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Background Information

• Let S be a numerical semigroup with finite complement such that we 
can write S = <𝑛1, 𝑛2, …, 𝑛𝑘> with 𝑛𝑖 ϵ ℕ, 𝑛𝑖 < 𝑛𝑖+1, and gcd(𝑛1, 𝑛2, 
…, 𝑛𝑘) = 1. 

• We define the Apéry Set of S with respect to n in S is:
Ap(S, n) = {s ∈ S | s-n ∉ S}

• Theorem 1: Let S be a numerical semigroup and let n be a nonzero 
element of S. Then AP(S, n) = {0 = w(0), w(1), …, w(n – 1)}, where w(i) 
is the least element of S congruent with i modulo n, for all i in {0, …, n
– 1}. [1]



Background (cont.)

• We also have that for sufficiently large n (n ≥ (𝑛1 - 1) 𝑛𝑘), the 
maximum factorization length is quasilinear and can be written as 

M 𝑛 =
1

𝑛1
𝑛 + 𝑎 𝑛

for some periodic 𝑎 𝑛 .

• We also have that for sufficiently large n (n ≥ (𝑛𝑘 - 1) 𝑛𝑘), the 
minimum factorization length is quasilinear and can be written as 

m 𝑛 =
1

𝑛𝑘
𝑛 + 𝑐 𝑛

for some periodic c 𝑛 . [2]



Background (cont.)

Terminology:

• For the purposes of this presentation, a harmonic numerical 
semigroup is one in which for all 𝑛, 

M 𝑛 + 𝑛1 = M 𝑛 + 1
• Note: We sometimes say harmonic with respect to minimum length to refer to 

the same property but with regards to the minimum length function.

• A shifted numerical semigroup is one of the following form:
𝑀𝑛 = ⟨𝑛, 𝑛 + 𝑟1, … , 𝑛 + 𝑟𝑘⟩



New equations for max and min fact. length

• We can rewrite the equation for maximum factorization length as: 

M 𝑛 =
𝑛 −𝑏𝑖

𝑛1

for some positive integers 𝑏𝑖 ≥ 𝑖 and 𝑖 = 𝑛 mod 𝑛1

• Similarly, we can rewrite the equation for minimum factorization length as:

m 𝑛 =
𝑛+𝑐𝑗

𝑛𝑘

for some positive integers 𝑐𝑗 and 𝑗 = 𝑛 mod 𝑛𝑘

• In this presentation we will talk about the derivation of a formula for 𝑏𝑖
and 𝑐𝑗



Generalized Definition of the Apéry Set

Suppose that S is a numerical semigroup, not necessarily with finite 
complement, and 𝑛 ϵ ℕ. We define the set 

Ap 𝑆, 𝑛 = {𝑚𝑖 ∈ 𝑆 ∣ 𝑓𝑜𝑟 0 ≤ 𝑖 ≤ 𝑛 − 1}

the Apéry Set of S with respect to n, where 𝑚𝑖 is defined as

𝑚𝑖 = ቊ
0, if 𝑆 ∩ {𝑖, 𝑖 + 𝑛, 𝑖 + 2𝑛,… } = ∅

min(𝑆 ∩ {𝑖, 𝑖 + 𝑛, 𝑖 + 2𝑛,… }, otherwise



Examples

• Let S = <6, 9, 20>, take Ap(S, 4) and Ap(S, 6)

• Let S = <2>, take Ap(S, 2) and Ap(S, 3)



Examples

• Let S = <6, 9, 20>, take Ap(S, 4) and Ap(S, 6)

Ap(S, 4) = {0, 9, 6, 15}

Ap(S, 6) = {0, 49, 20, 9, 40, 29}

• Let S = <2>, take Ap(S, 2) and Ap(S, 3)

Ap(S, 2) = {0}

Ap(S, 3) = {0, 4, 2}



Using the new definition to solve our problem

Theorem: Let S be a numerical semigroup with finite complement, such 
that S = <𝑛1, 𝑛2, …, 𝑛𝑘>  for 𝑛𝑗 ϵ ℕ and 𝑛𝑗 < 𝑛𝑗+1. Take 𝑆M to be the 
numerical semigroup (not necessarily with finite complement) such 
that 

𝑆M = ⟨𝑛2 − 𝑛1, 𝑛3 − 𝑛1, … , 𝑛𝑘 − 𝑛1⟩

then we have that for n ≥ (𝑛1 - 1) 𝑛𝑘

M 𝑛 =
𝑛 −𝑏𝑖

𝑛1

where 𝑏𝑖 ∈ Ap(𝑆M, 𝑛1) with 𝑖 = 𝑏𝑖 mod 𝑛1.



Examples

• Let S = <6, 9, 20>, find the set of 𝑏𝑖 of S

• Let S = <9, 10, 21>, find the set of 𝑏𝑖 of S



Examples

• Let S = <6, 9, 20>, find the set of 𝑏𝑖 of S

First we see that 𝑆M = 3, 14

• Let S = <9, 10, 21>, find the set of 𝑏𝑖 of S

First we see that 𝑆M = ⟨1, 12⟩



Examples

• Let S = <6, 9, 20>, find the set of 𝑏𝑖 of S

First we see that 𝑆M = 3, 14

Now we take Ap(𝑆M, 6)

• Let S = <9, 10, 21>, find the set of 𝑏𝑖 of S

First we see that 𝑆M = ⟨1, 12⟩

Now we take Ap(𝑆M, 10)



Examples

• Let S = <6, 9, 20>, find the set of 𝑏𝑖 of S

We get that:
𝑏𝑖 = {0, 31, 14, 3, 28, 17}

• Note: As it turns out, this S is harmonic

• Let S = <9, 10, 21>, find the set of 𝑏𝑖 of S

We get that:
𝑏𝑖 = {0, 1, 2, 3, 4, 5, 6, 7, 8}

• Note: As it turns out, this S is NOT harmonic



Further Examples

• Let S = <5, 7>, find the set of 𝑏𝑖 of S

• Let S = <5, 7, 9>, find the set of 𝑏𝑖 of S



Further Examples

• Let S = <5, 7>, find the set of 𝑏𝑖 of S

First we see that 𝑆M = 2

• Let S = <5, 7, 9>, find the set of 𝑏𝑖 of S

First we see that 𝑆M = 2, 4



Further Examples

• Let S = <5, 7>, find the set of 𝑏𝑖 of S

First we see that 𝑆M = 2

Now we take Ap(𝑆M, 5)

• Let S = <5, 7, 9>, find the set of 𝑏𝑖 of S

First we see that 𝑆M = 2, 4

Now we take Ap(𝑆M, 5)



Further Examples

• Let S = <5, 7>, find the set of 𝑏𝑖 of S

We get that:
𝑏𝑖 = {0, 6, 2, 8, 4}

• Note: As it turns out, this S is harmonic

• Let S = <5, 7, 9>, find the set of 𝑏𝑖 of S

We get that:
𝑏𝑖 = {0, 6, 2, 8, 4}

• Note: As it turns out, this S is harmonic



Defining the Maximum length Apéry Set

We define the set 

MAp 𝑆 = {𝑏𝑖 + 𝑛1 ∙ m𝑆M 𝑏𝑖 ∣ 0 ≤ 𝑖 ≤ 𝑛1 − 1}

The Maximum Length Apéry Set of S with respect to 𝑛1, where m𝑆M
denotes the minimum factorization length in 𝑆M.

Key property of the MAp set: The elements 𝑎𝑖 = 𝑏𝑖 + 𝑛1 ∙ m𝑆M 𝑏𝑖 ∈
MAp(𝑆) are the smallest elements in S in each congruence class 
modulo 𝑛1 such that M 𝑎𝑖 =

𝑎𝑖−𝑏𝑖

𝑛1
, that is, M 𝑎𝑖 + 𝑝𝑛1 = M 𝑎𝑖 + 𝑝

for every 𝑝 ≥ 0.



Examples

• Let S = <6, 9, 20>, find the MAp 𝑆

• Let S = <9, 10, 21>, find the MAp 𝑆



Examples

• Let S = <6, 9, 20>, find the MAp 𝑆

MAp(S) = {0, 49, 20, 9, 40, 29}

• Let S = <9, 10, 21>, find the MAp 𝑆

MAp(S) = {0, 10, 20, 30, 40, 50, 60, 70, 90}



Further Examples

• Let S = <5, 7>, find the MAp 𝑆

MAp(S) = {0, 21, 7, 28, 14}

• Let S = <5, 7, 9>, find the MAp 𝑆

MAp(S) = {0, 16, 7, 23, 9}



Minimum Factorization Length

It turns out that the formula for minimum factorization is very reflexive 
to the formula for maximum length factorization:

Let S be a numerical semigroup with finite complement, such that S = 
<𝑛1, 𝑛2, …, 𝑛𝑘>  for 𝑛𝑗 ϵ ℕ and 𝑛𝑗 < 𝑛𝑗+1. Take 𝑆m to be the numerical 
semigroup (not necessarily with finite complement) such that 

𝑆m = ⟨𝑛𝑘 − 𝑛1, 𝑛𝑘 − 𝑛2, … , 𝑛𝑘 − 𝑛𝑘 −1⟩

then we have that for n ≥ (𝑛𝑘 - 1) 𝑛𝑘

m 𝑛 =
𝑛+𝑐𝑖

𝑛1

where 𝑐𝑖 ∈ Ap(𝑆m, 𝑛𝑘) with ci + 𝑖 = 0 mod 𝑛𝑘.



Defining the Minimum length Apéry Set

We define the set 

mAp 𝑆 = {𝑛𝑘 ∙ m𝑆m 𝑐𝑖 − 𝑐𝑖 ∣ 0 ≤ 𝑖 ≤ 𝑛𝑘 − 1}

The Minimum Length Apéry Set of S with respect to 𝑛𝑘, where m𝑆m
denotes the minimum factorization length in 𝑆m.

Key property of the MAp set: The elements 𝑤𝑖 = 𝑛𝑘 ∙ m𝑆m 𝑐𝑖 − 𝑐𝑖 ∈
mAp(𝑆) are the smallest elements in S in each congruence class 
modulo 𝑛𝑘 such that m 𝑤𝑖 =

𝑤𝑖+𝑐𝑖

𝑛𝑘
, that is, m 𝑤𝑖 + 𝑝𝑛𝑘 = m 𝑤𝑖 + 𝑝

for every 𝑝 ≥ 0.
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Proof:

Take n ≥ (𝑛1 - 1) 𝑛𝑘 then we know that we can write 𝑛 as 𝑛 = 𝑝𝑛1 + 𝑖 for 
some 𝑝 and for 𝑖 = 𝑛 mod n1. 

For any factorization of 𝑛, 𝐪 meaning that we can write 
𝑛 = 𝑞1𝑛1 + 𝑞2𝑛2 +⋯+ 𝑞𝑘𝑛𝑘

there is a corresponding factorization 
𝑛 − 𝑄𝑛1 = 𝑞2 𝑛2 − 𝑛1 + 𝑞3 𝑛3 − 𝑛1 +⋯+ 𝑞𝑘(𝑛𝑘 − 𝑛1)

with 𝑄 = 𝑞1 + 𝑞2 + …+ 𝑞𝑘, in 𝑆M.

Now, we see that:

max(|𝐪|) = max(𝑞1 + 𝑞2 + …+ 𝑞𝑘) = max(𝑄)

So the maximum factorization length occurs for a maximal value of Q.



Proof, cont.

Recall that 𝑛 = 𝑝𝑛1 + 𝑖 for some 𝑝, so we can rewrite the equation
𝑛 − 𝑄𝑛1 = 𝑞2 𝑛2 − 𝑛1 + 𝑞3 𝑛3 − 𝑛1 +⋯+ 𝑞𝑘(𝑛𝑘 − 𝑛1)

as
𝑝𝑛1 + 𝑖 − 𝑄𝑛1 = 𝑞2 𝑛2 − 𝑛1 + 𝑞3 𝑛3 − 𝑛1 +⋯+ 𝑞𝑘 𝑛𝑘 − 𝑛1

which simplifies to 
(𝑝 − 𝑄)𝑛1 + 𝑖 = 𝑞2 𝑛2 − 𝑛1 + 𝑞3 𝑛3 − 𝑛1 +⋯+ 𝑞𝑘 𝑛𝑘 − 𝑛1

We have that 𝑞𝑗 ≥ 0 and 𝑛𝑗 − 𝑛1 ≥ 0 for all 𝑗 so we must have that the 
right hand side is greater than or equal to 0. Since 𝑖 < 𝑛1 and the left-
hand side is greater than or equal to 0, 𝑝 ≥ 𝑄.



Proof, cont.

We have shown that (𝑝 − 𝑄)𝑛1 + 𝑖 lives in 𝑆M and we are now trying to 
maximize 𝑄. By maximizing 𝑄 we are minimizing (𝑝 − 𝑄)𝑛1 + 𝑖, so in 
fact, we are looking for  the smallest value 𝑏𝑖 ∈ 𝑆M such that 𝑏𝑖 = (𝑝 −
𝑄)𝑛1 + 𝑖, which is the same thing as saying 

𝑏𝑖 = min 𝑞2(𝑛2−𝑛1 + … + 𝑞𝑘(𝑛𝑘 − 𝑛1))

Note that this is exactly the same 𝑏𝑖 that was calculated using Ap(𝑆M, 𝑛1)


