Symbolic powers of sums of ideals

Huy Tài Hà Tulane University

Joint with Ngo Viet Trung and Tran Nam Trung Institute of Mathematics - Vietnam

Huy Tài Hà Tulane University Symbolic powers of sums of ideals

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

- Let k be a field. Let A = k[x₁,..., x_r] and B = k[y₁,..., y_s] be polynomial rings over k.
- Let *I* ⊆ *A* and *J* ⊆ *B* be nonzero proper homogeneous ideals.

Problem

Investigate algebraic invariants and properties of

$$(I+J)^n$$
 and $(I+J)^{(n)} \subseteq R = A \otimes_k B$

via invariants and properties of powers of I and J.

Motivation

- **Powers of ideals** appear naturally in singularities and multiplicity theories.
- **Fiber product:** Let $X = \operatorname{Spec} A/I$ and $Y = \operatorname{Spec} B/J$. Then

$$X \times_k Y = \operatorname{Spec} R/(I+J).$$

Join of simplicial complexes: Let Δ' and Δ" be simplicial complexes on vertex sets V = {x₁,...,x_r} and W = {y₁,...,y_s}, and let Δ = Δ' * Δ" be their join. Then

$$I_{\Delta} = I_{\Delta'} + I_{\Delta''}.$$

• Hyperplane section: $J = (y) \subseteq k[y] = B$. In this case,

$$I+J=(I,y)\subseteq k[x_1,\ldots,x_r,y].$$

- **Powers of ideals** appear naturally in singularities and multiplicity theories.
- Fiber product: Let $X = \operatorname{Spec} A/I$ and $Y = \operatorname{Spec} B/J$. Then

$$X \times_k Y = \operatorname{Spec} R/(I+J).$$

Join of simplicial complexes: Let Δ' and Δ" be simplicial complexes on vertex sets V = {x₁,...,x_r} and W = {y₁,...,y_s}, and let Δ = Δ' * Δ" be their join. Then

$$I_{\Delta} = I_{\Delta'} + I_{\Delta''}.$$

• Hyperplane section: $J = (y) \subseteq k[y] = B$. In this case,

$$I+J=(I,y)\subseteq k[x_1,\ldots,x_r,y].$$

- **Powers of ideals** appear naturally in singularities and multiplicity theories.
- Fiber product: Let $X = \operatorname{Spec} A/I$ and $Y = \operatorname{Spec} B/J$. Then

$$X \times_k Y = \operatorname{Spec} R/(I+J).$$

Join of simplicial complexes: Let Δ' and Δ" be simplicial complexes on vertex sets V = {x₁,..., x_r} and W = {y₁,..., y_s}, and let Δ = Δ' * Δ" be their join. Then

$$I_{\Delta} = I_{\Delta'} + I_{\Delta''}.$$

• Hyperplane section: $J = (y) \subseteq k[y] = B$. In this case,

$$I+J=(I,y)\subseteq k[x_1,\ldots,x_r,y].$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = ∽○へ⊙

- **Powers of ideals** appear naturally in singularities and multiplicity theories.
- Fiber product: Let $X = \operatorname{Spec} A/I$ and $Y = \operatorname{Spec} B/J$. Then

$$X \times_k Y = \operatorname{Spec} R/(I+J).$$

Join of simplicial complexes: Let Δ' and Δ" be simplicial complexes on vertex sets V = {x₁,..., x_r} and W = {y₁,..., y_s}, and let Δ = Δ' * Δ" be their join. Then

$$I_{\Delta} = I_{\Delta'} + I_{\Delta''}.$$

• Hyperplane section: $J = (y) \subseteq k[y] = B$. In this case,

$$I + J = (I, y) \subseteq k[x_1, \ldots, x_r, y].$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Definition

Let *R* be a commutative ring with identify, and let $I \subseteq R$ be a proper ideal. The *n*-th *symbolic power* of *I* is defined to be

$$I^{(n)} := R \cap \Big(\bigcap_{\mathfrak{p} \in \mathsf{Ass}_R(R/I)} I^n R_\mathfrak{p} \Big).$$

Example

• If $I = \wp_1 \cap \cdots \cap \wp_s$ is the defining ideal of *s* points in \mathbb{A}^n_k then

$$I^{(n)} = \wp_1^n \cap \cdots \cap \wp_s^n.$$

If *I* is a squarefree monomial ideal, $I = \bigcap_{\varphi \in Ass(B/I)} \varphi$, then

$$I^{(n)} = \bigcap_{\varphi \in \operatorname{Ass}(R/I)} \varphi^n.$$

Definition

Let *R* be a commutative ring with identify, and let $I \subseteq R$ be a proper ideal. The *n*-th *symbolic power* of *I* is defined to be

$$I^{(n)} := R \cap \Big(\bigcap_{\mathfrak{p} \in \mathsf{Ass}_R(R/I)} I^n R_\mathfrak{p} \Big).$$

Example

• If $I = \wp_1 \cap \cdots \cap \wp_s$ is the defining ideal of *s* points in \mathbb{A}_k^n then

$$I^{(n)} = \wp_1^n \cap \cdots \cap \wp_s^n.$$

3 If *I* is a squarefree monomial ideal, $I = \bigcap_{\wp \in Ass(R/I)} \wp$, then

$$I^{(n)} = \bigcap_{\wp \in \operatorname{Ass}(R/I)} \wp^n.$$

•
$$I^{\leq m \geq} = \Big\{ f \in R \ \Big| \ \frac{\partial^{|\mathbf{a}|} f}{\partial x^{\mathbf{a}}} \in I \ \forall \ \mathbf{a} \in \mathbb{N}^n \text{ with } |\mathbf{a}| \leq m-1 \Big\}.$$

• Nagata, Zariski: If char *k* = 0 and *l* is a *radical* ideal (e.g., the defining ideal of an algebraic variety) then

$$I^{(m)} = I^{}$$

Huy Tài Hà Tulane University Symbolic powers of sums of ideals

イロン 不得 とくほ とくほ とうほ

•
$$I^{< m>} = \Big\{ f \in R \ \Big| \ \frac{\partial^{|\mathbf{a}|} f}{\partial x^{\mathbf{a}}} \in I \ \forall \ \mathbf{a} \in \mathbb{N}^n \text{ with } |\mathbf{a}| \le m-1 \Big\}.$$

• Nagata, Zariski: If char *k* = 0 and *l* is a *radical* ideal (e.g., the defining ideal of an algebraic variety) then

$$I^{(m)} = I^{}$$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Definition

Let R be a standard graded k-algebra, and let \mathfrak{m} be its maximal homogenous ideal. Let M be a finitely generated graded R-module. Then

- depth $M := \min\{i \mid H^i_{\mathfrak{m}}(M) \neq 0\};$
- reg $M := \max\{t \mid H^i_{\mathfrak{m}}(M)_{t-i} = 0 \forall i \ge 0\}.$

Grothendieck-Serre correspondence: Let X = Proj R and let \widetilde{M} be the coherent sheaf associated to M on X. Then

$$0 \to H^0_{\mathfrak{m}}(M) \to M \to \bigoplus_{t \in \mathbb{Z}} H^0(X, \widetilde{M}(t)) \to H^1_{\mathfrak{m}}(M) \to 0$$

$$H^{i+1}_{\mathfrak{m}}(M)\cong \bigoplus_{t\in \mathbb{Z}} H^{i}(X,\widetilde{M}(t)) ext{ for } i>0.$$

Definition

Let R be a standard graded k-algebra, and let \mathfrak{m} be its maximal homogenous ideal. Let M be a finitely generated graded R-module. Then

- depth $M := \min\{i \mid H^i_{\mathfrak{m}}(M) \neq 0\};$
- reg $M := \max\{t \mid H^i_{\mathfrak{m}}(M)_{t-i} = 0 \forall i \ge 0\}.$

Grothendieck-Serre correspondence: Let X = Proj R and let \widetilde{M} be the coherent sheaf associated to M on X. Then

$$0 o H^0_{\mathfrak{m}}(M) o M o igoplus_{t \in \mathbb{Z}} H^0(X, \widetilde{M}(t)) o H^1_{\mathfrak{m}}(M) o 0$$

$$H^{i+1}_{\mathfrak{m}}(M)\cong igoplus_{t\in \mathbb{Z}} H^{i}(X,\widetilde{M}(t)) ext{ for } i>0.$$

Binomial expansion for symbolic powers

- $A = k[x_1, \ldots, x_r], B = k[y_1, \ldots, y_s]$ are polynomial rings.
- $I \subseteq A$ and $J \subseteq B$ are nonzero proper homogeneous ideals.

•
$$R = A \otimes_k B = k[x_1, \ldots, x_r, y_1, \ldots, y_s].$$

Theorem (—, Trung and Trung) For all $n \ge 1$, we have $(I+J)^{(n)} = \sum_{t=0}^{n} I^{(n-t)} J^{(t)}.$

 This expansion was recently proved for squarefree monomial ideals by Bocci, Cooper, Guardo, Harbourne, Janssen, Nagel, Seceleanu, Van Tuyl, and Vu.

・ロト ・四ト ・ヨト ・ヨト ・ヨ

Binomial expansion for symbolic powers

- $A = k[x_1, \ldots, x_r], B = k[y_1, \ldots, y_s]$ are polynomial rings.
- $I \subseteq A$ and $J \subseteq B$ are nonzero proper homogeneous ideals.

•
$$R = A \otimes_k B = k[x_1, \ldots, x_r, y_1, \ldots, y_s].$$

Theorem (—, Trung and Trung)

For all $n \ge 1$, we have

$$(I+J)^{(n)} = \sum_{t=0}^{n} I^{(n-t)} J^{(t)}.$$

• This expansion was recently proved for *squarefree monomial ideals* by **Bocci, Cooper, Guardo, Harbourne, Janssen, Nagel, Seceleanu, Van Tuyl,** and **Vu**.

イロト 不得 とくほ とくほ とうほ

• Set
$$Q_p := \sum_{t=0}^{p} I^{(n-t)} J^{(t)}$$
. Then

$$I^{(n)} = Q_0 \subset Q_1 \subset \dots \subset Q_n = (I+J)^{(n)}.$$
• $Q_p/Q_{p-1} = I^{(n-p)} J^{(p)}/I^{(n-p+1)} J^{(p)}.$
• There are 2 short exact sequences

$$0 \longrightarrow Q_{p}/Q_{p-1} \longrightarrow R/Q_{p-1} \longrightarrow R/Q_{p} \longrightarrow 0.$$
$$0 \longrightarrow Q_{p}/Q_{p-1} \longrightarrow R/I^{(n-p+1)}J^{(p)} \longrightarrow R/I^{(n-p)}J^{(p)} \longrightarrow 0.$$

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

• Set
$$Q_p := \sum_{t=0}^{p} I^{(n-t)} J^{(t)}$$
. Then
 $I^{(n)} = Q_0 \subset Q_1 \subset \cdots \subset Q_n = (I+J)^{(n)}$.
• $Q_p/Q_{p-1} = I^{(n-p)} J^{(p)}/I^{(n-p+1)} J^{(p)}$.
• There are 2 short exact sequences
 $0 \longrightarrow Q_p/Q_{p-1} \longrightarrow R/Q_{p-1} \longrightarrow R/Q_p \longrightarrow 0$.
 $0 \longrightarrow Q_p/Q_{p-1} \longrightarrow R/I^{(n-p+1)} J^{(p)} \longrightarrow R/I^{(n-p)} J^{(p)} \longrightarrow R$

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

• Set
$$Q_p := \sum_{t=0}^{p} I^{(n-t)} J^{(t)}$$
. Then
 $I^{(n)} = Q_0 \subset Q_1 \subset \cdots \subset Q_n = (I+J)^{(n)}$.
• $Q_p/Q_{p-1} = I^{(n-p)} J^{(p)}/I^{(n-p+1)} J^{(p)}$.
• There are 2 short exact sequences
 $0 \longrightarrow Q_p/Q_{p-1} \longrightarrow R/Q_{p-1} \longrightarrow R/Q_p \longrightarrow 0$.
 $0 \longrightarrow Q_p/Q_{p-1} \longrightarrow R/I^{(n-p+1)} J^{(p)} \longrightarrow R/I^{(n-p)} J^{(p)} \longrightarrow 0$.

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

$$0 \longrightarrow Q_{p}/Q_{p-1} \longrightarrow R/Q_{p-1} \longrightarrow R/Q_{p} \longrightarrow 0.$$
$$0 \longrightarrow Q_{p}/Q_{p-1} \longrightarrow R/I^{(n-p+1)}J^{(p)} \longrightarrow R/I^{(n-p)}J^{(p)} \longrightarrow 0.$$

Lemma (Hoa - Tâm)

• reg
$$R/IJ$$
 = reg A/I + reg B/J + 1.

2 depth
$$R/IJ$$
 = depth A/I + depth B/J + 1.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Depth, regularity of symbolic powers by approximation

Theorem (—, Trung and Trung)

For
$$n \ge 1$$
, we have
a depth $R/(I + J)^{(n)} \ge \lim_{i \in [1, n-1], j \in [1, n]} \left\{ \operatorname{depth} A/I^{(n-i)} + \operatorname{depth} B/J^{(i)} + 1, \operatorname{depth} A/I^{(n-j+1)} + \operatorname{depth} B/J^{(j)} \right\}.$

a reg $R/(I + J)^{(n)} \le \lim_{i \in [1, n-1], j \in [1, n]} \left\{ \operatorname{reg} A/I^{(n-i)} + \operatorname{reg} B/J^{(i)} + 1, \operatorname{reg} A/I^{(n-j+1)} + \operatorname{reg} B/J^{(j)} \right\}.$

・ロト ・四ト ・ヨト ・ヨト ・ヨ

Depth, regularity of symbolic powers by approximation

Corollary

Assume that J is generated by variables. Then

• depth
$$R/(I + J)^{(n)} = \min_{i \le n} \{ \operatorname{depth} A/I^{(i)} \} + \dim B/J; \text{ and }$$

2 reg
$$R/(I+J)^{(n)} = \max_{\substack{i \le n}} \{ \operatorname{reg} A/I^{(i)} - i \} + n.$$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Depth, regularity of symbolic powers by decomposition

Proposition

$$(I+J)^{(n)}/(I+J)^{(n+1)} = \bigoplus_{i+j=n} (I^{(i)}/I^{(i+1)} \otimes_k J^{(j)}/J^{(j+1)}).$$

Theorem (—, Trung and Trung)

For all
$$n \ge 1$$
, we have
a depth $\frac{(I+J)^{(n)}}{(I+J)^{(n+1)}} = \min_{i+j=n} \Big\{ \operatorname{depth} \frac{I^{(i)}}{I^{(i+1)}} + \operatorname{depth} \frac{J^{(j)}}{J^{(j+1)}} \Big\}.$

a reg $\frac{(I+J)^{(n)}}{(I+J)^{(n+1)}} = \max_{i+j=n} \{ \operatorname{reg} I^{(i)}/I^{(i+1)} + \operatorname{reg} J^{(j)}/J^{(j+1)} \}.$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Depth, regularity of symbolic powers by decomposition

Proposition

$$(I+J)^{(n)}/(I+J)^{(n+1)} = \bigoplus_{i+j=n} (I^{(i)}/I^{(i+1)} \otimes_k J^{(j)}/J^{(j+1)}).$$

Theorem (—, Trung and Trung)

For all
$$n \ge 1$$
, we have
a depth $\frac{(I+J)^{(n)}}{(I+J)^{(n+1)}} = \min_{i+j=n} \left\{ \operatorname{depth} \frac{I^{(i)}}{I^{(i+1)}} + \operatorname{depth} \frac{J^{(j)}}{J^{(j+1)}} \right\}.$

a reg $\frac{(I+J)^{(n)}}{(I+J)^{(n+1)}} = \max_{i+j=n} \left\{ \operatorname{reg} I^{(i)}/I^{(i+1)} + \operatorname{reg} J^{(j)}/J^{(j+1)} \right\}.$

・ロト ・四ト ・ヨト ・ヨト ・ヨ

Cohen-Macaulayness of symbolic powers

Corollary

The following are equivalent:

- $R/(I+J)^{(t)}$ is Cohen-Macaulay for all $t \le n$;
- 2 $(I+J)^{(n-1)}/(I+J)^{(n)}$ is Cohen-Macaulay;
- **(3)** $A/I^{(t)}$ and $B/J^{(t)}$ are Cohen-Macaulay for all $t \le n$;
- I $I^{(t)}/I^{(t+1)}$ and $J^{(t)}/J^{(t+1)}$ are Cohen-Macaulay for all $t \le n-1$.

How to prove the binomial expansion

$$(I+J)^{(n)} = \sum_{t=0}^{n} I^{(n-t)} J^{(t)}?$$

• Let
$$S_n = \sum_{t=0}^n I^{(n-t)} J^{(t)}$$
.
• $S_n \subseteq (I + J)^{(n)}$.

Consider the short exact sequences

$$0 \longrightarrow S_{p-1}/S_p \longrightarrow R/S_p \longrightarrow R/S_{p-1} \longrightarrow 0$$

to get

$$\operatorname{Ass}_{R}(R/S_{n}) = \bigcup_{p=1}^{n} \operatorname{Ass}_{R}(S_{p-1}/S_{p}).$$

$$S_{p-1}/S_{p} = \bigoplus_{i+j=p-1}^{n} (I^{(i)}/I^{(i+1)} \otimes_{k} J^{(j)}/J^{(j+1)}).$$

How to prove the binomial expansion

$$(I+J)^{(n)} = \sum_{t=0}^{n} I^{(n-t)} J^{(t)}?$$

• Let
$$S_n = \sum_{t=0}^n I^{(n-t)} J^{(t)}$$
.

•
$$S_n \subseteq (I+J)^{(n)}$$

Consider the short exact sequences

$$0 \longrightarrow S_{p-1}/S_p \longrightarrow R/S_p \longrightarrow R/S_{p-1} \longrightarrow 0$$

to get

$$Ass_{R}(R/S_{n}) = \bigcup_{p=1}^{n} Ass_{R}(S_{p-1}/S_{p}).$$

• $S_{p-1}/S_{p} = \bigoplus_{i+j=p-1} (I^{(i)}/I^{(i+1)} \otimes_{k} J^{(j)}/J^{(j+1)}).$

Huy Tài Hà Tulane University

Symbolic powers of sums of ideals

ъ

How to prove the binomial expansion

$$(I+J)^{(n)} = \sum_{t=0}^{n} I^{(n-t)} J^{(t)}?$$

• Let
$$S_n = \sum_{t=0}^n I^{(n-t)} J^{(t)}$$
.
• $S_n \subseteq (I+J)^{(n)}$.

Consider the short exact sequences

$$0 \longrightarrow S_{p-1}/S_p \longrightarrow R/S_p \longrightarrow R/S_{p-1} \longrightarrow 0$$

to get

$$Ass_{R}(R/S_{n}) = \bigcup_{p=1}^{n} Ass_{R}(S_{p-1}/S_{p}).$$

• $S_{p-1}/S_{p} = \bigoplus_{i+j=p-1} (I^{(i)}/I^{(i+1)} \otimes_{k} J^{(j)}/J^{(j+1)}).$

Huy Tài Hà Tulane University

Symbolic powers of sums of ideals

ъ

How to prove the binomial expansion

$$(I+J)^{(n)} = \sum_{t=0}^{n} I^{(n-t)} J^{(t)}?$$

• Let
$$S_n = \sum_{t=0}^n I^{(n-t)} J^{(t)}$$
.
• $S_n \subseteq (I+J)^{(n)}$.

• Consider the short exact sequences

$$0 \longrightarrow S_{\rho-1}/S_{\rho} \longrightarrow R/S_{\rho} \longrightarrow R/S_{\rho-1} \longrightarrow 0$$

to get

$$\operatorname{Ass}_{R}(R/S_{n}) = \bigcup_{p=1}^{n} \operatorname{Ass}_{R}(S_{p-1}/S_{p}).$$

•
$$S_{p-1}/S_p = \bigoplus_{i \mid i=p-1} (I^{(i)}/I^{(i+1)} \otimes_k J^{(j)}/J^{(j+1)})$$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

How to prove the binomial expansion

$$(I+J)^{(n)} = \sum_{t=0}^{n} I^{(n-t)} J^{(t)}?$$

• Let
$$S_n = \sum_{t=0}^n I^{(n-t)} J^{(t)}$$
.
• $S_n \subset (I + J)^{(n)}$

• Consider the short exact sequences

$$0 \longrightarrow S_{p-1}/S_p \longrightarrow R/S_p \longrightarrow R/S_{p-1} \longrightarrow 0$$

to get

$$Ass_{R}(R/S_{n}) = \bigcup_{p=1}^{n} Ass_{R}(S_{p-1}/S_{p}).$$
• $S_{p-1}/S_{p} = \bigoplus_{i+j=p-1} (I^{(i)}/I^{(i+1)} \otimes_{k} J^{(j)}/J^{(j+1)}).$

Problem

Let M and N be nonzero finitely generated modules over A and B, respectively. Describe the associated primes of the R-module $M \otimes_k N$ in terms of the associated primes of M and N.

Theorem (—, Trung and Trung)

Let $Ass_{-}(-)$ and $Min_{-}(-)$ denote the set of associated and minimal primes. Then

- $\operatorname{Min}_{R}(M \otimes_{k} N) = \bigcup_{\mathfrak{p} \in \operatorname{Min}_{A}(M), \mathfrak{q} \in \operatorname{Min}_{B}(N)} \operatorname{Min}_{R}(R/\mathfrak{p} + \mathfrak{q}).$
- Ass_R($M \otimes_k N$) = \bigcup Min_R(R/p + q)

 $\mathfrak{p}\in \mathsf{Ass}_A(M), \mathfrak{q}\in \mathsf{Ass}_B(N)$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Problem

Let M and N be nonzero finitely generated modules over A and B, respectively. Describe the associated primes of the R-module $M \otimes_k N$ in terms of the associated primes of M and N.

Theorem (—, Trung and Trung)

Let $Ass_{-}(-)$ and $Min_{-}(-)$ denote the set of associated and minimal primes. Then

ヘロア 人間 アメヨア 人口 ア

Huy Tài Hà Tulane University Symbolic powers of sums of ideals

<ロ> (四) (四) (三) (三) (三)