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Abstract

We introduce the notion of combinatorial dynamics on
algebraic ideals by translating combinatorial results
involving the rowmotion action on order ideals of posets
to the setting of monomial ideals.
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Rowmotion

Given a finite poset P , the rowmotion of an order ideal
I ∈ J(P) is defined as the order ideal generated by the
minimal elements of P not in I . Partially ordering the
monomials of R = K [x1, . . . , xn] by divisibility, we can
thus define rowmotion for one algebraic ideal with respect
to another.
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Rowmotion

Definition

Let I and J be monomial ideals of R = K [x1, . . . , xn]. If
I ⊃ J , then the (ideal) rowmotion of I with respect to J
is the ideal of R generated by the maximal (with respect
to divisibility) monomials in R not in I , together with the
generators of J .

In our theorems, our base algebraic ideal J will be artinian,
so that the set of standard monomials (monomials not in
J) is finite; this corresponds to the case of finite posets.
But artinian need not be an assumption in the definition.
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Rowmotion example

x3 x2y xy 2 y 3

x2 xy y 2

x y

1

I = 〈x3, xy , y 4〉
J = 〈x4, x3y , x2y 2, xy 3, y 4〉
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Rowmotion example

x3 x2y xy 2 y 3

x2 xy y 2

x y

1

Row(I ) = 〈x2, y 3〉
J = 〈x4, x3y , x2y 2, xy 3, y 4〉
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Rowmotion example

x3 x2y xy 2 y 3

x2 xy y 2

x y

1

Row(I ) = 〈x2, y 3〉
J = 〈x4, x3y , x2y 2, xy 3, y 4〉
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Rowmotion example

x3 x2y xy 2 y 3

x2 xy y 2

x y

1

Row2(I ) = 〈xy 2, x4, x3y , y 4〉
J = 〈x4, x3y , x2y 2, xy 3, y 4〉
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Rowmotion example

x3 x2y xy 2 y 3

x2 xy y 2

x y

1

Row2(I ) = 〈xy 2, x4, x3y , y 4〉
J = 〈x4, x3y , x2y 2, xy 3, y 4〉
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Natural base ideals

Let R = K [x1, . . . , xn]. There are two natural ideals with
respect to which one might apply rowmotion:

1 Powers of the maximal irrelevant ideal:
md = (x1, . . . , xn)d . If n = 2, this corresponds to
poset rowmotion with respect to the positive root
poset for Ad . If n = 3, this is a tetrahedral poset.

2 Monomial complete intersections: (xd11 , . . . , x
dn
n ). This

corresponds to poset rowmotion with respect to the
product of chains [d1]× · · · × [dn].
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Poset ↔ Ideal translation

Let I be an artinian monomial ideal, and let P be the
poset of standard monomials of I .

1 The height of P is the regularity of R/I .

2 The Hilbert series of R/I is the rank generating
function of the dual of P .

3 The cardinality of P is the number of standard
monomials of I , or the multiplicity e(R/I ) of R/I .
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Monomial complete intersections - two variables

Theorem (Combinatorial theorems: Brower-Schriver (1), S.-Williams
(2), Propp-Roby (3-4); Algebraic translation: Cook-S.)

Let R = K [x , y ], d1, d2 ≥ 1, and I = {I | I ⊇ (xd1, y d2)}.
1 Rowmotion on the set I has order d1 + d2.

2 The triple (I, f (q), 〈Row〉) exhibits the cyclic sieving

phenomenon, where f (q) :=
∑

I⊇(xd1 ,yd2)

qe(R/I ).

3 e(R/I ) is homomesic under the action of rowmotion
on I with average value d1d2

2 .

4 The number of generators of I is homomesic under
the action of rowmotion on I.
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Cyclic sieving phenomenon (Reiner-Stanton-White)

Cyclic sieving phenomenon example for d1 = d2 = 2.{
◦

◦ ◦
◦

◦
◦ ◦
•

◦
• •
•

•
• •
•

} {
◦

◦ •
•

◦
• ◦
•

}

f (q) = 1 + q + 2q2 + q3 + q4 ζ = e2πi/4 = i

f (i1) = 0, so 0 elements are fixed under Row1

f (i2) = f (−1) = 2, so 2 elements are fixed under Row2

f (i3) = f (−i) = 0, so 0 elements are fixed under Row3

f (i4) = f (1) = 6, so 6 elements are fixed under Row4
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Monomial complete intersections - two variables

Theorem (Combinatorial theorems: Brower-Schriver (1), S.-Williams
(2), Propp-Roby (3-4); Algebraic translation: Cook-S.)

Let R = K [x , y ], d1, d2 ≥ 1, and I = {I | I ⊇ (xd1, y d2)}.
1 Rowmotion on the set I has order d1 + d2.

2 The triple (I, f (q), 〈Row〉) exhibits the cyclic sieving

phenomenon, where f (q) :=
∑

I⊇(xd1 ,yd2)

qe(R/I ).

3 e(R/I ) is homomesic under the action of rowmotion
on I with average value d1d2

2 .

4 The number of generators of I is homomesic under
the action of rowmotion on I.
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Homomesy (Propp-Roby)

Definition

Given a finite set S of objects, an invertible map
τ : S → S , and a statistic f : S → Q, we say (S , τ, f )
exhibits homomesy if and only if there exists c ∈ Q such
that for every τ -orbit O ⊆ S

1

|O|
∑
x∈O

f (x) = c .
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Homomesy (Propp-Roby)

Example

The rowmotion orbits of J([2]× [2]) ◦
◦ ◦
◦

◦
◦ ◦
•

◦
• •
•

•
• •
•


 ◦

• ◦
•

◦
◦ •
•
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Homomesy (Propp-Roby)

Example

The rowmotion orbits of J([2]× [2]) ◦
◦ 0 ◦
◦

◦
◦ 1 ◦
•

◦

• 3 •

•

•
• 4 •
•


 ◦

• 2 ◦

•

◦
◦ 2 •
•
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Homomesy (Propp-Roby)

Example

The rowmotion orbits of J([2]× [2]) ◦
◦ 0 ◦
◦

◦
◦ 1 ◦
•

◦

• 3 •

•

•
• 4 •
•


 ◦

• 2 ◦

•

◦
◦ 2 •
•


0 + 1 + 3 + 4

4
= 2

2 + 2

2
= 2
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Monomial complete intersections - three variables

Theorem (Combinatorial theorems: Cameron-Fon-der-Flaass (1),
Rush-Shi (2); S.-Williams (2); Algebraic translation: Cook-S.)

Let R = K [x , y , z ], d1, d2 ≥ 1, and
I = {I | I ⊇ (xd1, y d2, z2)}.

1 Rowmotion on the set I has order d1 + d2 + 1.

2 The triple (I, f (q), 〈Row〉) exhibits the cyclic sieving

phenomenon, where f (q) :=
∑
I

qe(R/I ).

3 Conjecture: e(R/I ) is homomesic under the action of
rowmotion on I.
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Monomial complete intersections - three variables

Theorem (Combinatorial theorem: Dilks-Pechenik-S.; Algebraic
translation: Cook-S.)

Let R = K [x , y , z ] and d1, d2, d3 ≥ 1. Then rowmotion on
the set {I | I ⊇ (xd1, y d2, zd3)} exhibits resonance with
frequency d1 + d2 + d3 − 1.

Definition (Dilks-Pechenik-S.)

Let G = 〈g〉 be a cyclic group acting on a set X ,
Cω = 〈c〉 a cyclic group of order ω acting nontrivially on a
set Y , and f : X → Y a surjection. If c · f (x) = f (g · x)
for all x ∈ X , we say the triple (X ,G , f ) exhibits
resonance with frequency ω.
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Monomial complete intersections - n variables

Theorem (New theorem, inspired by the algebra, proved
combinatorially)

Let R = K [x1, x2, . . . , xn] and d1, d2, . . . , dn ≥ 1. Then
rowmotion on the set {I | I ⊇ (xd11 , x

d2
2 , . . . , x

dn
n )} exhibits

resonance with frequency d1 + d2 + · · ·+ dn + 2− n.
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Powers of the maximal irrelevant ideal - two variables

Theorem (Combinatorial theorems: Armstrong-Stump-Thomas
(1,2,4), S.-Williams (new proof of 2), Hadaddan (3); Algebraic
translation: Cook-S.)

Let R = K [x , y ], d ≥ 1, and I = {I | I ⊇ (x , y)d}.
1 Rowmotion on I has order 2(d + 1) for d ≥ 2 and
order 2 for d = 1.

2 The triple (I, f (q), 〈Row〉) exhibits the cyclic sieving

phenomenon, where f (q) :=
∑

I⊇(x ,y)d
qe(R/I ).

3 h(−1) is homomesic under rowmotion on I.

4 The number of generators of I is homomesic under
rowmotion.
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Thanks!
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