Infinite Product (수정4)

All rings are commutative with identity.

For a UFD D, D[[x]] need not be UFD. Samuel's counterexample.

Conjecture:

- 1. D[[x]] is a UFD if and only if D[[x]] is a GCD domain.
- 2. For a valuation domain V,

V[[x]] is a UFD if and only if V[[x]] is a GCD domain.

Theorem. Let V be a rank-one valuation domain. If V[[x]] is a GCD domain, then the infinite product of x-a *i* exists for all a*i* such that the sum of $v(a_i)$ is finite.

Definition. Let a, and b be elements of a ring R. We say that a is the infinite product of a1,...an,... $a_1,...,a_n,...$ if

(1) a1...an $a_1 \dots a_n$ divides a for all n.

(2) If a1...an $a_1 \cdots a_n$ divides b for all n, then a divides b.

Definition. A very weak UFR (unique factorization ring) is a ring, whose every element is either the finite product or the infinite product of prime elements. A very weak UFD is a very weak UFR, which is an integral domain. **Definition**. A ring R is a super weak UFR if it is a vw UFR and if for prime elements $p1,...,pn,...,p_1,...,p_n,...$ of R, $p1...pn \ p_1\cdots p_n$ divides an element a of D for each n, there exists the infinite product of $p1,...,pn,... \ p_1,...,p_n,...$ A super weak UFD is a sw UFR, which is an integral domain.

Example. The ring of entire functions is a super weak UFD.

Remark. Every bounded descending sequence in a super weak UFR has a limit. In fact, every bounded descending sequence has a limit. It is either zero (that is, every element smaller than all the elements of the sequence is zero) or some nonzero element.

Theorem. Let a be the infinite product of prime elements a_n 's. Then a is the infinite product of any permutations of a_n 's.

Proof. Let σ be a permutation on the natural numbers. Then $a_{\sigma(1)}...a_{\sigma(n)}$ is a part of $a_1...a_m$, where m is bigger than $\sigma(1),...,\sigma(n)$. So $a_{\sigma(1)}...a_{\sigma(n)}$ divides a. Suppose that $a_{\sigma(1)}...a_{\sigma(n)}$ divides b for all n. Let k be a natural number. Then $a_1...a_k = a_{\sigma(\eta(1))}...a_{\sigma(\eta(k))}$

, where η is the inverse function of σ , is a part of

 $a_{\sigma(1)} \cdots a_{\sigma(l)}$

, where $i > \text{all } \eta(1), \dots, \eta(k)$. So $a_1 \dots a_k$ divides b for all k. So a divides b. So a is the infinite product of $a_{\sigma(1)}, \dots, a_{\sigma(n)}, \dots$

Theorem. The above representation in a domain is unique up to units.

Proof. Let a be the infinite product of prime elemets p_1, \ldots, p_n, \ldots We show that p_n 's are the only prime divisors of a. Let p be a prime dividing a and a=px. If p is not one of pn's p_n 's, then each p1...pn $p_1 \ldots p_n$ divides x. So a divides x. Hence p is a unit, a contrdiction. Therefore p is one of the p_n 's.

Example. $\prod D_n$, where each D_n is a UFD, is a UFR.

Example of a sw UFD, which is not a UFD. The ring of entire functions is such an example.

Theorem. A UFD is a sw UFD.

Theorem(?). Let D be a domain and S be the set of elements that are not infinite products of prime elements. Then S is a m.s. and $D_s D_s$ is a vw UFD.

Remark. accp need not hold for a vw UFR. The ring of entire functions.

A vw UFD might not be a GCD domain.

Theorem. A sw UFD is a GCD domain.

Corollary. A sw UFD is an integrally closed domain.

Theorem. The polynomial ring over a sw UFD is also a sw UFD.

Definition. A polynomial f is v-primitive if $(C_f)_v = 1$.

Theorem. In a GCD domain, an irreducible v-primitive element is a prime element.

Remark. The power series ring over a sw UFD need not be a sw UFD. Note that the power series ring over a UFD is a UFD if and only if it is a GCD domain.

Questions.

D[[x]] is a UFD if and only if it is a sw UFD?
D[[x]] is a UFD if and only if it is a GCD domain?

Theorem. A valuation domain is a sw UFD if and only if it is a UFD.

Lemma. In a sw UFD, an irreducible element is a prime element.

Lemma. Let D be a sw UFD and S be an arbitrary countable subset of D. Then the lcm of S exists.

Theorem. A sw UFD is a pseudo proncipal domain, that is, all divisorial ideals are principal.

Corollary. If D is a sw UFD, then $(C_{fg})v = (C_f C_g)v$ for all f, g in D[[x]]. So D is completely integrally closed.

Theorem. Let V be a rank-one valuation domain. If V[[x]] is a GCD domain, then the infinite product of x-a *i* exists for all a_i such that the sum of $v(a_i)$ is finite.

Proof. Let a_i be such that the sum of $v(a_i)$ is finite. By choosing suitable increasing sequence of prime numbers p_i and q_i , we can define the infinite product f and g of $(\mathbf{x}^{p_i}-\mathbf{a}^{p_i})$ and $(\mathbf{x}^{n_i}-\mathbf{a}^{q_i})$. Let h be the gcd of f and g. Then each $\mathbf{x}-\mathbf{a}_i$ divides h. So sum of $v(a_i) \leq v(h_0)$. Let s be a prime factor of f other than $\mathbf{x}-\mathbf{a}_i$. Then s cannot divide $g/(\mathbf{x}-\mathbf{a}_i)$. (Note that any b in V[[x]] with unit content is a product of finitely many prime elements.) For otherwise f and g has a common prime factor, say t and in the extension domain V[[x]]/(t) of V, f=g=0. However $\mathbf{x}^{p_i}=\mathbf{a}^{p_i}$ and $\mathbf{x}^{q_i}=\mathbf{a}^{q_i}$ and hence $\mathbf{x}=\mathbf{a}$ in $V[[\mathbf{x}]]/(t)$, which implies $\mathbf{x}-\mathbf{a} \in (t)$. So $\mathbf{x}-\mathbf{a}=t$, a contradiction. Thus s cannot divide $g/(\mathbf{x}-\mathbf{a}_i)$. So s should divide g/h. So $v(h_0) = sum v(a_i)$ hence h is the infinite product of $x-a_i$.

Lemma. Let V be a valuation domain and I be an ideal of V[[x]]. If I:x=I and f is an element of I such that v(f(0)) is the smallest among I, then I=(f).

Lemma. Let V be a rank-one valuation domain and f be a primitive prime element. Then V[[x]]/(f) is a 1-dimensional domain.

Lemma. Let V be a rank-one valuation domain and f be a nonunit primitive prime element. Then there is a rank-one valuation extension domain W of V, where f has a zero.

Proof. Every nonunit primitive power series f is a product of prime elements of V[[x]]. Let p(z) be a prime factor of f(z). Then V[[z]]/(p) is a 1-dimensional quasi-local domain, which is an extension ring of V. Let W be a complete rank-one valuation domain centered on the maximal ideal of V. Then z+(p) is a zero of f(x) in W[[x]]. QED.

Theorem. Let V be a rank-one valuation domain with value group R the real numbers. Then there is a rank-one (complete) valuation domain W centered on V

such that every nonconstant nonunit power series has a zero in W and is the infinite product of infinitely many x-z.

Proof. Let f be a nonconstant nonunit power series. Choose a nonunit m so that its value is small enough to make f(mx) a nonconstant nonunit power series. Then f=ag, where a is in V and g is a nonunit nonconstant primitive power series. Choose a rank-one valuation extension domain of V. where g has a zero. Then f has a zero in W. Let S be the collection of rank-one valuation extensions of V. Partially order S by W=W' or W < W' iff W=W' or W' is an extension of W. W' is centered on W. there is а nonunit nonconstant power series f in W[[x]], which do not have a zero in W but in W'. We claim that S has a maximal element. Let Wn be a chain in S. Then the union is an upper bound for the chain Wn. Let W be a maximal element. Then every nonunit nonconstant power series of W has a zero in W. For otherwise W has a rank-one valuation extension W' centered on W. where f has a zero, and hence W < W'. a contradiction. QED.

Definition. Let V be a rank-one valuation domain with value group R the real numbers. Then there is a rank-one (complete) valuation domain W centered on V

- 7 -

such that every nonconstant nonunit power series has a zero in W and is the infinite product of infinitely many x-z. W is called a **power closure** of V.