Properties of maximum and minimum factorization length in numerical semigroups

By Gilad Moskowitz and Chris O'Neill

Background Information

- Let S be a numerical semigroup with finite complement such that we can write $S = \langle n_1, n_2, ..., n_k \rangle$ with $n_i \in \mathbb{N}$, $n_i \langle n_{i+1}$, and $gcd(n_1, n_2, ..., n_k) = 1$.
- We define the Apéry Set of *S* with respect to *n* in *S* is:

 $Ap(S, n) = \{s \in S \mid s - n \notin S\}$

Theorem 1: Let S be a numerical semigroup and let n be a nonzero element of S. Then AP(S, n) = {0 = w(0), w(1), ..., w(n - 1)}, where w(i) is the least element of S congruent with i modulo n, for all i in {0, ..., n - 1}. [1]

Background (cont.)

• We also have that for sufficiently large n ($n \ge (n_1 - 1) n_k$), the maximum factorization length is quasilinear and can be written as

$$\mathsf{M}(n) = \frac{1}{n_1}n + a(n)$$

for some periodic a(n).

• We also have that for sufficiently large n ($n \ge (n_k - 1) n_k$), the minimum factorization length is quasilinear and can be written as

$$\mathsf{m}(n) = \frac{1}{n_k}n + c(n)$$

for some periodic c(n). [2]

Background (cont.)

Terminology:

• For the purposes of this presentation, a *harmonic* numerical semigroup is one in which for all *n*,

 $\mathsf{M}(n+n_1) = \mathsf{M}(n) + 1$

- Note: We sometimes say *harmonic with respect to minimum length* to refer to the same property but with regards to the minimum length function.
- A *shifted numerical semigroup* is one of the following form:

 $M_n = \langle n, n + r_1, \dots, n + r_k \rangle$

New equations for max and min fact. length

• We can rewrite the equation for maximum factorization length as:

$$\mathsf{M}(n) = \frac{n - b_i}{n_1}$$

for some positive integers $b_i \ge i$ and $i = n \mod n_1$

• Similarly, we can rewrite the equation for minimum factorization length as:

$$\mathsf{m}(n) = \frac{n+c_j}{n_k}$$

for some positive integers c_j and $j = n \mod n_k$

- In this presentation we will talk about the derivation of a formula for b_i and c_j

Generalized Definition of the Apéry Set

Suppose that *S* is a numerical semigroup, not necessarily with finite complement, and $n \in \mathbb{N}$. We define the set

 $Ap(S,n) = \{m_i \in S \mid for \ 0 \le i \le n - 1\}$

the Apéry Set of S with respect to n, where m_i is defined as $m_i = \begin{cases} 0, & \text{if } S \cap \{i, i + n, i + 2n, ...\} = \emptyset \\ \min(S \cap \{i, i + n, i + 2n, ...\}, & \text{otherwise} \end{cases}$

• Let *S* = <6, 9, 20>, take Ap(*S*, 4) and Ap(*S*, 6)

• Let *S* = <2>, take Ap(*S*, 2) and Ap(*S*, 3)

- Let S = <6, 9, 20>, take Ap(S, 4) and Ap(S, 6)
 Ap(S, 4) = {0, 9, 6, 15}
 Ap(S, 6) = {0, 49, 20, 9, 40, 29}
- Let S = <2>, take Ap(S, 2) and Ap(S, 3)
 Ap(S, 2) = {0}
 Ap(S, 3) = {0, 4, 2}

Using the new definition to solve our problem

Theorem: Let *S* be a numerical semigroup with finite complement, such that $S = \langle n_1, n_2, ..., n_k \rangle$ for $n_j \in \mathbb{N}$ and $n_j \langle n_{j+1} \rangle$. Take S_M to be the numerical semigroup (not necessarily with finite complement) such that

$$S_{\mathrm{M}} = \langle n_2 - n_1, n_3 - n_1, \dots, n_k - n_1 \rangle$$

then we have that for $n \ge (n_1 - 1) n_k$

$$\mathsf{M}(n) = \frac{n - b_i}{n_1}$$

where $b_i \in Ap(S_M, n_1)$ with $i = b_i \mod n_1$.

• Let *S* = <6, 9, 20>, find the set of *b_i* of *S*

• Let *S* = <9, 10, 21>, find the set of *b_i* of *S*

• Let $S = \langle 6, 9, 20 \rangle$, find the set of b_i of SFirst we see that $S_M = \langle 3, 14 \rangle$

• Let $S = \langle 9, 10, 21 \rangle$, find the set of b_i of SFirst we see that $S_M = \langle 1, 12 \rangle$

• Let $S = \langle 6, 9, 20 \rangle$, find the set of b_i of SFirst we see that $S_M = \langle 3, 14 \rangle$ Now we take Ap(S_M , 6)

• Let $S = \langle 9, 10, 21 \rangle$, find the set of b_i of SFirst we see that $S_M = \langle 1, 12 \rangle$ Now we take $Ap(S_M, 10)$

• Let *S* = <6, 9, 20>, find the set of *b_i* of *S*

We get that: $b_i = \{0, 31, 14, 3, 28, 17\}$

- Note: As it turns out, this S is harmonic
- Let *S* = <9, 10, 21>, find the set of *b_i* of *S*

We get that: $b_i = \{0, 1, 2, 3, 4, 5, 6, 7, 8\}$

• Note: As it turns out, this S is NOT harmonic

• Let *S* = <5, 7>, find the set of *b_i* of *S*

• Let *S* = <5, 7, 9>, find the set of *b_i* of *S*

• Let $S = \langle 5, 7 \rangle$, find the set of b_i of SFirst we see that $S_M = \langle 2 \rangle$

• Let $S = \langle 5, 7, 9 \rangle$, find the set of b_i of SFirst we see that $S_M = \langle 2, 4 \rangle$

• Let $S = \langle 5, 7 \rangle$, find the set of b_i of SFirst we see that $S_M = \langle 2 \rangle$ Now we take Ap(S_M , 5)

• Let $S = \langle 5, 7, 9 \rangle$, find the set of b_i of SFirst we see that $S_M = \langle 2, 4 \rangle$ Now we take Ap(S_M , 5)

• Let $S = \langle 5, 7 \rangle$, find the set of b_i of S

We get that: $b_i = \{0, 6, 2, 8, 4\}$

- Note: As it turns out, this S is harmonic
- Let *S* = <5, 7, 9>, find the set of *b_i* of *S*

We get that: $b_i = \{0, 6, 2, 8, 4\}$

• Note: As it turns out, this S is harmonic

Defining the Maximum length Apéry Set

We define the set

 $MAp(S) = \{b_i + n_1 \cdot m_{S_M}(b_i) \mid 0 \le i \le n_1 - 1\}$

The Maximum Length Apéry Set of S with respect to n_1 , where m_{S_M} denotes the minimum factorization length in S_M .

Key property of the MAp set: The elements $a_i = b_i + n_1 \cdot m_{S_M}(b_i) \in MAp(S)$ are the smallest elements in S in each congruence class modulo n_1 such that $M(a_i) = \frac{a_i - b_i}{n_1}$, that is, $M(a_i + pn_1) = M(a_i) + p$ for every $p \ge 0$.

• Let *S* = <6, 9, 20>, find the MAp(*S*)

• Let *S* = <9, 10, 21>, find the MAp(*S*)

Let S = <6, 9, 20>, find the MAp(S)
 MAp(S) = {0, 49, 20, 9, 40, 29}

Let S = <5, 7>, find the MAp(S)
 MAp(S) = {0, 21, 7, 28, 14}

• Let *S* = <5, 7, 9>, find the MAp(*S*) MAp(*S*) = {0, 16, 7, 23, 9}

Minimum Factorization Length

It turns out that the formula for minimum factorization is very reflexive to the formula for maximum length factorization:

Let *S* be a numerical semigroup with finite complement, such that $S = \langle n_1, n_2, ..., n_k \rangle$ for $n_j \in \mathbb{N}$ and $n_j < n_{j+1}$. Take S_m to be the numerical semigroup (not necessarily with finite complement) such that

$$S_{\rm m} = \langle n_k - n_1, n_k - n_2, \dots, n_k - n_{k-1} \rangle$$

then we have that for $n \ge (n_k - 1) n_k$

$$\mathsf{m}(n) = \frac{n+c_i}{n_1}$$

where $c_i \in Ap(S_m, n_k)$ with $c_i + i = 0 \mod n_k$.

Defining the Minimum length Apéry Set

We define the set

$$mAp(S) = \{n_k \cdot m_{S_m}(c_i) - c_i \mid 0 \le i \le n_k - 1\}$$

The Minimum Length Apéry Set of S with respect to n_k , where m_{S_m} denotes the minimum factorization length in S_m .

Key property of the MAp set: The elements $w_i = n_k \cdot m_{S_m}(c_i) - c_i \in mAp(S)$ are the smallest elements in S in each congruence class modulo n_k such that $m(w_i) = \frac{w_i + c_i}{n_k}$, that is, $m(w_i + pn_k) = m(w_i) + p$ for every $p \ge 0$.

Bibliography

[1] Numerical Semigroups, J.C. Rosales, P.A. García-Sánchez[2] On the set of elasticities in numerical monoids, T. Barron, C. O'Neill, and R. Pelayo

Proof:

Take $n \ge (n_1 - 1) n_k$ then we know that we can write n as $n = pn_1 + i$ for some p and for $i = n \mod n_1$.

For any factorization of n, \mathbf{q} meaning that we can write

 $n = q_1 n_1 + q_2 n_2 + \dots + q_k n_k$

there is a corresponding factorization

 $n - Qn_1 = q_2(n_2 - n_1) + q_3(n_3 - n_1) + \dots + q_k(n_k - n_1)$ with $Q = q_1 + q_2 + \dots + q_k$, in S_M .

Now, we see that:

$$\max(|\mathbf{q}|) = \max(q_1 + q_2 + ... + q_k) = \max(Q)$$

So the maximum factorization length occurs for a maximal value of Q.

Proof, cont.

Recall that $n = pn_1 + i$ for some p, so we can rewrite the equation $n - Qn_1 = q_2(n_2 - n_1) + q_3(n_3 - n_1) + \dots + q_k(n_k - n_1)$

as

 $pn_1 + i - Qn_1 = q_2(n_2 - n_1) + q_3(n_3 - n_1) + \dots + q_k(n_k - n_1)$ which simplifies to

$$(p - Q)n_1 + i = q_2(n_2 - n_1) + q_3(n_3 - n_1) + \dots + q_k(n_k - n_1)$$

We have that $q_j \ge 0$ and $n_j - n_1 \ge 0$ for all j so we must have that the right hand side is greater than or equal to 0. Since $i < n_1$ and the left-hand side is greater than or equal to 0, $p \ge Q$.

Proof, cont.

We have shown that $(p - Q)n_1 + i$ lives in S_M and we are now trying to maximize Q. By maximizing Q we are minimizing $(p - Q)n_1 + i$, so in fact, we are looking for the smallest value $b_i \in S_M$ such that $b_i = (p - Q)n_1 + i$, which is the same thing as saying $b_i = \min(q_2(n_2 - n_1) + \dots + q_k(n_k - n_1))$

Note that this is exactly the same b_i that was calculated using Ap(S_M , n_1)