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Matrix Completion

Throughout, we fix a simple graphG = ([n], E).
This encodes the coordinate projection

πG∶� Sn → Rn ⊕R�E

(ai j) � (a��, . . . , ann)⊕ (ai j∶{i , j} ∈ E)
Sn: real vector space of symmetric n × nmatrices.
NB: Think of πG(ai j) as a partial matrix.
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Example. LetG be the four cycle.

πG

������

a�� a�� a�� a��
a�� a�� a�� a��
a�� a�� a�� a��
a�� a�� a�� a��

������
=
������

a�� a�� ∗ a��
a�� a�� a�� ∗∗ a�� a�� a��
a�� ∗ a�� a��

������
Goal: Complete a G-partial matrix to a positive semidefinite symmetric matrix (and control
the rank of the completion).

Geometry of positive semidefinite matrix completion

Goal: Describe the image of the cone Sn≥� of positive semidefinite quadratic forms under the
projection πG .
Sn≥�: convex cone of quadratic forms∑i , j ai jxix j such that∑i , j ai jpi p j ≥ � for all (p�, . . . , pn) ∈
Rn.

Theorem (Diagonalization ofQuadratic Forms). Aquadratic form q ∈ R[x�, . . . , xn] is positive
semidefinite if and only if it is a sum of squares of linear forms after a change of basis.

Question: Is πG(Sn≥�) a cone of sums of squares?

Stanley-Reisner Ideals

RecallG = ([n], E) is fixed.
Let IG = �xix j∶{i , j} �∈ E� ⊂ R[x�, . . . , xn]
Then IG is the Stanley-Reisner ideal of the clique complex of the graph:
simplicial complex ∆ on [n], where H ∈ ∆ if and only if the induced subgraph of G on the
vertices in H is complete.
So a monomial xH = ∏i∈H xi is in IG if and only if G�H is not a complete graph, i.e. there are
i , j ∈ H such that {i , j} �∈ E. But then xix j ∈ IG and xix j�xH.
Note: The degree � part of IG is the kernel of πG .
The quadratic form �xix j corresponds to the symmetric matrix Ei j + Eji .
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Subspace Arrangement

Set XG = V(IG) ⊂ Pn−�, the subscheme associated with the Stanley-Reisner ideal IG .

XG = �
K⊂G span{xi∶ i ∈ K},
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semidefinite if and only if it is a sum of squares of linear forms after a change of basis.

Question: Is πG(Sn≥�) a cone of sums of squares?

Stanley-Reisner Ideals

RecallG = ([n], E) is fixed.
Let IG = �xix j∶{i , j} �∈ E� ⊂ R[x�, . . . , xn]
Note: The degree � part of IG is the kernel of πG .
Then IG is the Stanley-Reisner ideal of the clique complex of the graph:
simplicial complex ∆ on [n], where H ∈ ∆ if and only if the induced subgraph of G on the
vertices in H is complete.
So a monomial xH = ∏i∈H xi is in IG if and only if G�H is not a complete graph, i.e. there are
i , j ∈ H such that {i , j} �∈ E. But then xix j ∈ IG and xix j�xH.

Subspace Arrangement

Set XG = V(IG) ⊂ Pn−�, the subscheme associated with the Stanley-Reisner ideal IG .

XG = �
K⊂G span{xi∶ i ∈ K},
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Matrix Completion

Throughout, we fix a simple graphG = ([n], E).
This encodes the coordinate projection

πG∶� Sn → Rn ⊕R�E

(ai j) � (a��, . . . , ann)⊕ (ai j∶{i , j} ∈ E)
Sn: real vector space of symmetric n × nmatrices.
NB: Think of πG(ai j) as a partial matrix.
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Example. LetG be the four cycle.
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Goal: Complete a G-partial matrix to a positive semidefinite symmetric matrix (and control
the rank of the completion).

Geometry of positive semidefinite matrix completion

Goal: Describe the image of the cone Sn≥� of positive semidefinite quadratic forms under the
projection πG .
Sn≥�: convex cone of quadratic forms∑i , j ai jxix j such that∑i , j ai jpi p j ≥ � for all (p�, . . . , pn) ∈
Rn.

Theorem (Diagonalization ofQuadratic Forms). Aquadratic form q ∈ R[x�, . . . , xn] is positive
semidefinite if and only if it is a sum of squares of linear forms after a change of basis.

Question: Is πG(Sn≥�) a cone of sums of squares?

Stanley-Reisner Ideals

RecallG = ([n], E) is fixed.
Let IG = �xix j∶{i , j} �∈ E� ⊂ R[x�, . . . , xn]
Then IG is the Stanley-Reisner ideal of the clique complex of the graph:
simplicial complex ∆ on [n], where H ∈ ∆ if and only if the induced subgraph of G on the
vertices in H is complete.
So a monomial xH = ∏i∈H xi is in IG if and only if G�H is not a complete graph, i.e. there are
i , j ∈ H such that {i , j} �∈ E. But then xix j ∈ IG and xix j�xH.
Note: The degree � part of IG is the kernel of πG .
The quadratic form �xix j corresponds to the symmetric matrix Ei j + Eji .
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LetG = ([n], E) be a simple graph and let IG = �xix j∶{i , j} �∈ E� be the Stanley-Reisner ideal of
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The four fully specified submatrices correspond to the four maximal cliques ofG, namely the edges.

Question: When is this obvious necessary condition sufficient?

Two long lost friends

Recall: G = ([n], E) is a simple graph.
A graphG is chordal if every cycle inG of length at least � has a chord.
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ΣXG of all quadratic forms inR[XG]� that are sums of squares of linear forms.

Summary of the setup
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Two long lost friends

Recall: G = ([n], E) is a simple graph.
A graphG is chordal if every cycle inG of length at least � has a chord.

Matrix Completion

Throughout, we fix a simple graphG = ([n], E).
This encodes the coordinate projection
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Goal: Complete a G-partial matrix to a positive semidefinite symmetric matrix (and control
the rank of the completion).

Geometry of positive semidefinite matrix completion

Goal: Describe the image of the cone Sn≥� of positive semidefinite quadratic forms under the
projection πG .
Sn≥�: convex cone of quadratic forms∑i , j ai jxix j such that∑i , j ai jpi p j ≥ � for all (p�, . . . , pn) ∈
Rn.

Theorem (Diagonalization ofQuadratic Forms). Aquadratic form q ∈ R[x�, . . . , xn] is positive
semidefinite if and only if it is a sum of squares of linear forms after a change of basis.
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RecallG = ([n], E) is fixed.
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Then IG is the Stanley-Reisner ideal of the clique complex of the graph:
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Matrix Completion

Throughout, we fix a simple graphG = ([n], E).
This encodes the coordinate projection
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(ai j) � (a��, . . . , ann)⊕ (ai j∶{i , j} ∈ E)
Sn: real vector space of symmetric n × nmatrices.
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simplicial complex ∆ on [n], where H ∈ ∆ if and only if the induced subgraph of G on the
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So a monomial xH = ∏i∈H xi is in IG if and only if G�H is not a complete graph, i.e. there are
i , j ∈ H such that {i , j} �∈ E. But then xix j ∈ IG and xix j�xH.
Note: The degree � part of IG is the kernel of πG .
The quadratic form �xix j corresponds to the symmetric matrix Ei j + Eji .
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�-regular: The minimal free resolution is linear:

� φt+���→ Ft
φt�→ Ft−� φt−���→ � φ��→ F� → I → �

Theorem (Fröberg). Themonomial ideal IG is �-regular if and only ifG is chordal.

Theorem (Eisenbud-Green-Hulek-Popescu). The ideal I is �-regular if and only if V(I) is a lin-
early joined arrangement of subspaces if and only ifV(I) is small.
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Minimal Free Resolutions andMatrix Completion

The dual convex cone to ΣXG is

Σ∨XG
= {ℓ ∈ R[XG]∗� ∶ ℓ( f ) ≥ � for all f ∈ ΣXG}.
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