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Let S = k[x1, . . . , xn] = k[a, b, c, . . . ], and let I

be a monomial ideal of S.

Definition: I is Borel if it satisfies the condi-

tion:

Let i < j and let g be a monomial

such that gxj ∈ I. Then gxi ∈ I.

Changing xj to xi is called a Borel move.



If m is a monomial, the principal Borel-fixed

ideal generated by m is the smallest Borel-

fixed ideal containing m. We call it Borel(m).

Examples:

Borel(abcd) = (a4, a3b, a3c, a2b2, a2bc, a2bd,

a2c2, a2cd, ab3, ab2c, ab2d, abc2, abcd)

Borel(xkn) = mk



Question: Given a principal Borel ideal B =

Borel(m), what can we determine without first

computing the traditional monomial generat-

ing set?
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Associated primes and
primary decomposition

Theorem (Classical): If B is Borel and P ∈
Ass(B), then P = Pq = (x1, . . . , xq) for some q.

Theorem: Suppose B = Borel(m) is principal

Borel. Then

B =
⋂

(x1, . . . , xq)
k,

where xq occurs in the “kth position” in m. For

example,

Borel(abcd) = (a)∩(a, b)2∩(a, b, c)3∩(a, b, c, d)4.



In particular,

Ass(Borel(m)) = {(x1, . . . , xq) : xq divides m}.



In particular,

Ass(Borel(m)) = {(x1, . . . , xq) : xq divides m}.

The associated primes of Borel(x1x2 . . . xk) form

a saturated chain.



Hilbert functions and Betti
numbers

Suppose that S = k[a, b, c, d, e] and abc ∈ B is a

(classical) monomial generator.
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to the degree-four part of B.
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Hilbert functions and Betti
numbers

Suppose that S = k[a, b, c, d, e] and abc ∈ B is a

(classical) monomial generator.

Then abc contributes {a2bc, ab2c, abc2, abcd, abce}
to the degree-four part of B.

But a2bc = (a2b)c and ab2c = (ab2)c, so they’re

redundant.

The contribution of each generator µ to higher

degrees depends only on its last variable.

Put wi(B) = #{µ : max(µ) = xi}.



If B is a Borel ideal generated entirely in degree

d, we have:

HS(B) =
∑

wi(B)
td

(1− t)n−i+1
.

Furthermore, the graded Betti numbers of B

are

βj,j+d(B) =
∑

wi(B)
(i− 1

j

)
.

So we actually want to compute wi(B).



To compute the wi(B) for B = Borel(m), build

the Catalan diagram of shape m:
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(Here, m = ab2ef = x1x
2
2x5x6.)



To compute the wi(B) for Borel(m), build the

Catalan diagram of shape m:

2

2

5

6

x

x

x

x

x

1 1

1

3 33 3

1

1

1 2

1 4 7 1013 13

...and fill it in like Catalan’s triangle.

(Here, m = ab2ef = x1x
2
2x5x6.)



To compute the Betti numbers of Borel(m),

build the Catalan diagram of shape m:
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1 1

1

3 33 3

1

1

1 2

1 4 7 1013 13

Then plug in t + 1 to the generating function

on the last row.

g(t) = 1 + 4t+ 7t2 + 10t3 + 13t4 + 13t5

g(t+ 1) = 48 + 165t+ 245t2 + 192t3 + 78t4 + 13t5

betti res module borel monomialIdeal(ab2ef) :

0 1 2 3 4 5
total: 48 165 245 192 78 13

5: 48 165 245 192 78 13



I = (a, b, c, d)3:

1

1

1 1

2 3

1 3 6

1

4

10

g(t) = 1 + 3t+ 6t2 + 10t3

g(t+ 1) = 20 + 45t+ 36t2 + 10t3

betti res borel monomialIdeal(d3) :

0 1 2 3 4
total: 1 20 45 36 10

0: 1 . . . .
1: . . . . .
2: . 20 45 36 10



I = Borel(abcd):

1

1

1

1

1

2

3
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5 5

g(t) = 1 + 3t+ 5t2 + 5t3

g(t+ 1) = 14 + 28t+ 20t2 + 5t3

betti res borel monomialIdeal(a*b*c*d) :

0 1 2 3 4
total: 1 14 28 20 5

0: 1 . . . .
1: . . . . .
2: . . . . .
3: . 14 28 20 5



Boij-Söderberg
decompositions

Let β(B) and β(S/B) stand for the Betti di-

agrams. For example, if B = Borel(abcd), we

have

β(B) =


. . . .
. . . .
. . . .
. . . .

14 28 20 5



β(S/B) =


1 . . . .
. . . . .
. . . . .
. 14 28 20 5



The Boij-Söderberg theorems say that these

are positive linear combinations of the Betti

diagrams of pure Cohen-Macaulay modules.
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The situation with S/B is more complicated.



When the dust clears, we get

β(S/B) =
∑(

wi(B)

wi(mn)d
−

wi+1(B)

wi+1(mn)d

)
β(S/mdi ),

where B is generated in degree d, mi = (x1, . . . xi),

and n is sufficiently large.



When more dust clears, S/Borel(x1x2x3) lies

at the centroid of its Boij-Söderberg face:
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When more dust clears, S/Borel(x1x2x3x4) lies

at the centroid of its Boij-Söderberg face:
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+
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When more dust clears, S/Borel(x1x2 . . . xn)

lies at the centroid of its Boij-Söderberg face:

β

(
S

Borel(x1x2 . . . xn)

)
=

n∑
i=1

β

(
S

mni

)
n


