The smallest Borel ideal containing the product of the variables

Chris Francisco Jeff Mermin* Jay Schweig Let $S = k[x_1, \ldots, x_n] = k[a, b, c, \ldots]$, and let I be a monomial ideal of S.

Definition: *I* is *Borel* if it satisfies the condition:

Let i < j and let g be a monomial such that $gx_j \in I$. Then $gx_i \in I$.

Changing x_j to x_i is called a *Borel move*.

If m is a monomial, the **principal Borel-fixed** ideal generated by m is the smallest Borelfixed ideal containing m. We call it Borel(m).

Examples:

Borel(*abcd*) =
$$(a^4, a^3b, a^3c, a^2b^2, a^2bc, a^2bd, a^2c^2, a^2cd, ab^3, ab^2c, ab^2d, abc^2, abcd$$
)

 $Borel(x_n^k) = \mathfrak{m}^k$

Question: Given a principal Borel ideal B = Borel(m), what can we determine without first computing the traditional monomial generating set?

Question: Given a principal Borel ideal B = Borel(m), what can we determine without first computing the traditional monomial generating set?

Answer: Just about every invariant we care about.

Question: Given a principal Borel ideal B = Borel(m), what can we determine without first computing the traditional monomial generating set?

Answer: Just about every invariant we care about.

Furthermore, all the invariants of Borel $(x_1x_2...x_k)$ are really nice.

Associated primes and primary decomposition

Theorem (Classical): If *B* is Borel and $P \in Ass(B)$, then $P = P_q = (x_1, \ldots, x_q)$ for some *q*.

Associated primes and primary decomposition

Theorem (Classical): If *B* is Borel and $P \in$ Ass(*B*), then $P = P_q = (x_1, \ldots, x_q)$ for some *q*.

Theorem: Suppose B = Borel(m) is principal Borel. Then

$$B = \bigcap (x_1, \ldots, x_q)^k,$$

where x_q occurs in the " k^{th} position" in m. For example,

Borel(*abcd*) = $(a) \cap (a, b)^2 \cap (a, b, c)^3 \cap (a, b, c, d)^4$.

In particular,

 $Ass(Borel(m)) = \{(x_1, \dots, x_q) : x_q \text{ divides } m\}.$

In particular,

 $Ass(Borel(m)) = \{(x_1, \ldots, x_q) : x_q \text{ divides } m\}.$

The associated primes of $Borel(x_1x_2...x_k)$ form a saturated chain.

Hilbert functions and Betti numbers

Suppose that S = k[a, b, c, d, e] and $abc \in B$ is a (classical) monomial generator.

Then abc contributes $\{a^2bc, ab^2c, abc^2, abcd, abce\}$ to the degree-four part of B.

Hilbert functions and Betti numbers

Suppose that S = k[a, b, c, d, e] and $abc \in B$ is a (classical) monomial generator.

Then *abc* contributes $\{a^{2}bc, ab^{2}c, abc^{2}, abcd, abce\}$ to the degree-four part of *B*.

But $a^{2}bc = (a^{2}b)c$ and $ab^{2}c = (ab^{2})c$, so they're redundant.

Hilbert functions and Betti numbers

Suppose that S = k[a, b, c, d, e] and $abc \in B$ is a (classical) monomial generator.

Then *abc* contributes $\{a^{2}bc, ab^{2}c, abc^{2}, abcd, abce\}$ to the degree-four part of *B*.

But $a^{2}bc = (a^{2}b)c$ and $ab^{2}c = (ab^{2})c$, so they're redundant.

The contribution of each generator μ to higher degrees depends only on its last variable.

Put
$$w_i(B) = \#\{\mu : \max(\mu) = x_i\}.$$

If B is a Borel ideal generated entirely in degree d, we have:

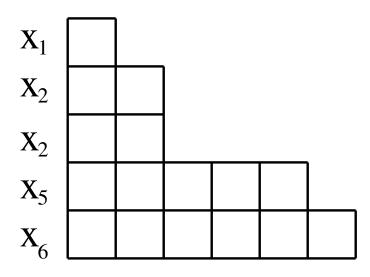
$$HS(B) = \sum w_i(B) \frac{t^d}{(1-t)^{n-i+1}}.$$

Furthermore, the graded Betti numbers of ${\cal B}$ are

$$\beta_{j,j+d}(B) = \sum w_i(B) {i-1 \choose j}.$$

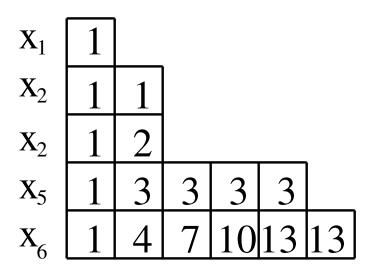
So we actually want to compute $w_i(B)$.

To compute the $w_i(B)$ for B = Borel(m), build the Catalan diagram of shape m:



(Here, $m = ab^2 ef = x_1 x_2^2 x_5 x_6$.)

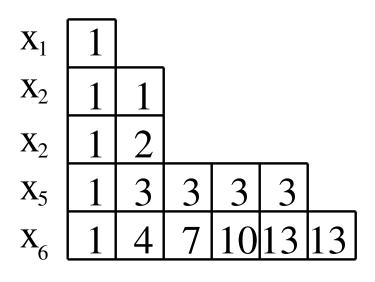
To compute the $w_i(B)$ for Borel(m), build the Catalan diagram of shape m:



...and fill it in like Catalan's triangle.

(Here,
$$m = ab^2 ef = x_1 x_2^2 x_5 x_6$$
.)

To compute the Betti numbers of Borel(m), build the Catalan diagram of shape m:

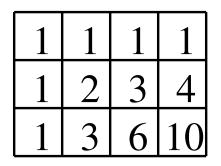


Then plug in t + 1 to the generating function on the last row.

 $g(t) = 1 + 4t + 7t^{2} + 10t^{3} + 13t^{4} + 13t^{5}$ $g(t+1) = 48 + 165t + 245t^{2} + 192t^{3} + 78t^{4} + 13t^{5}$

betti res module borel monomialIdeal (ab^2ef) : 0 1 2 3 4 5 total: 48 165 245 192 78 13 5: 48 165 245 192 78 13

$$I = (a, b, c, d)^3$$
:

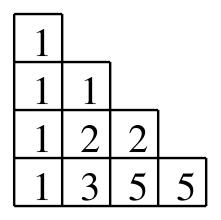


$$g(t) = 1 + 3t + 6t^{2} + 10t^{3}$$
$$g(t+1) = 20 + 45t + 36t^{2} + 10t^{3}$$

betti res borel monomialIdeal (d^3) :

	0	1	2	3	4
total:	1	20	45	36	10
0:	1	•			
1:	•	•			
2:	-	20	45	36	10

I = Borel(abcd):



$$g(t) = 1 + 3t + 5t^{2} + 5t^{3}$$
$$g(t+1) = 14 + 28t + 20t^{2} + 5t^{3}$$

betti res borel monomialIdeal(a*b*c*d):

	0	1	2	3	4
total:	1	14	28	20	5
0:	1	•	•		
1:					
2:	•				
3:		14	28	20	5

Boij-Söderberg decompositions

Let $\beta(B)$ and $\beta(S/B)$ stand for the Betti diagrams. For example, if B = Borel(abcd), we have

The Boij-Söderberg theorems say that these are positive linear combinations of the Betti diagrams of pure Cohen-Macaulay modules. Let *B* be a Borel ideal, generated in degree *d*. Then the Boij-Söderberg decomposition of *B* is given by the $w_i(B)$:

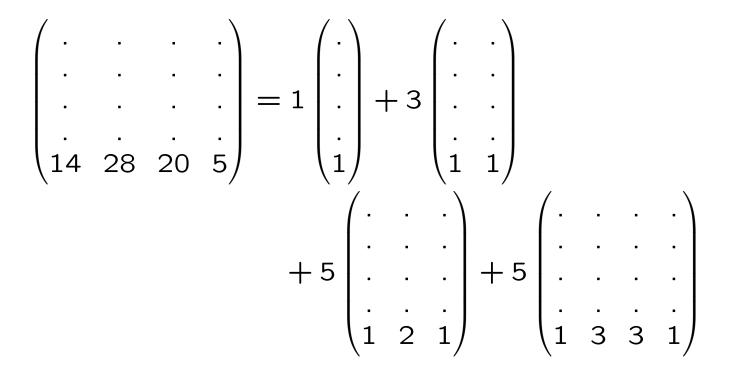
$$\beta(B) = \sum w_i(B)\beta(\text{Borel}(x_i^d)).$$

Let *B* be a Borel ideal, generated in degree *d*. Then the Boij-Söderberg decomposition of *B* is given by the $w_i(B)$:

$$\beta(B) = \sum w_i(B)\beta(\text{Borel}(x_i^d)).$$

Let *B* be a Borel ideal, generated in degree *d*. Then the Boij-Söderberg decomposition of *B* is given by the $w_i(B)$:

$$\beta(B) = \sum w_i(B)\beta(\text{Borel}(x_i^d)).$$



The situation with S/B is more complicated.

When the dust clears, we get

$$\beta(S/B) = \sum \left(\frac{w_i(B)}{w_i(\mathfrak{m}_n)^d} - \frac{w_{i+1}(B)}{w_{i+1}(\mathfrak{m}_n)^d} \right) \beta(S/\mathfrak{m}_i^d),$$

where B is generated in degree d, $\mathfrak{m}_i = (x_1, \dots x_i)$, and n is sufficiently large. When more dust clears, $S/Borel(x_1x_2x_3)$ lies at the centroid of its Boij-Söderberg face:

When more dust clears, S/Borel($x_1x_2x_3x_4$) lies at the centroid of its Boij-Söderberg face:

When more dust clears, $S/Borel(x_1x_2...x_n)$ lies at the centroid of its Boij-Söderberg face:

$$\beta\left(\frac{S}{\operatorname{Borel}(x_1x_2\dots x_n)}\right) = \frac{\sum_{i=1}^n \beta\left(\frac{S}{\mathfrak{m}_i^n}\right)}{n}$$