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Background Information

* Let S be a numerical semigroup with finite complement such that we
can write S = <nq, n,, ..., N> withn; e N, n; <n;, ¢, and gcd(ny, n,,
ey nk) =1.

* We define the Apéry Set of S with respecttonin S is:
Ap(S,n)={s €S| s-n&S}

* Theorem 1: Let S be a numerical semigroup and let n be a nonzero
element of S. Then AP(S, n) = {0 = w(0), w(1), ..., w(n — 1)}, where w(i)
is the least element of S congruent with i modulo n, for all i in {0, ..., n
—1}. [1]



Background (cont.)

* We also have that for sufficiently large n (n 2 (n, - 1) n;), the
maximum factorization length is quasilinear and can be written as

M(n) = niln + a(n)

for some periodic a(n).

* We also have that for sufficiently large n (n 2 (n;, - 1) n;), the
minimum factorization length is quasilinear and can be written as

m(n) = nikn + c(n)

for some periodic c(n). [2]



Background (cont.)

Terminology:

* For the purposes of this presentation, a harmonic numerical
semigroup is one in which for all n,

M(n+n,)=M(mn)+1

* Note: We sometimes say harmonic with respect to minimum length to refer to
the same property but with regards to the minimum length function.

A shifted numerical semigroup is one of the following form:
M, =nn+r,..,n+r1y)



New equations for max and min fact. length

* We can rewrite the equation for maximum factorization length as:

for some positive integers b; = i and i = n mod n4

* Similarly, we can rewrite the equation for minimum factorization length as:
Tl+Cj

m(n) = o

for some positive integers c; and j = n mod n,

* In this presentation we will talk about the derivation of a formula for b;
and c;
J



Generalized Definition of the Apéry Set

Suppose that S is a numerical semigroup, not necessarily with finite
complement, and n € N. We define the set

Ap(S,n)={m; €S| for0<i<n —1}

the Apéry Set of S with respect to n, where m; is defined as
_ 0, iftSn{i,i+ni+2n.}=0
i = min(S N {i,i + n,i + 2n, ...}, otherwise



Examples

e Let S=<6, 9, 20>, take Ap(S, 4) and Ap(S, 6)

e Let S =<2>, take Ap(S, 2) and Ap(S, 3)



Examples

e Let S=<6, 9, 20>, take Ap(S, 4) and Ap(S, 6)
Ap(S, 4)={0, 9, 6, 15}
Ap(S, 6) ={0, 49, 20, 9, 40, 29}

e Let S =<2>, take Ap(S, 2) and Ap(S, 3)
Ap(S, 2) = {0}
Ap(S, 3) =10, 4, 2}



Using the new definition to solve our problem

Theorem: Let S be a numerical semigroup with finite complement, such
that S=<ny, ny, ..., N> forn; e N and n; <n;,,. Take Sy to be the
numerical semigroup (not necessarily with finite complement) such
that
S =(ny, —nq,n3 —nq, .., N, —Nyq)
then we have that forn 2 (n - 1) n;
M(n) =

n —b;

nq

where b; € Ap(Sym, nq) with i = b; mod n4.



Examples

* Let S=<6, 9, 20>, find the set of b; of S

* Let $=<9, 10, 21>, find the set of b; of S



Examples
* Let S=<6, 9, 20>, find the set of b; of S

First we see that Sy; = (3, 14)

* Let $=<9, 10, 21>, find the set of b; of S
First we see that Sy = (1, 12)



Examples

* Let S=<6, 9, 20>, find the set of b; of S
First we see that Sy; = (3, 14)
Now we take Ap(Sy, 6)

* Let $=<9, 10, 21>, find the set of b; of S
First we see that Sy = (1, 12)
Now we take Ap(Sy, 10)



Examples

* Let S=<6, 9, 20>, find the set of b; of S

We get that:
b; = {0,31,14, 3, 28,17}

* Note: As it turns out, this S is harmonic

* Let S =<9, 10, 21>, find the set of b; of S

We get that:
b; = {0,1,2,3,4,5,6,7,8}

e Note: As it turns out, this S is NOT harmonic



Further Examples

* Let S =<5, 7>, find the set of b; of S

* Let $=<5, 7, 9>, find the set of b; of S



Further Examples

* Let S =<5, 7>, find the set of b; of S
First we see that Sy; = (2)

* Let $=<5, 7, 9>, find the set of b; of S
First we see that Sy = (2, 4)



Further Examples

* Let S =<5, 7>, find the set of b; of S
First we see that Sy; = (2)
Now we take Ap(Sy, 5)

* Let $=<5, 7, 9>, find the set of b; of S
First we see that Sy = (2, 4)
Now we take Ap(Sy;, 5)



Further Examples

* Let S =<5, 7>, find the set of b; of S

We get that:
b; = {0,6,2,8,4}

* Note: As it turns out, this S is harmonic

* Let S=<5, 7, 9>, find the set of b; of S

We get that:
b; = {0,6,2,8,4}

e Note: As it turns out, this S is harmonic



Defining the Maximum length Apéry Set

We define the set
MAp(S) = {b; +n; mg,, (b)) 10 <i<n; —1}

The Maximum Length Apery Set of S with respect to n;, where mg,,
denotes the minimum factorization length in Sy;.

Key property of the MAp set: The elements a; = b; + ny - mg,, (b;) €
MAp(S) are the smallest element% in S in each congruence class
a;—Dbj

modulo n, such that M(a;) = —, that is, M(a; + pny) =M(a;) +p
for every p = 0. i




Examples

* Let S$=<6, 9, 20>, find the MAp(S)

e Let S =<9, 10, 21>, find the MAp(S)



Examples
* Let S$=<6, 9, 20>, find the MAp(S)

MAp(S) = {0, 49, 20, 9, 40, 29}

e Let S =<9, 10, 21>, find the MAp(S)
MAp(S) = {0, 10, 20, 30, 40, 50, 60, 70, 90}



Further Examples
* Let S =<5, 7>, find the MAp(S)

MAp(S) = {0, 21, 7, 28, 14}

e Let S =<5, 7, 9>, find the MAp(S)
MAp(S) = {0, 16, 7, 23, 9}



Minimum Factorization Length

It turns out that the formula for minimum factorization is very reflexive
to the formula for maximum length factorization:

Let S be a numerical semigroup with finite complement, such that S =
<Ny, Ny, ..., > forn; e Nand n; <n;,,. Take Sy, to be the numerical
semigroup (not necessarily with finite complement) such that

Sm =N —nq,N; — Ny, oo, Ny — Ny _1)

then we have that for n 2 (n; - 1) n,
n+c;

m(n) = o

where ¢; € Ap(Sy,, ng) with ¢; + i = 0 mod ny.



Defining the Minimum length Apéry Set

We define the set
mAp(S) = {ny -mg_(¢;)) —¢; |0 <i<n,—1}

The Minimum Length Apéry Set of S with respect to ny, where mg_
denotes the minimum factorization length in S,

Key property of the MAp set: The elements w; = ny, - mg_(c;) —
mAp(S) are the smallest elements in S in each congruence cIass

modulo n;, such that m(w;) = Wit that s, m(w; + pn,) =m(w;) +p
forevery p = 0.

ng
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Proof:

Take n 2 (n4 - 1) n;, then we know that we can writenasn = pnq + i for
some p and for i = n mod n;.

For any factorization of n, @ meaning that we can write
n=qiNy + qxny + -+ QN
there is a corresponding factorization
n—0Qng = qz(ny; —ng) +qzs(nz —ny) + -+ qe(ng — ny)
withQ =q; +q, + ...+ qg, In Sy
Now, we see that:
max(|ql) =max(q; + q2 + ...+ qx) = max(Q)
So the maximum factorization length occurs for a maximal value of Q.



Proof, cont.

Recall that n = pn; + i for some p, so we can rewrite the equation
n—Qn; =q;(ny; —ny) +qs(ng —ng) + -+ qe(nge — ny)
as
pny +i—0Qny = q2(ny —nyg) +q3(nz —ng) + -+ g (g —ny)
which simplifies to
(p —Qng +i=q(n; —ny) +q3(nz —ny) + -+ q(ny —ny)
We have that q; = 0 and n; —n; = 0 for all j so we must have that the

right hand side is greater than or equal to 0. Since i < n4 and the left-
hand side is greater than or equalto 0, p = Q.



Proof, cont.

We have shown that (p — Q)n, + i lives in Sy and we are now trying to
maximize (. By maximizing Q we are minimizing (p — Q)n4 + i, soin
fact, we are looking for the smallest value b; € Sy such that b; = (p —
Q)ny + i, which is the same thing as saying

b; = min(q(n—nq) + ... +q(ng —ny))
Note that this is exactly the same b; that was calculated using Ap(Sy, 11)



