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The q, t-Catalan numbers have several (highly nontrivially)
equivalent definitions that connect different fields of mathematics
including commutative algebra, combinatorics, symmetric
functions, representation theory, and algebraic geometry.
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Definition of commutative algebraic q, t-Catalan numbers

• Let R = C[x1, ..., xn, y1, ..., yn].
• Let I ⊂ R be the bi-graded ideal (non-minimally) generated by
the determinants of all matrices of the form xa1

1 yb1
1 · · · xan1 ybn1

...
. . .

...
xa1
n yb1

n · · · xann ybnn

 , ai , bi ∈ Z≥0

Definition

The n-th (commutative algebraic) q, t-Catalan number
CA-Catn(q, t) is the q, t-Hilbert polynomial of the minimal
generators for I .
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Example

For n = 3, the ideal is minimally generated by

det

 1 x1 y1

1 x2 y2

1 x3 y3

 , det

 1 x1 x2
1

1 x2 x2
2

1 x3 x2
3

 , det

 1 x2
1 y1

1 x2
2 y2

1 x2
3 y3

 ,

det

 1 x1 y2
1

1 x2 y2
2

1 x3 y2
3

 , det

 1 y1 y2
1

1 y2 y2
2

1 y3 y2
3

 .

Hence CA-Cat3(q, t) = qt + q3 + q2t + qt2 + t3.
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CA-Cat6(q, t)

Kyungyong Lee University of Nebraska–Lincoln Symmetry of q, t-Catalan numbers



Remark

Obviously CA-Catn(q, t) = CA-Catn(t, q).

Problem

Find a set of minimal generators for I .

This is very difficult, but there is a precise conjecture (by
Can–L–Li–Loehr) using a combinatorial description.
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Definition of q, t-Catalan numbers using Dyck paths

Let Γ be a Dyck path in the n × n grid.
• area(Γ) = the number of unit boxes between Γ and the diagonal
• A box y above γ is called{

good, if arm(y)− leg(y) ∈ {0, 1};
bad, otherwise.

• dinv(Γ) = the number of good boxes

Example

y arm

leg

O

O O

X X

X X

O O X O O

area= 3

dinv= 7
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Definition

DP-Catn(q, t) :=
∑

Γ:Dyck path

qarea(Γ)tdinv(Γ)

Theorem (Haiman, Garsia–Haglund 2001)

CA-Catn(q, t) = DP-Catn(q, t)

Corollary

DP-Catn(q, t) = DP-Catn(t, q)

Problem

Find a combinatorial proof for Corollary.
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Let defc(Γ) be the number of bad boxes above Γ, i.e.,

defc(Γ) :=

(
n

2

)
− area(Γ)− dinv(Γ).

Definition

For k ∈ Z≥0, we define

DP-Catn,k(q, t) :=
∑

defc(Γ)=k

qarea(Γ)tdinv(Γ).

Theorem (L-Li-Loehr 2016)

For k ≤ 9 and all n, we have an explicit bijection for the q, t-joint
symmetry:

DP-Catn,k(q, t) = DP-Catn,k(t, q).
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Idea of construction

Step 1 : Construct a certain infinite sequence (and its dual) of
diagrams, whose dinv are increasing by 1.
Step 2 : For each n, consider the subsequence(s) consisting of the
diagrams that fit in the n × n grid as a Dyck path.

Then the Dyck paths in this subsequence(s) have the joint
q, t-symmetry property.

Step 3 : Decompose the set of all diagrams into such infinite
sequences.
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Toy Example

O

X

X

X

X

X

col-row(+1) operation
X X X X X O O

O

O

X

X

O

X

X

X

col-row(+1) operation
O

X

X

X

O X X O O

col-row(+1) operation
X X O O

X X X O O O
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Toy Example continued

O

O

O

X

O

O

X

X

O

X

X

col-row(+1) operation

OOO O X

O

O

X

X

O

X

X

col-row(+1) operation · · ·

Let n = 6. Then the corresponding subsequence consists of the
following 4 Dyck paths:

O

O

X

X

O

X

X

X

area= 7

dinv= 3 O

X

X

X

O X X O O

area= 6

dinv= 4 O

O

O

X

O

O

X

X

O

X

X

area= 4

dinv= 6

OOO O X

O

O

X

X

O

X

X

area= 3

dinv= 7
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