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Let S = k[zq1,...,2n] = kla,b,c,...], and let I
be a monomial ideal of S.

Definition: [ is Borel if it satisfies the condi-
tion:

Let : < 5 and let g be a monomial
such that gz; € I. Then gx; € I.

Changing x; to x; is called a Borel move.



If m is a monomial, the principal Borel-fixed
ideal generated by m is the smallest Borel-
fixed ideal containing m. We call it Borel(m).

Examples:

Borel(abed) = (a*, a3b, a3c, a?b?, a®be, a2bd,
a’c?,a’cd, ab3, ab’c, ab’d, abc?, abed)

Borel(a;ffb) = mF



Question: Given a principal Borel ideal B =
Borel(m), what can we determine without first
computing the traditional monomial generat-
ing set?
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Furthermore, all the invariants of Borel(z1x5...x1)
are really nice.



Assocliated primes and
primary decomposition

Theorem (Classical): If B is Borel and P ¢
Ass(B), then P = Py = (x1,...,xq) for some q.
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Theorem: Suppose B = Borel(m) is principal
Borel. Then

B = ﬂ(wla st 7xQ)ka

where z, occurs in the “kt" position” in m. For
example,

Borel(abed) = (a)N(a,b)?N(a,b,c)>N(a,b,c,d)?.



In particular,

Ass(Borel(m)) = {(x1,...,2q) : x4 divides m}.



In particular,

Ass(Borel(m)) = {(x1,...,2q) : x4 divides m}.

The associated primes of Borel(x1xs...x) form
a saturated chain.



Hilbert functions and Betti
numbers

Suppose that S = k[a,b,c,d,e] and abc € B is a
(classical) monomial generator.

Then abc contributes {a2be, abc, abc?, abed, abee}
to the degree-four part of B.
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Hilbert functions and Betti
numbers

Suppose that S = k[a,b,c,d,e] and abc € B is a
(classical) monomial generator.

Then abc contributes {a?be;ab?c; abc?, abed, abee}
to the degree-four part of B.

But a?be = (a2b)c and ab?c = (ab?)¢, so they're
redundant.

The contribution of each generator u to higher
degrees depends only on its last variable.

Put w;i(B) = #{p : max(u) = a;}.



If B is a Borel ideal generated entirely in degree
d, we have:

!

HS(B) = Zwi(B)(l T

Furthermore, the graded Betti numbers of B
are

8ii4a(B) =S w(B) (" ).

J

So we actually want to compute w;(B).



To compute the w;(B) for B = Borel(m), build
the Catalan diagram of shape m:

(Here, m = ab?ef = :1:1:1:%905:1:6.)



To compute the w;(B) for Borel(m), build the
Catalan diagram of shape m:

X

X5 |1

X 1]2

Xs 1 11313[3]3
X 11141 7(1003]13

...and fill it in like Catalan’s triangle.

(Here, m = ab?ef = xlx%w5x6.)



To compute the Betti numbers of Borel(m),
build the Catalan diagram of shape m:

X

X5 |1

X 1]2

Xs 1 11313[3]3
X 11141 7(1003]13

Then plug in t + 1 to the generating function
on the last row.

g(t) =1+ 4t + 7t2 + 103 + 13t* + 13¢°
g(t+ 1) = 48 + 165t + 245t 4+ 192¢3 4+ 78t + 13¢°

betti res module borel monomiaIIdeaI(aerf) ;

O 1 2 3 4 5
total: 48 165 245 192 78 13
5: 48 165 245 192 78 13



I = (a,b,c,d)3:

1[1]1
21314
316(10

g(t) =1+ 3t+6t°+ 1083
g(t+ 1) = 20 + 45t + 36t% + 103

betti res borel monomialldeal(d3) :

o1 2 3 4

total: 1 20 45 36 10
O: 1

1: . . . . .

2: . 20 45 36 10



I = Borel(abed):

31515

g(t) = 1+ 3t + 5t + 5¢3
g(t+ 1) = 14 4 28t + 20t° + 5¢3

betti res borel monomialldeal(a*b*c*d) :
O 1 2 3 4

total: 1 14 28 20 5
O: 1
1:

2. . : .
3 14 28 20 5



Boij-Soderberg
decompositions

Let B(B) and B(S/B) stand for the Betti di-
agrams. For example, if B = Borel(abed), we
have

B(B) =

\1'4 28 20 5 )

B(S/B) = -
14 28 20 5

The Boij-Soderberg theorems say that these
are positive linear combinations of the Betti
diagrams of pure Cohen-Macaulay modules.



Let B be a Borel ideal, generated in degree d.
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is given by the w;(B):
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Let B be a Borel ideal, generated in degree d.
Then the Boij-Soderberg decompostion of B

is given by the w;(B):

B(B) =Y w;(B)B(Borel(z%)).
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The situation with S/B is more complicated.



When the dust clears, we get

B(S/B) =Z< wiB) _ wit1(B) )5(5/111?),

wi(mp)?® w41 (my)?

where B is generated in degree d, m; = (x1,...x;),
and n is sufficiently large.



When more dust clears, S/ Borel(zixpox3) lies
at the centroid of its Boij-Soderberg face:
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When more dust clears, S/Borel(xizs...xn)
lies at the centroid of its Boij-Soderberg face:

3 S _ =1
Borel(z1zs...2n)) n



