an affine monoid with no non-zero ±x ∈M

A positive affine monoid M ⊂ Zd defines a rational polyhedral cone

C(M) := R≥0M ⊂ Rd

Conductors and K-theory • Joseph Gubeladze 9



Affine monoids, normalization, seminormalization

An affine monoid is a finitely generated submonoid M ⊂ Zd

A positive affine monoid is an affine monoid with no non-zero ±x ∈M

A positive affine monoid M ⊂ Zd defines a rational polyhedral cone

C(M) := R≥0M ⊂ Rd

The subgroup of Zd , generated by M , is the group of differences of M
and denoted gp(M)

Conductors and K-theory • Joseph Gubeladze 10



Affine monoids, normalization, seminormalization

An affine monoid is a finitely generated submonoid M ⊂ Zd

A positive affine monoid is an affine monoid with no non-zero ±x ∈M

A positive affine monoid M ⊂ Zd defines a rational polyhedral cone

C(M) := R≥0M ⊂ Rd

The subgroup of Zd , generated by M , is the group of differences of M
and denoted gp(M)

A (positive) affine monoid M is normal if

x ∈ gp(M) & nx ∈ C(M) for some n =⇒ x ∈M
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Affine monoids, normalization, seminormalization

An affine monoid is a finitely generated submonoid M ⊂ Zd

A positive affine monoid is an affine monoid with no non-zero ±x ∈M

A positive affine monoid M ⊂ Zd defines a rational polyhedral cone

C(M) := R≥0M ⊂ Rd

The subgroup of Zd , generated by M , is the group of differences of M
and denoted gp(M)

A (positive) affine monoid M is normal if

x ∈ gp(M) & nx ∈ C(M) for some n =⇒ x ∈M

A (positive) affine monoid M is seminormal if

x ∈ gp(M) & 2x, 3x ∈M for some n =⇒ x ∈M
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Affine monoids, normalization, seminormalization

All affine affine monoids from this point on are positive
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containing M , i.e., M̄ = C(M) ∩ gp(M) – ‘saturation’ of M

The seminormalization of M is the smallest seminormal submonoid sn(M) ⊂
Zd containing M , i.e.,
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– ‘saturation’ of M along the rational rays inside the cone C(M)

REMARK. F ∩ sn(M) = sn(F ∩M) for every face F ⊂ C(M)

Conductors and K-theory • Joseph Gubeladze 16



Affine monoids, normalization, seminormalization

All affine affine monoids from this point on are positive

The normalization of M is the smallest normal submonoid M̄ ⊂ Zd

containing M , i.e., M̄ = C(M) ∩ gp(M) – ‘saturation’ of M

The seminormalization of M is the smallest seminormal submonoid sn(M) ⊂
Zd containing M , i.e.,

M̄ = {x ∈ Zd | 2x, 3x ∈M}

– ‘saturation’ of M along the rational rays inside the cone C(M)

REMARK. F ∩ sn(M) = sn(F ∩M) for every face F ⊂ C(M)

FACT. M̄ ∩ intC(M) = sn(M) ∩ intC(M)
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Conductor ideals & gaps in affine monoids

The conductor ideal of an affine monoid M is

cM̄/M := {x ∈ M̄ | x + M̄ ⊂M} ⊂M

It is an ideal of M because cM̄/M +M ⊂M
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Conductor ideals & gaps in affine monoids

The conductor ideal of an affine monoid M is

cM̄/M := {x ∈ M̄ | x + M̄ ⊂M} ⊂M

It is an ideal of M because cM̄/M +M ⊂M

FACT. cM̄/M 6= ∅

Proof. Let M̄ is module finite over M . Let {x1−y1, . . . , xn−yn} ⊂ gp(M)
be a generating set xi, yi ∈M . Then y1 + · · ·+ yn ∈ cM̄/M . 2
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Conductor ideals & gaps in affine monoids

The conductor ideal of an affine monoid M is

cM̄/M := {x ∈ M̄ | x + M̄ ⊂M} ⊂M

It is an ideal of M because cM̄/M +M ⊂M

FACT. cM̄/M 6= ∅

Proof. Let M̄ is module finite over M . Let {x1−y1, . . . , xn−yn} ⊂ gp(M)
be a generating set xi, yi ∈M . Then y1 + · · ·+ yn ∈ cM̄/M . 2

(Katthän, 2015)

M̄ \M =

l⋃
j=1

(qj + gp(M ∩ F )) ∩ C(M),

where the Fj are faces of the cone C(M) and qj ∈ M̄
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Conductor ideals & gaps in affine monoids

The elements of sn(M)\M are gaps of M . Different from the set M̄ \M
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Conductor ideals & gaps in affine monoids

The elements of sn(M)\M are gaps of M . Different from the set M̄ \M

For a numerical semigroup S , this is the same as S̄ \ S

Moreover, cS̄/S = g(S) + Z>0 , where g(S) is the Frobenius number of S

(Reid-Roberts, 2001) Let {v1, . . . , vd, vd+1} ⊂ Zd
≥0 be a circuit (no d

elements are linearly dependent) and M = Z≥0v1 + · · ·+ Z≥0v1 .
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The elements of sn(M)\M are gaps of M . Different from the set M̄ \M

For a numerical semigroup S , this is the same as S̄ \ S

Moreover, cS̄/S = g(S) + Z>0 , where g(S) is the Frobenius number of S

(Reid-Roberts, 2001) Let {v1, . . . , vd, vd+1} ⊂ Zd
≥0 be a circuit (no d

elements are linearly dependent) and M = Z≥0v1 + · · ·+ Z≥0v1 . Then

cM̄/M = g +
(

intC(M) ∩ gp(M)
)
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Conductor ideals & gaps in affine monoids

The elements of sn(M)\M are gaps of M . Different from the set M̄ \M

For a numerical semigroup S , this is the same as S̄ \ S

Moreover, cS̄/S = g(S) + Z>0 , where g(S) is the Frobenius number of S

(Reid-Roberts, 2001) Let {v1, . . . , vd, vd+1} ⊂ Zd
≥0 be a circuit (no d

elements are linearly dependent) and M = Z≥0v1 + · · ·+ Z≥0v1 . Then

cM̄/M = g +
(

intC(M) ∩ gp(M)
)

where

g =
( d+1∑

i=1

divi
)
/2−

d+1∑
i=1

vi

di being the order of Zd modulo v1, . . . , vi−1, vi+1, . . . , vd+1

Conductors and K-theory • Joseph Gubeladze 27



Crash course in K-theory

Grothendieck’s group K0(R) of a ring R measures how far the projective R
-modules overall are from being free (actually, stably free, which is a certain
functorial weakening of ‘free’’)
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transformations. (Again, in the stable sense)

Conductors and K-theory • Joseph Gubeladze 29



Crash course in K-theory

Grothendieck’s group K0(R) of a ring R measures how far the projective R
-modules overall are from being free (actually, stably free, which is a certain
functorial weakening of ‘free’’)

Bass-Whitead group K1(R) measures how far the invertible matrices over
R overall are from being diagonalizable via elementary row (or column)
transformations. (Again, in the stable sense)

Milnor’s group K2(R) measures how many essentially different
diagonalizations overall there exist for all possible diagonalizable invertible
R -matrices

Conductors and K-theory • Joseph Gubeladze 29



Crash course in K-theory

Grothendieck’s group K0(R) of a ring R measures how far the projective R
-modules overall are from being free (actually, stably free, which is a certain
functorial weakening of ‘free’’)

Bass-Whitead group K1(R) measures how far the invertible matrices over
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transformations. (Again, in the stable sense)
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classical algebraic objects, they are higher homotopy variants of K0, K1, K2
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Crash course in K-theory

Grothendieck’s group K0(R) of a ring R measures how far the projective R
-modules overall are from being free (actually, stably free, which is a certain
functorial weakening of ‘free’’)

Bass-Whitead group K1(R) measures how far the invertible matrices over
R overall are from being diagonalizable via elementary row (or column)
transformations. (Again, in the stable sense)

Milnor’s group K2(R) measures how many essentially different
diagonalizations overall there exist for all possible diagonalizable invertible
R -matrices

Higher groups Ki(R) do not admit transparent definitions in terms of
classical algebraic objects, they are higher homotopy variants of K0, K1, K2

Informally, these groups are syzygies between elementary transformation of
invertibe matricces over R . Formally, they are higher homotopy groups of
a certain K -theoretical space, associated to R (Quillen, the 1970s)
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(Grothendieck) K0(R) = K0(R[X1, . . . , Xd]) (= K0(R[Zd
≥0]))

(Quillen) K∗(R) = K∗(R[X1, . . . , Xd]) (= K∗(R[Zd
≥0]))

(G., 1988) K0(R) = K0(R[M ]) iff M = sn(M)

Corollary: K0(R[M ])/K0(R) ∼= R(sn(M) \M) when Q ⊂ R

(G., 1992) K∗(R) = K∗(R[M ]) iff M ∼= Zr
≥0 for some r ≥ 0
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Corollary: K0(R[M ])/K0(R) ∼= R(sn(M) \M) when Q ⊂ R

(G., 1992) K∗(R) = K∗(R[M ]) iff M ∼= Zr
≥0 for some r ≥ 0

(G., 2005) Assume Q ⊂ R and c ≥ 2 . Then high iterations of the
homothety M →M , defined by m 7→ cm , kill K∗(R[M ])/K∗(R)

Conductors and K-theory • Joseph Gubeladze 29



K-theory of monoid rings

Let R be a (commutative) regular ring and M ⊂ Zd an affine monoid

(Grothendieck) K0(R) = K0(R[X1, . . . , Xd]) (= K0(R[Zd
≥0]))

(Quillen) K∗(R) = K∗(R[X1, . . . , Xd]) (= K∗(R[Zd
≥0]))

(G., 1988) K0(R) = K0(R[M ]) iff M = sn(M)

Corollary: K0(R[M ])/K0(R) ∼= R(sn(M) \M) when Q ⊂ R

(G., 1992) K∗(R) = K∗(R[M ]) iff M ∼= Zr
≥0 for some r ≥ 0

(G., 2005) Assume Q ⊂ R and c ≥ 2 . Then high iterations of the
homothety M →M , defined by m 7→ cm , kill K∗(R[M ])/K∗(R)

(Cortiñas, Haesemayer, Walker, Weibel, announced in 2016) The
condition Q ⊂ R in the statement above can be dropped
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Conjecture

Conjecture. R a regular ring, containing Q : for every finitely generated
monomial algebra R[M ] without nontrivial units we have the equality
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Conjecture. R a regular ring, containing Q : for every finitely generated
monomial algebra R[M ] without nontrivial units we have the equality

Ki(R[M ])/Ki(R) ∼= (a finitely generated M -graded thin R[M ] -module)

and on this module the map M → M , m 7→ cm , acts by dilating the M
-degrees by factor c .
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Ki(R[M ])/Ki(R) ∼= (a finitely generated M -graded thin R[M ] -module)

and on this module the map M → M , m 7→ cm , acts by dilating the M
-degrees by factor c .

Informally, the mentioned thinness means that every element of
Ki(R[M ])/Ki(R) is pushed by sufficiently high iterations of the map
M → M , m 7→ cm , to the M -graded zero zone. In particular, this
conjecture implies the aforementioned nilpotence of Ki(R[M ])/Ki(R) .
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Conjecture

Conjecture. R a regular ring, containing Q : for every finitely generated
monomial algebra R[M ] without nontrivial units we have the equality

Ki(R[M ])/Ki(R) ∼= (a finitely generated M -graded thin R[M ] -module)

and on this module the map M → M , m 7→ cm , acts by dilating the M
-degrees by factor c .

Informally, the mentioned thinness means that every element of
Ki(R[M ])/Ki(R) is pushed by sufficiently high iterations of the map
M → M , m 7→ cm , to the M -graded zero zone. In particular, this
conjecture implies the aforementioned nilpotence of Ki(R[M ])/Ki(R) .

It is known that Ki(R[M ])/Ki(R) is an R -module; this follows from the
Bloch-Stienstra action of the big Witt vectors.
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