Irreducible decompositions of binomial ideals

Christopher O'Neill

Duke University

musicman@math.duke.edu

Joint with Thomas Kahle and Ezra Miller

January 18, 2014

Fact

Every ideal $I \subset \mathbb{k}[x_1, ..., x_n]$ can be written as a finite intersection of irreducible ideals (an irreducible decomposition).

Fact

Every ideal $I \subset \mathbb{k}[x_1, \dots, x_n]$ can be written as a finite intersection of irreducible ideals (an irreducible decomposition).

Definition

An ideal $I \subset \mathbb{k}[x_1, \dots, x_n]$ is a binomial ideal if it is generated by polynomials with at most two terms. Example: $I = \langle x - 2y, x^2 \rangle$.

Fact

Every ideal $I \subset \mathbb{k}[x_1, \dots, x_n]$ can be written as a finite intersection of irreducible ideals (an irreducible decomposition).

Definition

An ideal $I \subset \mathbb{k}[x_1, \dots, x_n]$ is a *binomial ideal* if it is generated by polynomials with at most two terms. Example: $I = \langle x - 2y, x^2 \rangle$.

Question (Eisenbud-Sturmfels, 1996)

Do binomial ideals have binomial irreducible decompositions?

Fact

Every ideal $I \subset \mathbb{k}[x_1, ..., x_n]$ can be written as a finite intersection of irreducible ideals (an irreducible decomposition).

Definition

An ideal $I \subset \mathbb{k}[x_1, \dots, x_n]$ is a binomial ideal if it is generated by polynomials with at most two terms. Example: $I = \langle x - 2y, x^2 \rangle$.

Question (Eisenbud-Sturmfels, 1996)

Do binomial ideals have binomial irreducible decompositions?

Answer (Kahle-Miller-O., 2014)

No.

Long long ago, in an algebraic setting not far away...

Long long ago, in an algebraic setting not far away...

$$I = \langle x^4, x^3y, x^2y^2, y^4 \rangle$$

$$I = \langle x^4, x^3y, x^2y^2, y^4 \rangle$$

$$I = \langle x^4, x^3y, x^2y^2, y^4 \rangle$$

$$I = \langle x^4, x^3y, x^2y^2, y^4 \rangle$$

"Staircase diagram"

$$I = \langle x^4, x^3y, x^2y^2, y^4 \rangle$$

"Staircase diagram"

$$I = \langle x^4, x^3y, x^2y^2, y^4 \rangle$$

"Staircase diagram"

$$I = \langle x^4, x^3y, x^2y^2, y^4 \rangle$$

$$I = \langle x^4, x^3y, x^2y^2, y^4 \rangle$$

$$I = \langle x^4, x^3y, x^2y^2, y^4 \rangle$$

$$I = \langle x^4, x^3y, x^2y^2, y^4 \rangle$$
$$=$$

$$I = \langle x^4, x^3y, x^2y^2, y^4 \rangle$$
$$= \langle x^4, y \rangle$$

$$I = \langle x^4, x^3y, x^2y^2, y^4 \rangle$$

= $\langle x^4, y \rangle \langle x^3, y^2 \rangle$

$$\begin{array}{lcl} I & = & \langle x^4, x^3y, x^2y^2, y^4 \rangle \\ & = & \langle x^4, y \rangle & \langle x^3, y^2 \rangle & \langle x^2, y^4 \rangle \end{array}$$

$$I = \langle x^4, x^3y, x^2y^2, y^4 \rangle$$

= $\langle x^4, y \rangle \cap \langle x^3, y^2 \rangle \cap \langle x^2, y^4 \rangle$

$$I = \langle x^4, x^3y, x^2y^2, y^4 \rangle$$

= $\langle x^4, y \rangle \cap \langle x^3, y^2 \rangle \cap \langle x^2, y^4 \rangle$

$$\begin{array}{ll} I &=& \langle x^4, x^3y, x^2y^2, y^4 \rangle \\ &=& \langle x^4, y \rangle \cap \langle x^3, y^2 \rangle \cap \langle x^2, y^4 \rangle \\ &\text{irreducible} \Leftrightarrow \text{"simple socle"} \end{array}$$

And now, back to our original programming...

And now, back to our original programming...

$$I = \langle x^2 - xy, xy - y^2, x^4, y^4 \rangle$$

$$I = \langle x^2 - xy, xy - y^2, x^4, y^4 \rangle$$

$$I = \langle x^2 - xy, xy - y^2, x^4, y^4 \rangle$$
$$x^2 = xy \text{ in } \mathbb{k}[x, y]/I$$

$$I = \langle x^2 - xy, xy - y^2, x^4, y^4 \rangle$$

$$I = \langle x^2 - xy, xy - y^2, x^4, y^4 \rangle$$
 "witnesses" = monomials that merge in all directions

$$I = \langle x^2 - xy, xy - y^2, x^4, y^4 \rangle$$
 "witnesses" = monomials that merge in all directions

$$I = \langle x^2 - xy, xy - y^2, x^4, y^4 \rangle$$
 "witnesses" = monomials that merge in all directions

$$I = \langle x^2 - xy, xy - y^2, x^4, y^4 \rangle$$
 "witnesses" = monomials that merge in all directions

$$I = \langle x^2 - xy, xy - y^2, x^4, y^4 \rangle$$

"witnesses" = monomials that merge in all directions To decompose I: force each witness to be a simple socle

$$I = \langle x^2 - xy, xy - y^2, x^4, y^4 \rangle$$

$$I = \langle x^2 - xy, xy - y^2, x^4, y^4 \rangle$$

=

$$I = \langle x^2 - xy, xy - y^2, x^4, y^4 \rangle$$

$$= x - y \in \text{socle}$$

$$I = \langle x^2 - xy, xy - y^2, x^4, y^4 \rangle$$

= $\langle x - y, x^4, y^4 \rangle$

$$I = \langle x^2 - xy, xy - y^2, x^4, y^4 \rangle$$

= $\langle x - y, x^4, y^4 \rangle$

$$I = \langle x^2 - xy, xy - y^2, x^4, y^4 \rangle$$

= $\langle x - y, x^4, y^4 \rangle \langle x^2, y \rangle$

$$I = \langle x^2 - xy, xy - y^2, x^4, y^4 \rangle$$

= $\langle x - y, x^4, y^4 \rangle$ $\langle x^2, y \rangle$ $\langle x, y^2 \rangle$

$$I = \langle x^2 - xy, xy - y^2, x^4, y^4 \rangle$$

= $\langle x - y, x^4, y^4 \rangle \cap \langle x^2, y \rangle \cap \langle x, y^2 \rangle$

$$I = \langle x^2 - xy, xy - y^2, x^4, y^4 \rangle$$

= $\langle x - y, x^4, y^4 \rangle \cap \langle x^2, y \rangle \cap \langle x, y^2 \rangle$

(Kahle, Miller, O.) To construct binomial irreducible decompositions:

• One component per witness

- One component per witness
- For each component, "soccularize" by merging paired witnesses

- One component per witness
- For each component, "soccularize" by merging paired witnesses
- Merge new witness pairs

- One component per witness
- For each component, "soccularize" by merging paired witnesses
- Merge new witness pairs ("protected witnesses")

- One component per witness
- For each component, "soccularize" by merging paired witnesses
- Merge new witness pairs ("protected witnesses")
- Repeat until no witness pairs remain

- One component per witness
- For each component, "soccularize" by merging paired witnesses
- Merge new witness pairs ("protected witnesses")
- Repeat until no witness pairs remain
- Result should have simple socle

(Kahle, Miller, O.) To construct binomial irreducible decompositions:

- One component per witness
- For each component, "soccularize" by merging paired witnesses
- Merge new witness pairs ("protected witnesses")
- Repeat until no witness pairs remain
- Result *should* have simple socle

This means binomial irreducible decompositions exist!

(Kahle, Miller, O.) To construct binomial irreducible decompositions:

- One component per witness
- For each component, "soccularize" by merging paired witnesses
- Merge new witness pairs ("protected witnesses")
- Repeat until no witness pairs remain
- Result *should* have simple socle

This means binomial irreducible decompositions exist!

...almost

$$I = \langle x^2y - xy^2, x^3, y^3 \rangle$$

$$I = \langle x^2y - xy^2, x^3, y^3 \rangle$$

$$I = \langle x^2y - xy^2, x^3, y^3 \rangle$$

$$I = \langle x^2y - xy^2, x^3, y^3 \rangle$$

$$I = \langle x^2y - xy^2, x^3, y^3 \rangle$$
$$x^2 + y^2 - xy \in soc(I)$$

$$I = \langle x^2y - xy^2, x^3, y^3 \rangle$$

$$x^2 + y^2 - xy \in soc(I)$$

I admits no binomial irreducible decompositions

References

David Eisenbud, Bernd Sturmfels (1996)

Binomial ideals.

Duke Math J. 84 (1996), no. 1, 145.

Ezra Miller, Bernd Sturmfels (2005)

Combinatorial commutative algebra.

Graduate Texts in Mathematics 227. Springer-Verlag, New York, 2005.

Thomas Kahle, Ezra Miller (2013)

Decompositions of commutative monoid congruences and binomial ideals. arXiv:1107.4699 [math].

Thomas Kahle, Ezra Miller, Christopher O'Neill (2014)

Irreducible decompositions of binomial ideals.

To appear.

References

David Eisenbud, Bernd Sturmfels (1996)

Binomial ideals.

Duke Math J. 84 (1996), no. 1, 145.

Ezra Miller, Bernd Sturmfels (2005)

Combinatorial commutative algebra.

Graduate Texts in Mathematics 227. Springer-Verlag, New York, 2005.

Thomas Kahle, Ezra Miller (2013)

Decompositions of commutative monoid congruences and binomial ideals. arXiv:1107.4699 [math].

Thomas Kahle, Ezra Miller, Christopher O'Neill (2014)

Irreducible decompositions of binomial ideals.

To appear.

Thanks!