The Prism Tableau Model for Schubert Polynomials

Anna Weigandt

University of Illinois at Urbana-Champaign

weigndt2@illinois.edu

April 16th, 2016

Based on joint work with Alexander Yong arXiv:1509.02545 The Prism Tableau Model for Schubert Polynomials

- Describe a tableau based combinatorial model for **Schubert polynomials**
- Give a description of the underlying geometric ideas of the proof
- Apply prism tableaux to study alternating sign matrix varieties

$$\Lambda_n = \{ f \in \mathbb{Z}[x_1, \dots, x_n] : w \cdot f = f \text{ for all } w \in S_n \}$$

- Schur polynomials $\{s_{\lambda}\}$ form a \mathbb{Z} -linear basis for Λ_n and have applications in geometry and representation theory
- Model for Schur polynomials as a sum over **semistandard Young tableaux**

$$\begin{array}{c|c}
1 \\
2 \\
2
\end{array} +
\begin{array}{c|c}
1 \\
2 \\
1
\end{array}$$

 $s_{(2,1)}(x_1, x_2) = x_1 x_2^2 + x_1^2 x_2$

There is an inclusion:

$$\Lambda_n \hookrightarrow \texttt{Pol} = \mathbb{Z}[x_1, x_2, ...]$$

æ

≣ ।•

▲圖 ▶ ▲ 圖 ▶

There is an inclusion:

$$\Lambda_n \hookrightarrow \texttt{Pol} = \mathbb{Z}[x_1, x_2, ...]$$

Question: How do we lift the Schur polynomials to a basis of Pol?

There is an inclusion:

$$\Lambda_n \hookrightarrow \texttt{Pol} = \mathbb{Z}[x_1, x_2, ...]$$

Question: How do we lift the Schur polynomials to a basis of Pol?

An answer: Schubert polynomials

Introduced by Lascoux and Schützenberger in 1982 to study the cohomology of the **complete flag variety**

- Indexed by permutations, $\{\mathfrak{S}_w : w \in S_n\}$
- To find \mathfrak{S}_w :

•
$$\mathfrak{S}_{w_0} := x_1^{n-1} x_2^{n-2} \dots x_{n-1}$$

• The rest are defined recursively by **divided difference operators:**

$$\partial_i f := rac{f - s_i \cdot f}{x_i - x_{i+1}}$$

• $\mathfrak{S}_{ws_i} := \partial_i \mathfrak{S}_w$ if w(i) > w(i+1)

Schubert Polynomials for S_3

A ₽

æ

Schubert polynomials as a basis:

- There is a natural inclusion of symmetric groups $S_n \xrightarrow{\iota} S_{n+1}$
- Schubert polynomials are **stable** under this inclusion:

$$\mathfrak{S}_w = \mathfrak{S}_{\iota(w)}$$

•
$$\{\mathfrak{S}_w : w \in S_\infty\}$$
 forms a \mathbb{Z} -linear basis of $\mathtt{Pol} = \mathbb{Z}[x_1, x_2, \ldots]$

Schubert polynomials as a basis:

- There is a natural inclusion of symmetric groups $S_n \xrightarrow{\iota} S_{n+1}$
- Schubert polynomials are **stable** under this inclusion:

$$\mathfrak{S}_w = \mathfrak{S}_{\iota(w)}$$

•
$$\{\mathfrak{S}_w : w \in S_\infty\}$$
 forms a \mathbb{Z} -linear basis of $\mathtt{Pol} = \mathbb{Z}[x_1, x_2, \ldots]$

Schubert polynomials as a lift of Schur polynomials:

- Every Schur polynomial is a Schubert polynomial for some $w \in S_\infty$
- \mathfrak{S}_w is a Schur polynomial if and only if w is **Grassmannian**

Problem: Is there a combinatorial model for \mathfrak{S}_w that is analogous to semistandard tableau?

Problem: Is there a combinatorial model for \mathfrak{S}_w that is analogous to semistandard tableau?

Many earlier combinatorial models: A. Kohnert, S. Billey-C. Jockusch-R. Stanley, S. Fomin-A. Kirillov, S. Billey-N.Bergeron, ...

Problem: Is there a combinatorial model for \mathfrak{S}_w that is analogous to semistandard tableau?

Many earlier combinatorial models: A. Kohnert, S. Billey-C. Jockusch-R. Stanley, S. Fomin-A. Kirillov, S. Billey-N.Bergeron, ...

A new solution: Prism Tableaux

What is a Prism Tableau?

w = 35124

Each permutation has an associated:

• diagram:

 $D(w) = \{(i,j): 1 \leq i,j \leq n, w(i) > j \text{ and } w^{-1}(j) > i\} \subset n \times n$

• essential set:

 $\mathcal{E}ss(w) = \{$ southeast-most boxes of each component of $D(w)\}$

• rank function: $r_w(i,j)$ = the rank of the (i,j) NW submatrix

The Shape

Fix $w \in S_n$.

- Each $e = (a, b) \in \mathcal{E}ss(w)$ indexes a color
- Let R_e be an $(a r_w(e)) \times (b r_w(e))$ rectangle in the $n \times n$ grid (left justified, bottom row in same row as e)
- Define the shape:

$$\lambda(w) = \bigcup_{e \in \mathcal{E}ss(w)} R_e$$

The Shape

Fix $w \in S_n$.

- Each $e = (a, b) \in \mathcal{E}ss(w)$ indexes a color
- Let R_e be an $(a r_w(e)) \times (b r_w(e))$ rectangle in the $n \times n$ grid (left justified, bottom row in same row as e)
- Define the shape:

$$\lambda(w) = \bigcup_{e \in \mathcal{E}ss(w)} R_e$$

Example: w = 35142

A **prism tableau** for w is a filling of $\lambda(w)$ with colored labels, indexed by $\mathcal{E}ss(w)$ so that labels of color e:

- sit in boxes of R_e
- weakly decrease along rows from left to right
- strictly increase along columns from top to bottom
- are **flagged** by row: no label is bigger than the row it sits in

Define the weight:

$$\operatorname{wt}(\mathcal{T}) = \prod_i x_i^{\#}$$
 of antidiagonals containing a label of number i

Example:

$$T = \boxed{\begin{array}{c}1 & 1\\ 1\\ 2\end{array}} \quad \text{wt}(T) = x_1^2 x_2$$

Fix a prism tableau T.

• T is minimal if the degree of $wt(T) = \ell(w)$.

Example: w = 1432

白 ト く ヨ

We say labels (ℓ_c, ℓ_d, ℓ'_e) in the same antidiagonal T form an unstable triple if ℓ < ℓ' and the tableau T' obtained by replacing ℓ_c with ℓ'_c is itself a prism tableau.

Let Prism(w) be the set of minimal prism tableaux for w which have no unstable triples.

Let Prism(w) be the set of minimal prism tableaux for w which have no unstable triples.

Theorem (W.- A. Yong 2015)

$$\mathfrak{S}_w = \sum_{T \in \mathtt{Prism}(w)} \mathtt{wt}(T).$$

Example for w = 42513

- 《圖》 《문》 《문》

æ

Example for w = 42513 (continued)

11	1	1
22	1	
33	2	

In Prism(w)

In Prism(w)

Not minimal

11	1	1
21	1	
33	3	

11	1	1
21	1	
33	2	

Unstable triple

Unstable triple

Not minimal

Anna Weigandt Prism Tableau Model

Example for w = 42513 (continued)

æ

-

/⊒ ► < ∃ ►

When w is Grassmannian, all essential boxes lie in the same row.

Example: w = 246135.

Specialization to Schur Polynomials

Specialization to Schur Polynomials

Forgetting colors gives the following expansion of the Schur polynomial:

The Geometry Behind the Model

Gröbner Geometry of Schubert Polynomials (A. Knutson - E. Miller 2005)

Identify the **flag variety** with $B_{-} \setminus GL_{n}$.

For $\mathfrak{X} \subset B_{-} \setminus GL_{n}$, there is a corresponding $X = \overline{\iota(\pi^{-1}(\mathfrak{X}))}$.

Gröbner Geometry of Schubert Polynomials (A. Knutson - E. Miller 2005)

Identify the **flag variety** with $B_{-} \setminus GL_{n}$.

For $\mathfrak{X} \subset B_{-} \setminus GL_n$, there is a corresponding $X = \overline{\iota(\pi^{-1}(\mathfrak{X}))}$.

- X is T stable, so $[X]_T \in H_T(\mathsf{Mat}_{n \times n}) \cong \mathbb{Z}[x_1, \dots x_n]$.
- $[X]_T$ is a coset representative for $[\mathfrak{X}]$ in $H^*(B_- \setminus GL_n) \cong \mathbb{Z}[x_1, \dots, x_n]/I^{S_n}$

The cohomology of the flag variety has an additive basis in terms of **Schubert classes**, defined by **Schubert varieties** \mathfrak{X}_w .

The polynomials $[X_w]_T$ represent the Schubert classes

The cohomology of the flag variety has an additive basis in terms of **Schubert classes**, defined by **Schubert varieties** \mathfrak{X}_w .

The polynomials $[X_w]_T$ represent the Schubert classes

Theorem (Knutson-Miller '05)

 $[X_w]_T = \mathfrak{S}_w$

The cohomology of the flag variety has an additive basis in terms of **Schubert classes**, defined by **Schubert varieties** \mathfrak{X}_w .

The polynomials $[X_w]_T$ represent the Schubert classes

Theorem (Knutson-Miller '05)

$$[X_w]_T = \mathfrak{S}_w$$

 $X_w := \overline{\iota(\pi^{-1}(\mathfrak{X}))}$ is called a **matrix Schubert variety** and has an explicit description in terms of "at most" rank conditions on $Mat_{n \times n}$.

/⊒ ▶ < ⊒ ▶ <

Using **Gröbner degeneration**, we associate to X a collection of objects called **plus diagrams**, which index **coordinate subspaces** of $init_{\prec}X$.

When the degeneration is reduced,

$$[X]_{\mathcal{T}} = [\operatorname{init}_{\prec} X]_{\mathcal{T}} = \sum_{\mathcal{P} \in \operatorname{MinPlus}(X)} \operatorname{wt}(\mathcal{P})$$

For a matrix Schubert variety X_w ,

 $MinPlus(X_w) \leftrightarrow$ Pipe Dreams / RC Graphs for w.

Using **Gröbner degeneration**, we associate to X a collection of objects called **plus diagrams**, which index **coordinate subspaces** of $init \prec X$.

When the degeneration is reduced,

$$[X]_{\mathcal{T}} = [\texttt{init}_{\prec} X]_{\mathcal{T}} = \sum_{\mathcal{P} \in \texttt{MinPlus}(X)} \texttt{wt}(\mathcal{P})$$

For a matrix Schubert variety X_w ,

 $MinPlus(X_w) \leftrightarrow$ Pipe Dreams / RC Graphs for w.

Slogan: In "nice" situations, if you know the plus diagrams, you know the T-equivariant class.

A left-justified rectangle R determines a unique **biGrassmannian** permutation $u \in S_{\infty}$.

Fillings of R biject with minimal **plus diagrams** for u and the bijection is **weight preserving**.

Prism Tableau biject with $\mathcal{E}ss(w)$ -tuples of minimal plus diagrams.

If
$$\mathtt{biGrass}(w) = \{u_1, \dots, u_k\}$$
 then $X_w = X_{u_1} \cap \ldots \cap X_{u_k}.$

Furthermore,

$$\operatorname{init}_{\prec} X_w = \operatorname{init}_{\prec} X_{u_1} \cap \ldots \cap \operatorname{init}_{\prec} X_{u_k}.$$

æ

If $\operatorname{biGrass}(w) = \{u_1, \dots, u_k\}$ then $X_w = X_{u_1} \cap \dots \cap X_{u_k}.$

Furthermore,

$$\operatorname{init}_{\prec} X_w = \operatorname{init}_{\prec} X_{u_1} \cap \ldots \cap \operatorname{init}_{\prec} X_{u_k}.$$

Observation: Minimal plus diagrams for X_w are **unions** of minimal plus diagrams for the u_i 's.

If $\mathtt{biGrass}(w) = \{u_1, \dots, u_k\}$ then $X_w = X_{u_1} \cap \ldots \cap X_{u_k}.$

Furthermore,

$$\operatorname{init}_{\prec} X_w = \operatorname{init}_{\prec} X_{u_1} \cap \ldots \cap \operatorname{init}_{\prec} X_{u_k}.$$

Observation: Minimal plus diagrams for X_w are **unions** of minimal plus diagrams for the u_i 's.

Note 1: Not all unions are minimal.

If $\mathtt{biGrass}(w) = \{u_1, \dots, u_k\}$ then $X_w = X_{u_1} \cap \ldots \cap X_{u_k}.$

Furthermore,

$$\operatorname{init}_{\prec} X_w = \operatorname{init}_{\prec} X_{u_1} \cap \ldots \cap \operatorname{init}_{\prec} X_{u_k}.$$

Observation: Minimal plus diagrams for X_w are **unions** of minimal plus diagrams for the u_i 's.

Note 1: Not all unions are minimal.

Note 2: May be many different ways to produce the same plus diagram for *A*.

Many ways to produce the same plus diagram

Let w = 42513. Then biGrass $(w) = \{41235, 23415, 14523\}$.

Many ways to produce the same plus diagram

Let w = 42513. Then biGrass $(w) = \{41235, 23415, 14523\}$.

When \mathcal{P} is minimal, tuples of plus diagrams which have **support** \mathcal{P} form a **lattice**.

Alternating Sign Matrices

Anna Weigandt Prism Tableau Model

Prism Tableaux for Alternating Sign Matrix Ideals

A matrix A is an alternating sign matrix (ASM) if:

- A has entries in $\{-1, 0, 1\}$
- Rows and columns sum to 1
- Non-zero entries alternate in sign along rows and columns

Let ASM(n) be the set of $n \times n$ ASMs.

$$\begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & -1 & 1 \\ 1 & -1 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix} \in \mathsf{ASM}(4)$$

The Alternating Sign Matrix Conjecture (Mills, Robbins, and Rumsey '83):

$$\#\mathsf{ASM}(n) = \prod_{j=0}^{n-1} \frac{(3j+1)!}{(n+j)!}$$

• Proved by independently by Zielberger and Kuperberg in 1995.

ASM(n) forms the **Dedekind-MacNeille completion** of the Bruhat order on S_n (Lascoux-Schützenberger, '96).

To $A \in ASM(n)$ there is an associated **ASM Variety** X_A .

- Defined by "at most" rank conditions on $Mat_{n \times n}$ coming from the **corner sum matrix** associated to A.
- When A is a permutation matrix, X_A is a matrix Schubert variety.
- X_A is T stable.

To $A \in ASM(n)$ there is an associated **ASM Variety** X_A .

- Defined by "at most" rank conditions on $Mat_{n \times n}$ coming from the **corner sum matrix** associated to A.
- When A is a permutation matrix, X_A is a matrix Schubert variety.
- X_A is T stable.

Question: What is $\mathfrak{S}_A := [X_A]_T$?

To $A \in ASM(n)$ there is an associated **ASM Variety** X_A .

- Defined by "at most" rank conditions on $Mat_{n \times n}$ coming from the **corner sum matrix** associated to A.
- When A is a permutation matrix, X_A is a matrix Schubert variety.
- X_A is T stable.

Question: What is $\mathfrak{S}_A := [X_A]_T$?

Partial Answer: When A is a permutation matrix, \mathfrak{S}_A is a Schubert polynomial. (Knutson-Miller '05).

We may associate to A a shape. Let Prism(A) be the set of minimal prism tableaux for A with no unstable triples.

Theorem (W.- A. Yong)
$$\mathfrak{S}_A = \sum_{T \in \texttt{Prism}(A)} \texttt{wt}(T)$$

The Diagram and Shape of an ASM

$$A = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & -1 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

$$A = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & -1 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

$$\mathfrak{S}_A = x_1^3 x_2 + x_1^3 x_3 + x_1^2 x_2^2$$

<ロ> <部> <部> <き> <き> <き> <き</p>

Thank You!

Anna Weigandt Prism Tableau Model

æ

@▶ ∢ ≣▶