Binomial Irreducible Decomposition

Christopher O'Neill

Duke University

musicman@math.duke.edu

Joint with Thomas Kahle and Ezra Miller

April 20, 2013

Question

Definition

An ideal $I \subset S$ is *irreducible* if whenever $I = J_1 \cap J_2$ for ideals $J_1, J_2 \subset S$, either $I = J_1$ or $I = J_2$.

Definition

An *irreducible decomposition* of an ideal $I \subset S$ is an expression $I = \bigcap_i J_i$ for irreducible ideals $J_i \subset S$.

Question

Definition

An ideal $I \subset \mathbb{k}[x_1, \dots, x_n]$ is a binomial ideal if it is generated by polynomials of the form $x^a + \lambda x^b$ for $a, b \in \mathbb{N}^n$.

Theorem ([Eisenbud-Sturmfels, 1996])

If k is algebraically closed, then every binomial ideal in $k[x_1, ..., x_n]$ admits a binomial primary decomposition.

Example

$$\langle x^4 + 4 \rangle = \langle x^2 - 2x + 2 \rangle \cap \langle x^2 + 2x + 2 \rangle \subset \mathbb{Q}[x].$$

Question (Eisenbud, Sturmfels)

Do binomial ideals have binomial irreducible decompositions?

Question

Definition

An ideal $I \subset \mathbb{k}[x_1, \dots, x_n]$ is a binomial ideal if it is generated by polynomials of the form $x^a + \lambda x^b$ for $a, b \in \mathbb{N}^n$.

Theorem ([Eisenbud-Sturmfels, 1996])

If k is algebraically closed, then every binomial ideal in $k[x_1, ..., x_n]$ admits a binomial primary decomposition.

Example

$$\langle x^4 + 4 \rangle = \langle x^2 - 2x + 2 \rangle \cap \langle x^2 + 2x + 2 \rangle \subset \mathbb{Q}[x].$$

Question (Eisenbud, Sturmfels)

Do binomial ideals have binomial irreducible decompositions?

Answer: Yes, when k is algebraically closed (proof in progress).

Special Case: Monomial Ideals

Notice: Bijection between monomials in $\mathbb{k}[x_1,\ldots,x_n]$ and vectors in \mathbb{N}^n .

$$\mathbf{x}^{\mathbf{a}} = x_1^{a_1} \cdots x_n^{a_n} \longleftrightarrow (a_1, \dots, a_n) \in \mathbb{N}^n$$

Definition

An ideal $I \subset S$ is a monomial ideal if it is generated by monomials.

Theorem

Fix a monomial ideal $I \subset S = \mathbb{k}[x_1, \dots, x_n]$.

- I is irreducible if and only if its generators have the form $x_i^{a_i}$.
- I admits a monomial irreducible decomposition. Moreover, I admits a unique (up to reordering) irredundant such decomposition.
- The irredundant decomposition is independent of k.

Special Case: Monomial Ideals

Let $I = \langle x^3, y^3, z^3, xy^2, yz^2, x^2z \rangle \subset \mathbb{k}[x, y, z]$. Monomials in $\mathbb{k}[x, y, z]/I$?

$$I = \langle x, y^3, z^2 \rangle \cap \langle x^3, y^2, z \rangle \cap \langle x^2, y, z^3 \rangle \cap \langle x^2, y^2, z^2 \rangle$$

Binomial Ideals

Steps to construct binomial irreducible decompositions:

- Combinatorial framework (primary reference: [Kahle-Miller, 2013])
- Condition for irreducibility
- Method for decomposition

Binomial Ideals

Let
$$I = \langle x^2 - xy, xy - y^2, x^4, y^4 \rangle \subset \mathbb{k}[x, y]$$
. Monomials in $\mathbb{k}[x, y]/I$?

Monoid Congruences

Definition

A monoid (Q, +) is a set Q with a binary operation + which is commutative, associative, and has an identity.

Definition

The monoid algebra $\mathbb{k}[Q]$ is the ring consisting of all finite sums of formal elements \mathbf{x}^a for $a \in Q$, with coefficients in \mathbb{k} . Multiplication is given by $\mathbf{x}^a \cdot \mathbf{x}^b = \mathbf{x}^{a+b}$ for $a, b \in Q$.

Example

For $Q=\mathbb{N}^n$, the monoid algebra $\Bbbk[Q]$ is the polynomial ring $\Bbbk[x_1,\ldots,x_n]$.

Monoid Congruences

Definition

A $congruence \sim$ on a monoid Q is an equivalence relation which satisfies

$$a \sim b \Rightarrow a + c \sim b + c$$

for all $a,b,c\in Q$. In this case, the set of equivalence classes $\overline{Q}=Q/\sim$ forms a monoid.

Lemma

Fix a binomial ideal $I \subset \Bbbk[Q]$. The relation \sim_I on Q given by

$$a \sim_I b$$
 whenever $\mathbf{x}^a + \lambda \mathbf{x}^b \in I$ for some $\lambda \in \mathbb{k}$

is a congruence on Q. The distinct monomials in $\Bbbk[Q]/I$ are in bijection with the (non-nil) elements of $\overline{Q}=Q/{\sim_I}$.

Refinement of Congruences

Combinatorial Framework

In review, our combinatorial framework consists of:

$$\begin{array}{lll} \text{monomial } \mathbf{x}^a \in \Bbbk[Q] & \longleftrightarrow & \text{element } a \in Q \\ \text{binomial ideal } I \subset \Bbbk[Q] & \longleftrightarrow & \text{congruence } \sim_I \text{ on } Q \\ \text{intersection } I \cap J \subset \Bbbk[Q] & \longleftrightarrow & \text{refinement } \sim_I \cap \sim_J \text{ on } Q \end{array}$$

We can assume (for the remainder of the talk):

- **①** $\overline{Q}=Q/\sim$ is finite, and the only cancellative element of \overline{Q} is $\overline{0}$.
- ② $\overline{P} = \overline{Q} \setminus \{\overline{0}\}$ is the unique maximal prime ideal.

Key Witnesses

For monomial ideals, "outward corners" \leftrightarrow irreducible components.

Key Witnesses

Definition

A non-nil $w \in Q$ is a *key witness* for \sim if there exists some $\overline{u} \neq \overline{w}$ with $\overline{w} + \overline{p} = \overline{u} + \overline{p}$ for all $\overline{p} \in \overline{P}$.

Components at witnesses

Irreducible Condition

Definition

A congruence \sim on Q is *mesoirreducible* if Q/\sim has only one key witness.

Theorem

Suppose $\Bbbk = \overline{\Bbbk}$. If a binomial ideal $I \subset \Bbbk[Q]$ induces a mesoirreducible congruence, then it has a canonical binomial primary decomposition, and each component of this decomposition is irreducible.

Example

 $I = \langle x^3 - 1, y \rangle \subset \mathbb{k}[x, y]$. The congruence \sim_I is mesoirreducible, but $I = \langle x - 1, y \rangle \cap \langle x^2 + x + 1, y \rangle$.

$$\langle x^2 - xy, xy - y^2, z^2 - zw, zw - w^2, x^4, z^4 \rangle \subset \mathbb{k}[x, y, z, w]$$

$$\langle x^2 - xy, xy - y^2, z^2 - zw, zw - w^2, x^4, z^4 \rangle \subset \mathbb{k}[x, y, z, w]$$

Definition

An element $w \in Q$ is a *protected witness for* \sim if w becomes a witness after iteration of this process.

Theorem

Any congruence \sim on Q can be expressed as the common refinement of mesoirreducible congruences, one for each protected witness.

Corollary

If $k = \overline{k}$, then every binomial ideal in $k[x_1, \dots, x_n]$ admits a binomial irreducible decomposition.

References

David Eisenbud, Bernd Sturmfels (1996)

Binomial ideals.

Duke Math J. 84 (1996), no. 1, 145.

Ezra Miller, Bernd Sturmfels (2005)

Combinatorial commutative algebra.

Graduate Texts in Mathematics 227. Springer-Verlag, New York, 2005.

Thomas Kahle, Ezra Miller (2013)

Decompositions of commutative monoid congruences and binomial ideals. $ar Xiv: 1107.4699 \ [math]. \\$

References

David Eisenbud, Bernd Sturmfels (1996)

Binomial ideals.

Duke Math J. 84 (1996), no. 1, 145.

Ezra Miller, Bernd Sturmfels (2005)

Combinatorial commutative algebra.

Graduate Texts in Mathematics 227. Springer-Verlag, New York, 2005.

Thomas Kahle, Ezra Miller (2013)

Decompositions of commutative monoid congruences and binomial ideals. arXiv:1107.4699 [math].

Thanks!