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Problems

Let k be a field. Let A = k [x1, . . . , xr ] and B = k [y1, . . . , ys]
be polynomial rings over k .
Let I ⊆ A and J ⊆ B be nonzero proper homogeneous
ideals.

Problem
Investigate algebraic invariants and properties of

(I + J)n and (I + J)(n) ⊆ R = A⊗k B

via invariants and properties of powers of I and J.
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Motivation

Powers of ideals appear naturally in singularities and
multiplicity theories.
Fiber product: Let X = Spec A/I and Y = Spec B/J.
Then

X ×k Y = Spec R/(I + J).

Join of simplicial complexes: Let ∆′ and ∆′′ be
simplicial complexes on vertex sets V = {x1, . . . , xr} and
W = {y1, . . . , ys}, and let ∆ = ∆′ ∗∆′′ be their join. Then

I∆ = I∆′ + I∆′′ .

Hyperplane section: J = (y) ⊆ k [y ] = B. In this case,

I + J = (I, y) ⊆ k [x1, . . . , xr , y ].
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Symbolic powers of ideals

Definition
Let R be a commutative ring with identify, and let I ⊆ R be a
proper ideal. The n-th symbolic power of I is defined to be

I(n) := R ∩
( ⋂

p∈AssR(R/I)

InRp

)
.

Example
1 If I = ℘1 ∩ · · · ∩ ℘s is the defining ideal of s points in An

k
then

I(n) = ℘n
1 ∩ · · · ∩ ℘n

s .

2 If I is a squarefree monomial ideal, I =
⋂

℘∈Ass(R/I) ℘, then

I(n) =
⋂

℘∈Ass(R/I)

℘n.
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Symbolic powers of ideals

I<m> =
{

f ∈ R
∣∣∣ ∂|a|f
∂xa ∈ I ∀ a ∈ Nn with |a| ≤ m − 1

}
.

Nagata, Zariski: If char k = 0 and I is a radical ideal (e.g.,
the defining ideal of an algebraic variety) then

I(m) = I<m>
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Algebraic invariants

Definition
Let R be a standard graded k -algebra, and let m be its maximal
homogenous ideal. Let M be a finitely generated graded
R-module. Then

depth M := min{i
∣∣ H i

m(M) 6= 0};
reg M := max{t

∣∣ H i
m(M)t−i = 0 ∀ i ≥ 0}.

Grothendieck-Serre correspondence: Let X = Proj R and let
M̃ be the coherent sheaf associated to M on X . Then

0→ H0
m(M)→ M →

⊕
t∈Z

H0(X , M̃(t))→ H1
m(M)→ 0

H i+1
m (M) ∼=

⊕
t∈Z

H i(X , M̃(t)) for i > 0.
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Binomial expansion for symbolic powers

A = k [x1, . . . , xr ], B = k [y1, . . . , ys] are polynomial rings.
I ⊆ A and J ⊆ B are nonzero proper homogeneous ideals.
R = A⊗k B = k [x1, . . . , xr , y1, . . . , ys].

Theorem (—, Trung and Trung)
For all n ≥ 1, we have

(I + J)(n) =
n∑

t=0

I(n−t)J(t).

This expansion was recently proved for squarefree
monomial ideals by Bocci, Cooper, Guardo, Harbourne,
Janssen, Nagel, Seceleanu, Van Tuyl, and Vu.
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Powers of sums of ideals by approximation

Set Qp :=
∑p

t=0 I(n−t)J(t). Then

I(n) = Q0 ⊂ Q1 ⊂ · · · ⊂ Qn = (I + J)(n).

Qp/Qp−1 = I(n−p)J(p)/I(n−p+1)J(p).

There are 2 short exact sequences

0 −→ Qp/Qp−1 −→ R/Qp−1 −→ R/Qp −→ 0.

0 −→ Qp/Qp−1 −→ R/I(n−p+1)J(p) −→ R/I(n−p)J(p) −→ 0.
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Powers of sums of ideals by approximation

0 −→ Qp/Qp−1 −→ R/Qp−1 −→ R/Qp −→ 0.

0 −→ Qp/Qp−1 −→ R/I(n−p+1)J(p) −→ R/I(n−p)J(p) −→ 0.

Lemma (Hoa - Tâm)
1 reg R/IJ = reg A/I + reg B/J + 1.
2 depth R/IJ = depth A/I + depth B/J + 1.
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Depth, regularity of symbolic powers by approximation

Theorem (—, Trung and Trung)
For n ≥ 1, we have

1 depth R
/

(I + J)(n) ≥
min

i∈[1,n−1], j∈[1,n]

{
depth A/I(n−i) + depth B/J(i) + 1,

depth A/I(n−j+1) + depth B/J(j)}.
2 reg R

/
(I + J)(n) ≤

max
i∈[1,n−1], j∈[1,n]

{
reg A/I(n−i) + reg B/J(i) + 1,

reg A/I(n−j+1) + reg B/J(j)}.
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Depth, regularity of symbolic powers by approximation

Corollary
Assume that J is generated by variables. Then

1 depth R/(I + J)(n) = min
i≤n
{depth A/I(i)}+ dim B/J; and

2 reg R/(I + J)(n) = max
i≤n
{reg A/I(i) − i}+ n.
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Depth, regularity of symbolic powers by decomposition

Proposition

(I + J)(n)/(I + J)(n+1) =
⊕

i+j=n

(
I(i)/I(i+1) ⊗k J(j)/J(j+1)

)
.

Theorem (—, Trung and Trung)
For all n ≥ 1, we have

1 depth
(I + J)(n)

(I + J)(n+1)
= min

i+j=n

{
depth

I(i)

I(i+1)
+ depth

J(j)

J(j+1)

}
.

2 reg
(I + J)(n)

(I + J)(n+1)
= max

i+j=n

{
reg I(i)/I(i+1) + reg J(j)/J(j+1)

}
.
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Cohen-Macaulayness of symbolic powers

Corollary
The following are equivalent:

1 R/(I + J)(t) is Cohen-Macaulay for all t ≤ n;
2 (I + J)(n−1)

/
(I + J)(n) is Cohen-Macaulay;

3 A/I(t) and B/J(t) are Cohen-Macaulay for all t ≤ n;
4 I(t)/I(t+1) and J(t)/J(t+1) are Cohen-Macaulay for all

t ≤ n − 1.
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Proof of the binomial expansion

How to prove the binomial expansion

(I + J)(n) =
n∑

t=0

I(n−t)J(t)?

Let Sn =
∑n

t=0 I(n−t)J(t).

Sn ⊆ (I + J)(n).

Consider the short exact sequences

0 −→ Sp−1/Sp −→ R/Sp −→ R/Sp−1 −→ 0

to get

AssR(R/Sn) =
n⋃

p=1

AssR(Sp−1/Sp).

Sp−1/Sp =
⊕

i+j=p−1

(
I(i)/I(i+1) ⊗k J(j)/J(j+1)

)
.
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Associated primes of tensor products

Problem
Let M and N be nonzero finitely generated modules over A and
B, respectively. Describe the associated primes of the
R-module M ⊗k N in terms of the associated primes of M and
N.

Theorem (—, Trung and Trung)

Let Ass−(−) and Min−(−) denote the set of associated and
minimal primes. Then

1 MinR(M ⊗k N) =
⋃

p∈MinA(M),q∈MinB(N)

MinR(R/p + q).

2 AssR(M ⊗k N) =
⋃

p∈AssA(M),q∈AssB(N)

MinR(R/p + q).
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