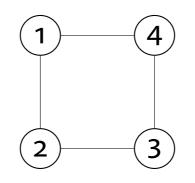
Matrix Completion, Free Resolutions, and Sums of Squares

Rainer Sinn (Georgia Institute of Technology)



Joint with

Grigoriy Blekherman (Georgia Institute of Technology) Mauricio Velasco (Universidad de los Andes)

Matrix Completion

Throughout, we fix a simple graph G = ([n], E).

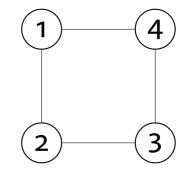
This encodes the coordinate projection

$$\pi_{G}: \begin{cases} \mathbb{S}^{n} \to \mathbb{R}^{n} \oplus \mathbb{R}^{\#E} \\ (a_{ij}) \mapsto (a_{11}, \dots, a_{nn}) \oplus (a_{ij}: \{i, j\} \in E) \end{cases}$$

 \mathbb{S}^n : real vector space of symmetric $n \times n$ matrices.

Example. Let G be the four cycle.

$$\pi_{G}\begin{pmatrix}a_{11} & a_{12} & a_{13} & a_{14}\\a_{12} & a_{22} & a_{23} & a_{24}\\a_{13} & a_{23} & a_{33} & a_{34}\\a_{14} & a_{24} & a_{34} & a_{44}\end{pmatrix} = \begin{pmatrix}a_{11} & a_{12} & * & a_{14}\\a_{12} & a_{22} & a_{23} & ** & a_{23} & a_{33} & a_{34}\\a_{14} & * & a_{34} & a_{44}\end{pmatrix}$$



NB: Think of $\pi_G(a_{ij})$ as a partial matrix.

Goal: Complete a *G*-partial matrix to a **positive semidefinite** symmetric matrix (and control the rank of the completion).

Geometry of positive semidefinite matrix completion

Goal: Describe the image of the cone $\mathbb{S}_{\geq 0}^n$ of positive semidefinite quadratic forms under the projection π_G . $\mathbb{S}_{\geq 0}^n$: convex cone of quadratic forms $\sum_{i,j} a_{ij} x_i x_j$ such that $\sum_{i,j} a_{ij} p_i p_j \ge 0$ for all $(p_1, \ldots, p_n) \in \mathbb{R}^n$.

Theorem (Diagonalization of Quadratic Forms). A quadratic form $q \in \mathbb{R}[x_1, ..., x_n]$ is positive semidefinite if and only if it is a sum of squares of linear forms after a change of basis.

Question: Is $\pi_G(\mathbb{S}^n_{>0})$ a cone of sums of squares?

Stanley-Reisner Ideals

Recall G = ([n], E) is fixed. Let $I_G = \langle x_i x_j : \{i, j\} \notin E \rangle \subset \mathbb{R}[x_1, \dots, x_n]$

Then I_G is the Stanley-Reisner ideal of the **clique complex** of the graph:

simplicial complex Δ on [n], where $H \in \Delta$ if and only if the induced subgraph of G on the vertices in H is complete.

So a monomial $x_H = \prod_{i \in H} x_i$ is in I_G if and only if $G|_H$ is not a complete graph, i.e. there are $i, j \in H$ such that $\{i, j\} \notin E$. But then $x_i x_j \in I_G$ and $x_i x_j | x_H$.

Note: The degree 2 part of I_G is the kernel of π_G .

The quadratic form $2x_ix_j$ corresponds to the symmetric matrix $E_{ij} + E_{ji}$.

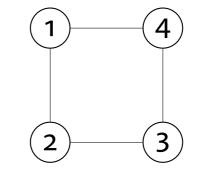
Subspace Arrangements

Set $X_G = \mathcal{V}(I_G) \subset \mathbb{P}^{n-1}$, the subscheme associated with the Stanley-Reisner ideal I_G .

$$X_G = \bigcup_{K \subset G} \operatorname{span}\{e_i : i \in K\},\$$

where *K* runs over all complete subgraphs of *G*.

Example. Let G be the four cycle. Then $I_G = \langle x_1 x_3, x_2 x_4 \rangle$ and X_G is the union of four lines in \mathbb{P}^3 .



Observation: The projection π_G is the degree 2 part of the map of coordinate rings $\mathbb{R}[x_1, \ldots, x_n] \rightarrow \mathbb{R}[X_G]$.

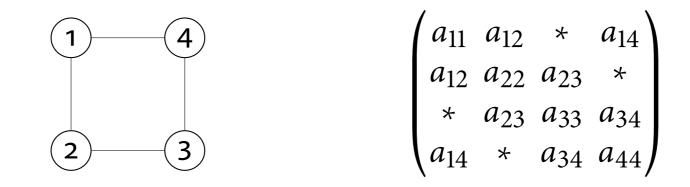
Proposition. The image $\pi_G(\mathbb{S}^n_{\geq 0})$ of the cone of positive semidefinite quadratic forms is the cone Σ_{X_G} of all quadratic forms in $\mathbb{R}[X_G]_2$ that are sums of squares of linear forms.

Summary of the setup

Let G = ([n], E) be a simple graph and let $I_G = \langle x_i x_j : \{i, j\} \notin E \rangle$ be the Stanley-Reisner ideal of the clique complex of G.

Then the coordinate projection $\pi_G: \mathbb{S}^n \to \mathbb{R}^n \oplus \mathbb{R}^{\#E}$ is equal to the degree 2 part of the map $\mathbb{R}[x_1, \ldots, x_n] \to \mathbb{R}[X_G] = \mathbb{R}[x_1, \ldots, x_n]/I_G$ of homogeneous coordinate rings.

Therefore, the image $\pi_G(\mathbb{S}^n_{\geq 0})$ is the cone of sums of squares $\Sigma_{X_G} \subset \mathbb{R}[X_G]_2$ on X_G .



 $I_G = \langle x_1 x_3, x_2 x_4 \rangle$

Sums of Squares and Nonnegative Polynomials

Observation: Every sum of squares of linear forms is a nonnegative quadric.

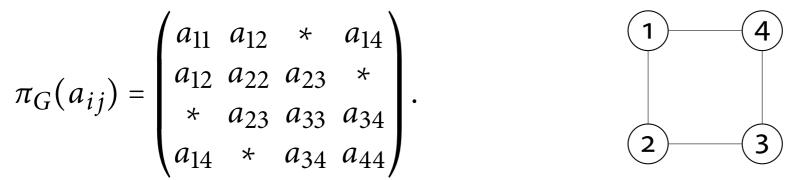
$$q(p) = \sum_{i=1}^{r} \ell_i^2(p) = \sum_{i=1}^{r} (\ell_i(p))^2$$

We write P_{X_G} for the cone of nonnegative quadrics.

Proposition (Obvious necessary condition). Assume $\pi_G(A) \in \Sigma_{X_G}$. Then every completely specified symmetric submatrix of A is positive semidefinite.

Proof. $\Sigma_{X_G} \subset P_{X_G}$.

Example. Let G be the four cycle. Then

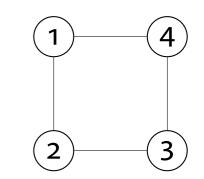


The four fully specified submatrices correspond to the four maximal cliques of G, namely the edges.

Question: When is this obvious necessary condition sufficient?

Two long lost friends

Recall: G = ([n], E) is a simple graph. A graph G is **chordal** if every cycle in G of length at least 4 has a chord.



Theorem (Blekherman-Sinn-Velasco). Every nonnegative quadric is a sum of squares on X_G (in symbols $\Sigma_{X_G} = P_{X_G}$) if and only if I_G is 2-regular.

2-regular: The minimal free resolution is linear:

 $\cdots \xrightarrow{\varphi_{t+1}} F_t \xrightarrow{\varphi_t} F_{t-1} \xrightarrow{\varphi_{t-1}} \cdots \xrightarrow{\varphi_1} F_0 \to I \to 0$

Theorem (Fröberg). The monomial ideal I_G is 2-regular if and only if G is chordal.

Theorem (Agler-Helton-McCullough-Rodman) and (Paulsen-Power-Smith). The obvious necessary condition for positive semidefinite matrix completion is sufficient (equivalently, $\Sigma_{X_G} = P_{X_G}$) if and only if G is chordal.

Minimal Free Resolutions and Matrix Completion

The dual convex cone to Σ_{X_G} is

 $\Sigma_{X_G}^{\vee} = \{ \ell \in \mathbb{R}[X_G]_2^* : \ell(f) \ge 0 \text{ for all } f \in \Sigma_{X_G} \}.$

Convex Biduality: If $\Sigma_{X_G} \subsetneq P_{X_G}$, then dually $P_{X_G}^{\vee} \subsetneq \Sigma_{X_G}^{\vee}$. So there is an extreme ray $\ell \in \Sigma_{X_G}$ which is not in P_{X_G} .

We can identify $\mathbb{R}[X_G]_2^* = (\mathbb{R}[x_1, \dots, x_n]_2/I_G)^*$ with a space of symmetric matrices: $I_G^{\perp} \subset \mathbb{R}[x_1, \dots, x_n]_2^*$.

What is the smallest rank of an extreme ray $\ell \in \Sigma_{X_G} \setminus P_{X_G}$?

Theorem (Blekherman-Sinn-Velasco). Suppose *m* is the Green-Lazarsfeld index of I_G , i.e. the largest integer *p* such that I_G has property $N_{2,p}$ (the minimal free resolution is linear for *p* steps). The smallest rank of an extreme ray $\ell \in \Sigma_{X_G} \setminus P_{X_G}$ is m + 1. In terms of the graph, it is the smallest number $m \ge 1$ such that *G* contains an induced cycle of length m + 3.

Theorem (Eisenbud-Green-Hulek-Popescu). The Green-Lazarsfeld index of I_G is the largest p such that G has no induced cycle of length at most p + 2.

References

Blekherman, Sinn, Velasco. *Small Schemes and Sums of Squares*, to appear on arXiv soon. **Agler, Helton, McCullough, Rodman**. *Positive semidefinite matrices with a given sparsity pattern*, Proceedings of the Victoria Conference on Combinatorial Matrix Analysis (Victoria, BC, 1987) (1988)

Eisenbud, Green, Hulek, Popescu. *Restricting linear syzygies: algebra and geometry*, Compositio Mathematica (2005)

Fröberg. On Stanley-Reisner rings, Topics in algebra, Part 2 (Warsaw, 1988) (1990)

Paulsen, Power, Smith. *Schur products and matrix completions*, Journal of Functional Analysis (1989)

Thank you