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The Question

Definition

An ideal I ⊂ k[x1, . . . , xn] is a binomial ideal if it is generated by
polynomials with at most two terms.

Example

〈x − y〉 ⊂ k[x , y ], 〈x2 − xy , xy − y2〉 ⊂ k[x , y ].

Example

〈x2 − y , x2 + y〉 = 〈x2, y〉 ⊂ k[x , y ], 〈x2y − xy2, x3, y3〉 ⊂ k[x , y ].

Example

x2 − xy , x3 − x2, x4y2 + xy2 ∈ 〈x2, y2, xy〉 ⊂ k[x , y ].
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The Question

Definition

An ideal I ⊂ S is irreducible if whenever I = J1 ∩ J2 for ideals J1, J2 ⊂ S ,
either I = J1 or I = J2.

Fact

Every ideal I ⊂ k[x1, . . . , xn] can be written as a finite intersection

I =
r⋂

i=1

Ji

of irreducible ideals J1, . . . , Jr (an irreducible decomposition).
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The Question

Question (Eisenbud-Sturmfels, 1996)

Assume k is algebraically closed. Does every binomial ideal I have a
binomial irreducible decomposition, that is, an expression I =

⋂
i Ji where

each Ji is irreducible and binomial?

Example

If k = Q, then 〈x4 + 4〉 = 〈x2 − 2x + 2〉 ∩ 〈x2 + 2x + 2〉.

Answer (Kahle-Miller-O., 2014)

No.

Example

I = 〈x2y − xy2, x3, y3〉 ⊂ k[x , y ].
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The Question

State of affairs:

Question: easy to state

Counter example: small

Proof: short and elementary

So, why was this problem was open for almost 20 years?
Answer: Needed to know where to look.
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Storytime!

Today:

Review primary decomposition

Irreducible decomposition of monomial ideals

Irreducible decomposition of binomial ideals

Examine the counterexample, with proof (time permitting).
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Primary Decomposition

Definition

An ideal I is primary if ab ∈ I implies a` ∈ I or b` ∈ I for some ` ≥ 1.

If I is primary, then p =
√
I is prime, and we say I is p-primary.

Fact

Any ideal in a Noetherean ring is a finite intersection of primary ideals
(that is, admits a primary decomposition).

Example

Primary ideals in Z are of the form 〈pr 〉 for p prime, and
√
〈pr 〉 = 〈p〉.

For a = pr11 · · · p
r`
` ∈ Z, 〈a〉 =

⋂
i 〈p

ri
i 〉.
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Irreducible Ideals

Fact

Irreducible ideals are primary.

Definition

Given a p-primary ideal I ⊂ k[x1, . . . , xn], the socle of I is the ideal

socp(I ) = {f : pf ⊂ I} ⊂ I

We say I has simple socle if dimk socp(I )/I = 1.

Fact

A p-primary ideal I is irreducible if and only if it has simple socle.
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Irreducible Ideals

Let I = 〈x2 − xy , xy − y2, x4, y4〉 ⊂ k[x , y ], and let p = 〈x , y〉.
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Irreducible Ideals

Let I = 〈x2 − xy , xy − y2, x4, y4〉 ⊂ k[x , y ], and let p = 〈x , y〉.

x − y ∈ socp(I )

x4, x3y , x2y2, xy3, y4 ∈ I
⇒ x3, x2y , xy2, y3 ∈ socp(I )

socp(I )/I = {f : pf ⊂ I}/I
= {f : xf , yf ∈ I}/I
= k{x − y , x3}

so dimk(socp(I )/I ) = 2.
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Monomial Ideals

Long long ago, in an algebraic setting not far away...

Monomial Ideals
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Monomial Ideals

I = 〈x4, x3y , x2y2, y4〉
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Monomial Ideals

I = 〈x4, x3y , x2y2, y4〉

xa = xa11 · · · xann ∈ k[x1, . . . , xn]
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←→ a = (a1, . . . , an) ∈ Nn
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Generators of I are
“Inward-pointing corners”

Staircase Diagram
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Monomial Ideals

Fact

If a monomial ideal I is p-primary, then p is a monomial ideal.

Fact

Any monomial ideal I admits a monomial irreducible decomposition, that
is, an expression of the form

I =
r⋂

i=1

Ji

for irreducible monomial ideals J1, . . . , Jr .
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Monomial Ideals

I = 〈x4, x3y , x2y2, y4〉 Staircase Diagram
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Monomial Ideals

I = 〈x4, x3y , x2y2, y4〉

I is p-primary, p = 〈x , y〉

Staircase Diagram
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Monomial Ideals

I = 〈x4, x3y , x2y2, y4〉

I is p-primary, p = 〈x , y〉

socp(I )/I = k{x3, x2y , xy3}

Staircase Diagram
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Monomial Ideals

I = 〈x4, x3y , x2y2, y4〉

I is p-primary, p = 〈x , y〉

socp(I )/I = k{x3, x2y , xy3}
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Monomial Ideals

I = 〈x4, x3y , x2y2, y4〉

I is p-primary, p = 〈x , y〉

socp(I )/I = k{x3, x2y , xy3}
“Outward-pointing corners”

Irreducible decomposition:
I = J1 ∩ J2 ∩ J3

Staircase Diagram
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I = 〈x4, x3y , x2y2, y4〉

I is p-primary, p = 〈x , y〉

socp(I )/I = k{x3, x2y , xy3}
“Outward-pointing corners”

Irreducible decomposition:
I = J1 ∩ J2 ∩ J3

J1 = 〈x4, y〉

Staircase Diagram
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I is p-primary, p = 〈x , y〉
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Irreducible Decomposition

Facts

Fix an irredundant irreducible decomposition

I =
r⋂

i=1

Ji

for a p-primary ideal I .

r = dimk socp(I )/I .

For each i , the map R/I � R/Ji induces a nonzero map on socles.

More generally, socp(I )/I ∼=
⊕r

i=1 socp(Ji )/Ji .

If I is monomial ideal, then socp(I ) is monomial.
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Binomial Ideals

And now, back to our original programming...

Binomial ideals
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Binomial Ideals

Theorem (Eisenbud-Sturmfels, 1996)

If k = k, every binomial ideal admits a binomial primary decomposition.

Question (Eisenbud-Sturmfels, 1996)

Does the same hold for irreducible decomposition?

In 2002, Dickenstein, Matusevich and Miller investigate the
combinatorics of binomial primary decomposition.

In 2013, Kahle and Miller give a combinatorial method of explicitly
constructing binomial primary decomposition.
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Binomial Ideals

I = 〈x2 − xy , xy − y2, x4, y4〉
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a ∼I b ∈ Nn ←→ xa − λxb ∈ I
for some nonzero λ ∈ k
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for some nonzero λ ∈ k

x2 − xy ∈ I , xy − y2 ∈ I ,
x(x2 − xy) = x3 − x2y ∈ I , . . .

xa, xb ∈ I ⇒ xa − xb ∈ I
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I = 〈x2 − xy , xy − y2, x4, y4〉

xa ∈ k[x1, . . . , xn]←→ a ∈ Nn

Define relation ∼I on Nn:

a ∼I b ∈ Nn ←→ xa − λxb ∈ I
for some nonzero λ ∈ k

x2 − xy ∈ I , xy − y2 ∈ I ,
x(x2 − xy) = x3 − x2y ∈ I , . . .

xa, xb ∈ I ⇒ xa − xb ∈ I

(x2 = xy in k[x , y ]/I )
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Binomial Ideals

Fix a binomial ideal I ⊂ k[x1, . . . , xn].

The equivalence relation ∼I induced by I on Nn is a congruence:

a ∼I b implies a + c ∼I b + c

for a,b, c ∈ Nn. In particular, (Nn/∼I ,+) is well defined.

The monomials in I form a single class ∞ ∈ Nn/∼I , called the nil.

The nil ∞ corresponds to 0 in the quotient k[x1, . . . , xn]/I .

Each non-nil a ∈ Nn/∼I represents a distinct monomial modulo I .
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Binomial Ideals

I = 〈x2 − xy , xy − y2, x4, y4〉
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Binomial Ideals

I = 〈x2 − xy , xy − y2, x4, y4〉 Monoid N2/∼I
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Binomial Ideals

Theorem (Kahle-Miller, 2013)

For k = k, every binomial ideal has an expression of the form

I =
r⋂

i=1

Ji

where each Ji is binomial, primary, and has a unique monomial in its socle.

To construct a binomial irreducible decomposition for I , we can assume

I is primary to the maximal ideal m,

socm(I )/I has a unique monomial.
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Binomial Ideals

I = 〈x2 − xy , xy − y2, x4, y4〉

Christopher O’Neill (Duke University) Irreducible decomposition of binomial ideals January 18, 2014 23 / 36



Binomial Ideals

I = 〈x2 − xy , xy − y2, x4, y4〉

Nn/∼I ←→ monomials mod I
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Binomial Ideals

I = 〈x2 − xy , xy − y2, x4, y4〉

Nn/∼I ←→ monomials mod I

socm(I )/I = k{x3, x − y}
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Binomial Ideals

I = 〈x2 − xy , xy − y2, x4, y4〉

Nn/∼I ←→ monomials mod I

socm(I )/I = k{x3, x − y}

witnesses: monomials that merge
with something in each direction
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Binomial Ideals

I = 〈x2 − xy , xy − y2, x4, y4〉

Nn/∼I ←→ monomials mod I

socm(I )/I = k{x3, x − y}

witnesses: monomials that merge
with something in each direction

I -witnesses: x3, x , y
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Binomial Ideals

Definition

A monomial xa is a witness for I if for each xp ∈ p,

p + a ∼I p + a′ for some a′ 6∼I a,

that is, xa merges with another monomial modulo I when multiplied by
any monomial in p.

Theorem (Kahle-Miller, 2013)

For any p-primary binomial ideal I , any f ∈ socp(I )/I is a sum of witnesses.
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Binomial Ideals

I = 〈x2 − xy , xy − y2, x4, y4〉
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Binomial Ideals
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I = 〈x2 − xy , xy − y2, x4, y4〉

socm(I )/I = k{x3, x − y}

soccularize I : “Force simple socle”

J = 〈x − y , x4, y4〉
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Binomial Ideals

I = 〈x2 − xy , xy − y2, x4, y4〉

socm(I )/I = k{x3, x − y}

soccularize I : “Force simple socle”

J = 〈x − y , x4, y4〉

socm(J)/J = k{x3}
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Soccular Decomposition

Plan of attack:

One irreducible component per witness monomial.

For each component, force chosen witness to be maximal.

Soccularize to remove other socle elements.
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Soccular Decomposition

I = 〈x2 − xy , xy − y2, x4, y4〉
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Soccular Decomposition

I = 〈x2 − xy , xy − y2, x4, y4〉

Witnesses: x3, x , y
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Soccular Decomposition

I = 〈x2 − xy , xy − y2, x4, y4〉

Witnesses: x3, x , y

J1 = 〈x − y , x4, y4〉,
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Soccular Decomposition

I = 〈x2 − xy , xy − y2, x4, y4〉

Witnesses: x3, x, y

J1 = 〈x − y , x4, y4〉,
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Soccular Decomposition

I = 〈x2 − xy , xy − y2, x4, y4〉

Witnesses: x3, x , y

J1 = 〈x − y , x4, y4〉,

J2 = 〈x2, y〉,
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Soccular Decomposition

I = 〈x2 − xy , xy − y2, x4, y4〉

Witnesses: x3, x , y

J1 = 〈x − y , x4, y4〉,

J2 = 〈x2, y〉, J3 = 〈x , y2〉
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Soccular Decomposition

I = 〈x2 − xy , xy − y2, x4, y4〉

Witnesses: x3, x , y

J1 = 〈x − y , x4, y4〉,

J2 = 〈x2, y〉, J3 = 〈x , y2〉

I = J1 ∩ J2 ∩ J3
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Witnesses: x3, x , y

J1 = 〈x − y , x4, y4〉,

J2 = 〈x2, y〉, J3 = 〈x , y2〉

I = J1 ∩ J2 ∩ J3
= J1 ∩ J2
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Soccular Decomposition

I = 〈x2 − xy , xy + y2, x4, y4〉
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I = 〈x2 − xy , xy + y2, x4, y4〉

Witnesses: x3, x , y
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Soccular Decomposition

I = 〈x2 − xy , xy + y2, x4, y4〉

Witnesses: x3, x , y

socm(I )/I = k{x3}
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Soccular Decomposition

I = 〈x2 − xy , xy + y2, x4, y4〉

Witnesses: x3, x , y

socm(I )/I = k{x3}

I = I ∩ 〈x2, y〉 ∩ 〈x , y2〉
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Soccular Decomposition

I = 〈xy − y2, x3 − xy2, x4, y4〉
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Soccular Decomposition

I = 〈xy − y2, x3 − xy2, x4, y4〉

Witnesses: x3, x2, xy

socm(I )/I = k{x3, x2 − xy}
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Soccular Decomposition

I = 〈xy − y2, x3 − xy2, x4, y4〉

Witnesses: x3, x2, xy

socm(I )/I = k{x3, x2 − xy}

Soccularize:
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Soccular Decomposition

I = 〈xy − y2, x3 − xy2, x4, y4〉

Witnesses: x3, x2, xy

socm(I )/I = k{x3, x2 − xy}

Soccularize: New witnesses!
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Soccular Decomposition

I = 〈xy − y2, x3 − xy2, x4, y4〉
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socm(I )/I = k{x3, x2 − xy}
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Soccular Decomposition

I = 〈xy − y2, x3 − xy2, x4, y4〉
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Soccular Decomposition

I = 〈xy − y2, x3 − xy2, x4, y4〉

Witnesses: x3, x2, xy

socm(I )/I = k{x3, x2 − xy}

Soccularize: New witnesses!
Protected witnesses: x , y

J1 = 〈x − y , x4, y4〉
J2 = 〈x3, y〉

J3 = 〈xy − y2, x2, y3〉
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Soccular Decomposition

I = 〈xy − y2, x3 − xy2, x4, y4〉

Witnesses: x3, x2, xy

socm(I )/I = k{x3, x2 − xy}

Soccularize: New witnesses!
Protected witnesses: x , y

J1 = 〈x − y , x4, y4〉
J2 = 〈x3, y〉

J3 = 〈xy − y2, x2, y3〉

I = J1 ∩ J2 ∩ J3
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Soccular Decomposition

Algorithm for decompositing a binomial ideal I :

One component for each I -witness.

For the component at a witness w :

Add monomials not below w , so w is a unique monomial socle element.
“Soccularize” by merging witness pairs below w .
Repeat with protected witnesses until no new witness pairs are created

Theorem (Kahle-Miller-O., 2014)

For k = k, any binomial ideal I can be written as I =
⋂r

i=1 Ji , where each
Ji is binomial and pi -primary, and the socle socpi (Ji )/Ji contains a unique
monomial and no other binomials.
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The Counterexample

I = 〈x2y − xy2, x3, y3〉
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The Counterexample

I = 〈x2y − xy2, x3, y3〉

Witnesses: x2y , x2, xy , y2
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The Counterexample

I = 〈x2y − xy2, x3, y3〉

Witnesses: x2y , x2, xy , y2

socm(I )/I = k{x2y , x2 + y2 − xy}
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The Counterexample

I = 〈x2y − xy2, x3, y3〉

Witnesses: x2y , x2, xy , y2

socm(I )/I = k{x2y , x2 + y2 − xy}

I = 〈x2 + y2 − xy , x3, y3〉 ∩ 〈x3, y〉
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The Counterexample

Theorem (Kahle-Miller-O., 2014)

I = 〈x2y − xy2, x3, y3〉 admits no binomial irreducible decomposition.

Proof.

Fix an irredundant irreducible decomposition I =
⋂r

i=1 Ji .
We have r = dimk(socm(I )/I ) = 2, so I = J1 ∩ J2.
Write α = x2 + y2 − xy , β = x2y , so socm(I )/I = k{α, β}.
We know

socm(I )/I ∼= socm(J1)/J1 ⊕ socm(J2)/J2,

so we have α + λβ ∈ socm(Ji )/Ji for some i , say i = 1.
This means I + 〈α + λβ〉 ⊂ J1.
But I + 〈α + λβ〉 already has simple socle, so J1 = I + 〈α + λβ〉.
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When do they exist?

I = 〈x2y − xy2, x4 − x3y , xy3 − y4, x5, y5〉
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When do they exist?

I = 〈x2y − xy2, x4 − x3y , xy3 − y4, x5, y5〉

Witnesses: x4, x3, x2y , y3

I = J1 ∩ J2 ∩ J3 ∩ J4

J3 not binomial

Can omit one of J2, J3, J4
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When do they exist?

I ′ = 〈whatever is necessary〉

Christopher O’Neill (Duke University) Irreducible decomposition of binomial ideals January 18, 2014 36 / 36



When do they exist?

I ′ = 〈whatever is necessary〉

Witnesses: x6, x5, x4y , xy4, y5

Christopher O’Neill (Duke University) Irreducible decomposition of binomial ideals January 18, 2014 36 / 36



When do they exist?

I ′ = 〈whatever is necessary〉

Witnesses: x6, x5, x4y , xy4, y5

I = J1 ∩ J2 ∩ J3 ∩ J4 ∩ J5

Christopher O’Neill (Duke University) Irreducible decomposition of binomial ideals January 18, 2014 36 / 36



When do they exist?

I ′ = 〈whatever is necessary〉

Witnesses: x6, x5, x4y , xy4, y5

I = J1 ∩ J2 ∩ J3 ∩ J4 ∩ J5

J3, J4 not binomial

Christopher O’Neill (Duke University) Irreducible decomposition of binomial ideals January 18, 2014 36 / 36



When do they exist?

I ′ = 〈whatever is necessary〉

Witnesses: x6, x5, x4y , xy4, y5

I = J1 ∩ J2 ∩ J3 ∩ J4 ∩ J5

J3, J4 not binomial

Christopher O’Neill (Duke University) Irreducible decomposition of binomial ideals January 18, 2014 36 / 36



When do they exist?

I ′ = 〈whatever is necessary〉

Witnesses: x6, x5, x4y , xy4, y5

I = J1 ∩ J2 ∩ J3 ∩ J4 ∩ J5

J3, J4 not binomial

Christopher O’Neill (Duke University) Irreducible decomposition of binomial ideals January 18, 2014 36 / 36



When do they exist?

I ′ = 〈whatever is necessary〉

Witnesses: x6, x5, x4y , xy4, y5

I = J1 ∩ J2 ∩ J3 ∩ J4 ∩ J5

J3, J4 not binomial

Christopher O’Neill (Duke University) Irreducible decomposition of binomial ideals January 18, 2014 36 / 36



When do they exist?

I ′ = 〈whatever is necessary〉

Witnesses: x6, x5, x4y , xy4, y5

I = J1 ∩ J2 ∩ J3 ∩ J4 ∩ J5

J3, J4 not binomial

Can omit one of J2, J3, J4, J5
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