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Biological Motivation

Place cells: Neurons which are active in a particular region of an

animal’s environment. (Nobel Prize 2014, Physiology or Medicine,
O'Keefe/Moser-Moser)

https://upload.wikimedia.org/wikipedia/commons/5/5e/Place_Cell_Spiking_Activity_Example.png

Mohamed Omar (joint w/ R. Amzi Jeffs) (Convex incidences, neuroscience, and ideals Apr 16, 2016



Biological Motivation

How is data on place cells collected?

Time ——
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Biological Motivation

How is data on place cells collected?

Time ——

¢ = {000, 100,001,011,110, 111}
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Mathematical Formulation

Neural codes capture an animal’s response to a stimulus.

We assume that the receptive fields for place cells are open convex
sets in Euclidean space.

Neuron 1 Neuron 2 Neuron 3

L
-
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Mathematical Formulation

We associate collections of convex sets to binary codes.
Definition (Curto et. al, 2013)

Let U = {U1,...,U,} be a collection of convex open sets. The code of U is

CU) = {v €{0,1}"

m U ~ U Uji@
V,'=1 VJ=0

u = {U17 U23 U3}

- c() = {000,100,010,001, 110,011}

Uy
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The Question

Code C:

00000 10000 01000 00100
00010 00001 11000 10100
01100 01010 00101 00011
11100 01110 01101 01011
00111 01111

codeword: 00101
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The Question

Code C:

00000 10000 01000 00100
00010 00001 11000 10100
01100 01010 00101 00011
11100 01110 01101 01011
00111 01111

codeword: 00101

Definition

Let C < {0,1}" be a code. If there exists a collection of convex open sets
U so that C = C(U) we say that C is convex. We call U a convex
realization of C.

Question
How can we detect whether a code C is convex?
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Non-Example

Consider the code C = {000, 100,010,110,011,101}
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Non-Example

Consider the code C = {000, 100,010,110,011,101}

111

100

C is not realizable!
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Classifying Convex Codes

Question
Can we find meaningful criteria that guarantee a code is convex?

Answer: Yes!
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Classifying Convex Codes

Question
Can we find meaningful criteria that guarantee a code is convex?

Answer: Yes!

e Simplicial complex codes (Curto et. al, 2013)

o Codes with 11---1 in them (Curto et. al, 2016)

o Intersection complete codes (Kronholm et. al, 2015)
e Many more (results from several papers)
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Other ldeas....

Use Ideals!
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An Algebraic Approach

We will work in the polynomial ring Fa[xq, ..., X,].
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An Algebraic Approach

We will work in the polynomial ring Fa[xq, ..., X,].

Definition (CIVCY2013)

Let v € {0,1}". The indicator pseudomonomial for v is

Py = H X; 0(1 - Xj)-

vi=1 vj=

p110 = x1%2(1 = x3). Note that p,(u) =1 only if u=v.
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An Algebraic Approach

We will work in the polynomial ring Fa[xq, ..., X,].

Definition (CIVCY2013)

Let v € {0,1}". The indicator pseudomonomial for v is

Py = HX,-H(l—XJ-).

V,'=]. VJZO

p110 = x1%2(1 = x3). Note that p,(u) =1 only if u=v.
Definition (CIVCY2013)
Let C € {0,1}" be a code. The neural ideal J of C is the ideal

Je = (pv | vEC).
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Neural Ideal Example

Definition (CIVCY2013)
Let C < {0,1}" be a code. The neural ideal Jo of C is the ideal

Je = (pv | v¢C).

e C ={000,100,010,001,011}

Jo={py|veC)={x1x2(1l-x3),x1x3(1 = x2), X1X2X3)

= (x1x2, x1x3(1 - x2))
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Canonical Form

Definition (CIVCY2013)

Let Jo be a neural ideal. The canonical form of J¢ is the set of minimal
pseudomonomials in Jz with respect to division. Equivalently :

CF(Je):={f eJe|fisa PM and no proper divisor of f isin Jz}.
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Canonical Form and Constructing Codes

Consider the code C = {00000, 10000,01000,00100, 00001, 11000, 10001,
01100,00110,00101,00011, 11100,00111}.
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Canonical Form and Constructing Codes

Consider the code C = {00000, 10000,01000,00100, 00001, 11000, 10001,
01100,00110,00101,00011, 11100,00111}.

Jo =
(xa(1-x1)(1-x2)(1-x3)(1-x5), x1x3(1—x2) (1=xa) (1 =x5), x1xa(1—x2) (1 -
X3)(]_—X5),X2X4(]_—X1)(]_—X3)(]_—X5),X2X5(1—X1)(1—X3)(1—X4),X1X2X4(]_—
x3)(1=x5),x1x2x5(1 = x3)(1 — xa), x1x3xa(1 — x2) (1 — x5), x1x3x5 (1 —
X2)(]. —X4),X1X4X5(1 - X2)(1 - X3),X2X3X4(]_ —Xl)(l —X5),X2X3X5(1 -
x1)(1=xa),xoxax5(1 = x1)(1 — x3), xox3xa%5(1 — x1), X1 X3%2%5 (1 —

x2), x1x0xax5(1 — x3), x1X0x3x5 (1 — X4), X1 X20x3%4 (1 — X5, X1 X2X3X4 X5 )

Uggghhhhh!
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Canonical Form and Constructing Codes

Canonical Form (Minimal description!)

JC = <X1X3X5,X4(1 - X3)(1 - X5),X1X4,X1X3(]_ - X2),X2X4,X2X5>
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Canonical Form and Constructing Codes

Je = (x1x3x5, x4 (1 = x3) (1 — x5), x1Xa, x1X3(1 — X2), X2 X4, X2.X5)

@ X1X3Xp
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Canonical Form and Constructing Codes

Je = (x1x3x5, x4 (1 = x3) (1 — x5), x1Xa, x1X3(1 — X2), X2 X4, X2.X5)

@ xix3xs = Uy nUsn Us =g,
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Canonical Form and Constructing Codes

Je = (x1x3x5, x4 (1 = x3) (1 — x5), x1Xa, x1X3(1 — X2), X2 X4, X2.X5)

@ xix3xs = Uy nUsn Us =g,
UinUsxa,UinUs+3,Usn Us + @.
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Canonical Form and Constructing Codes
The picture so far:

[m]

=
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Canonical Form and Constructing Codes

JC = <X1X3X5,X4(1 - X3)(1 - X5),X1X4,X1X3(]_ - X2),X2X4,X2X5>

@ xyx3x5 => UinlUsnUs=g, UinUs+#, UinUs =3, Usn Us + @.
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Canonical Form and Constructing Codes

JC = <X1X3X5,X4(1 - X3)(1 - X5),X1X4,X1X3(]_ - X2),X2X4,X2X5>

@ xyx3x5 => UinlUsnUs=g, UinUs+#, UinUs =3, Usn Us + @.
@ x4(1-x3)(1-x5)
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Canonical Form and Constructing Codes

JC = <X1X3X5,X4(1 - X3)(1 - X5),X1X4,X1X3(]_ - X2),X2X4,X2X5>

@ xyx3x5 => UinlUsnUs=g, UinUs+#, UinUs =3, Usn Us + @.
<] X4(1—X3)(1—X5) = Us € Usu Us,
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Canonical Form and Constructing Codes

JC = <X1X3X5,X4(1 - X3)(1 - X5),X1X4,X1X3(]_ - X2),X2X4,X2X5>

@ xyx3x5 => UinlUsnUs=g, UinUs+#, UinUs =3, Usn Us + @.
<] X4(1—X3)(1—X5) = Us € Usu Us,

0 x1x4 = UinlUy =g,

Mohamed Omar (joint w/ R. Amzi Jeffs) (Convex incidences, neuroscience, and ideals Apr 16, 2016



Canonical Form and Constructing Codes
The picture so far:

[m]

=
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Canonical Form and Constructing Codes

Jeo = {(x1x3x5, X4 (1 = x3) (1 = x5), x1X4, x13(1 = X2), X2X4, X2X5 )

@ xyx3x5 = UynlUszn Us =g,
@ x4(1-x3)(1-x5) = Uy € U3U Us,

@ xixq = UinUs =g,
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Canonical Form and Constructing Codes

Jeo = {(x1x3x5, X4 (1 = x3) (1 = x5), x1X4, x13(1 = X2), X2X4, X2X5 )

@ xyx3x5 = UynlUszn Us =g,
@ x4(1-x3)(1-x5) = Uy € U3U Us,
@ x1x4 = Upnls =2,

° x1x3(1-xp)
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Canonical Form and Constructing Codes

Jeo = {(x1x3x5, X4 (1 = x3) (1 = x5), x1X4, x13(1 = X2), X2X4, X2X5 )

@ x1x3x5 = Uy nUsn Us =g,

@ x4(1-x3)(1-x5) = Uy € U3U Us,
@ xixq = UinUs =g,

o x1x3(1-x2) = Ui nUs ¢ Uy,
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Canonical Form and Constructing Codes

Jeo = {(x1x3x5, X4 (1 = x3) (1 = x5), x1X4, x13(1 = X2), X2X4, X2X5 )

x1x3x5 = Uy n Uz n Us = g,
X4(]. —X3)(]. —X5) = Uy c Usu Us,
xi1xqg = Up nUy = @,

x1x3(l=x2) = Ui nUs ¢ Uy,

X2 X4
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Canonical Form and Constructing Codes

Jeo = {(x1x3x5, X4 (1 = x3) (1 = x5), x1X4, x13(1 = X2), X2X4, X2X5 )

x1x3x5 = Uy n Uz n Us = g,
X4(]. —X3)(]. —X5) = Uy c Usu Us,
xi1xqg = Up nUy = @,

x1x3(l=x2) = Ui nUs ¢ Uy,

X2 X4 = U2ﬂ U4:®,
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Canonical Form and Constructing Codes

Jeo = {(x1x3x5, X4 (1 = x3) (1 = x5), x1X4, x13(1 = X2), X2X4, X2X5 )

x1x3xs = Uy nUsn Us =@,
x2(1-x3)(1=x5) = Us € Us U Us,
x1x4 = U1 n Uy = @,

x1x3(l=x2) = Ui nUs ¢ Uy,

X2 X4 = U2ﬂ U4:®,

X2 X5
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Canonical Form and Constructing Codes

Jeo = {(x1x3x5, X4 (1 = x3) (1 = x5), x1X4, x13(1 = X2), X2X4, X2X5 )

x1x3xs = Uy nUsn Us =@,
x2(1-x3)(1=x5) = Us € Us U Us,
x1x4 = U1 n Uy = @,

x1x3(l=x2) = Ui nUs ¢ Uy,

X2 X4 = U2ﬂ U4:®,

xox5 = Uon Us = @.
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Canonical Form and Constructing Codes

Final picture:

[m]

=
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The Neural Ideal in Summary

C —> Jo — CF(J)

We associate codes to neural ideals, and use the canonical
form to compactly present the neural ideal and encode
information about the code and its realizations.
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The Neural Ideal in Summary

C —> Jo — CF(J)

We associate codes to neural ideals, and use the canonical
form to compactly present the neural ideal and encode
information about the code and its realizations.

We hope to understand convex codes by examining neural
ideals and their canonical forms.
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Homomorphisms Respecting Neural Ideals

R. Amzi Jeffs, '16

Definition
We say a homomorphism ¢ : Fa[n] — Fa[m] respects neural ideals if for
every C ¢ {0,1}" there exists D ¢ {0,1}" so that

¢(Je) = Jp.

That is, if ¢ maps neural ideals to neural ideals.

Can we classify all such homomorphisms? Do they have geometric
meaning?

Mohamed Omar (joint w/ R. Amzi Jeffs) (Convex incidences, neuroscience, and ideals Apr 16, 2016



Homomorphisms Respecting Neural Ideals

Restriction: Mapping x; = 1 or x; — 0 for some i.
- x; = 1 corresponds with replacing each U; by U;n U;.
- x; = 0 corresponds with replacing each U; by U; \ U;.
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Homomorphisms Respecting Neural Ideals

Restriction: Mapping x; = 1 or x; — 0 for some i.
- x; = 1 corresponds with replacing each U; by U;n U;.
- x; = 0 corresponds with replacing each U; by U; \ U;.

Uy
Uy
Us ,
Uy :
l |
C c’
1 Mepping |
CF(Je) CF(Jer)
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Homomorphisms Respecting Neural Ideals

Restriction: Mapping x; = 1 or x; — 0 for some i.
- x; = 1 corresponds with replacing each U; by U;n U;.
- x; = 0 corresponds with replacing each U; by U; \ U;.

Uy
U
Intersecting
' J— Ui
Us
17
7 :
! l
c ¢
! Mapping !
1
CF(Je) CF(Jer)

Bit Flipping: Mapping x; = 1 — x; for some /.
- Corresponds to taking the complement of U,.
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Homomorphisms Respecting Neural Ideals

Restriction: Mapping x; = 1 or x; — 0 for some i.
- x; = 1 corresponds with replacing each U; by U;n U;.
- x; = 0 corresponds with replacing each U; by U; \ U;.

1)72

! |

c 1

l Mapping l
CF(Je) —— CF(Je)

Bit Flipping: Mapping x; = 1 — x; for some /.
- Corresponds to taking the complement of U,.

Permutation: Permuting labels on the variables in F,[n].
- Corresponds to permuting labels on the sets in_a realization.
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Classifying Homomorphisms Respecting Neural
Ideals

Theorem (Jeffs, O.)

Let ¢ : Fo[n] - Fo[m] be a homomorphism respecting neural ideals. Then
¢ Is the composition of the three types of maps previously described:

@ Permutation
@ Restriction
o Bit flipping

Moreover, there is an algorithm to present ¢ as such a composition.
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Homomorphisms Respecting Neural Ideals: Proof
Idea

Q If ¢:Fa[n] - Fa[m] respects neural ideals if and only if ¢ is
» surjective, and
» sends pseudonomials to pseudomonomials or O

Q ¢(xi) € {x;,1-x;,0,1}, and for every j € [m] there is a unique i € [n]
so that ¢(x;) € {xj,1 - x;}.
© (Carefully) piece things together variable by variable.
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Mapping the Work

Rings Falr Rings Faln P(F}) = {€] Cis a code on n bits,
5 Fi o5 Fa . 3=l s}
Maps that are compositions of | == | Surective ring homomorphisms for which | === | Neural ideal preserving |~ | Maps that are compositions of permutation.
permutation, bit fipping and (r2) € {0,151 — ;) and and each  is Homomorphisms bit fipping and restiction.
restriction the image of a unique linear polynomial
depending on  single variable
Projtan od B
i
Rings R[n] = Fan)/B Rings Rln] = Fa[n]/B

Maps that are compositions of =— | Surjective ring homomorphisms for | ——— | Neural ideal preserving | | Maps that are compositions of permutation
permutation, bt fipping, restriction, which (z:) € {0,121 — ;). Homomorphisms bit Hipping, restriction, and bit ANDing
and indentifiation of variables.

Neural Rings Puilback (contrvariont) | Codes € C F}
Ring homomorphists Functions

J ]

Rn] as an Fy vector space Neural Rings Pullback (contravarinnt) Codes € € ¥}
Fylincar transformations which map Neural ring homormorphisms Functions that are compositions of permutation,
indicators to indicators or 0,

inclusion, deletion, repetition and addi
trivial neuron
| Maps Between Codes

Rin] as an Fy vector space

— e

Rin] as an B vector space.

that preserve neural ideals.

i) =

bases to indicator bases.

3 J

Rin] as an Fy vector space Tip) = ey E} as a boolean lattice
Fylinear transformations that preserve neural Graph homomorphisms
Nonsense F vector space land

ideals and which send canonical form elements

to canonical form elements or 0.
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Conclusion

In This Talk:
@ We associated polynomial ideals to codes.
@ We used these ideals to understand codes and their realizations

@ We described a class of homomorphisms which play nicely with these
ideals. These homomorphisms can be used to understand convex
codes, and also computationally construct them.
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Conclusion

In This Talk:
@ We associated polynomial ideals to codes.
@ We used these ideals to understand codes and their realizations

@ We described a class of homomorphisms which play nicely with these
ideals. These homomorphisms can be used to understand convex
codes, and also computationally construct them.

What’s Next?
@ How do maps respecting neural ideals affect canonical forms?

@ What other algebraic techniques can be leveraged?
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Thank You!
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