Irreducible decomposition of binomial ideals

Christopher O'Neill

Duke University

musicman@math.duke.edu

Joint with Thomas Kahle and Ezra Miller

January 18, 2014

An ideal $I \subset \mathbb{k}[x_1, \ldots, x_n]$ is a *binomial ideal* if it is generated by polynomials with at most two terms.

An ideal $I \subset k[x_1, \ldots, x_n]$ is a *binomial ideal* if it is generated by polynomials with at most two terms.

$$\langle x - y \rangle \subset \mathbb{k}[x, y], \langle x^2 - xy, xy - y^2 \rangle \subset \mathbb{k}[x, y].$$

An ideal $I \subset k[x_1, \ldots, x_n]$ is a *binomial ideal* if it is generated by polynomials with at most two terms.

Example

$$\langle x - y \rangle \subset \mathbb{k}[x, y], \langle x^2 - xy, xy - y^2 \rangle \subset \mathbb{k}[x, y].$$

$$\langle x^2 - y, x^2 + y \rangle = \langle x^2, y \rangle \subset \mathbb{k}[x, y], \langle x^2y - xy^2, x^3, y^3 \rangle \subset \mathbb{k}[x, y].$$

An ideal $I \subset k[x_1, \ldots, x_n]$ is a *binomial ideal* if it is generated by polynomials with at most two terms.

Example

$$\langle x - y \rangle \subset \mathbb{k}[x, y], \langle x^2 - xy, xy - y^2 \rangle \subset \mathbb{k}[x, y].$$

Example

$$\langle x^2 - y, x^2 + y \rangle = \langle x^2, y \rangle \subset \mathbb{k}[x, y], \langle x^2y - xy^2, x^3, y^3 \rangle \subset \mathbb{k}[x, y].$$

$$x^2 - xy, x^3 - x^2, x^4y^2 + xy^2 \in \langle x^2, y^2, xy \rangle \subset \Bbbk[x, y].$$

An ideal $I \subset S$ is *irreducible* if whenever $I = J_1 \cap J_2$ for ideals $J_1, J_2 \subset S$, either $I = J_1$ or $I = J_2$.

An ideal $I \subset S$ is *irreducible* if whenever $I = J_1 \cap J_2$ for ideals $J_1, J_2 \subset S$, either $I = J_1$ or $I = J_2$.

Fact

Every ideal $I \subset \Bbbk[x_1, \ldots, x_n]$ can be written as a finite intersection

$$I=\bigcap_{i=1}^r J_i$$

of irreducible ideals J_1, \ldots, J_r (an irreducible decomposition).

Assume k is algebraically closed. Does every binomial ideal I have a binomial irreducible decomposition, that is, an expression $I = \bigcap_i J_i$ where each J_i is irreducible and binomial?

Assume k is algebraically closed. Does every binomial ideal I have a binomial irreducible decomposition, that is, an expression $I = \bigcap_i J_i$ where each J_i is irreducible and binomial?

If
$$\Bbbk = \mathbb{Q}$$
, then $\langle x^4 + 4 \rangle = \langle x^2 - 2x + 2 \rangle \cap \langle x^2 + 2x + 2 \rangle$.

Assume k is algebraically closed. Does every binomial ideal I have a *binomial* irreducible decomposition, that is, an expression $I = \bigcap_i J_i$ where each J_i is irreducible and binomial?

Example

If
$$\Bbbk = \mathbb{Q}$$
, then $\langle x^4 + 4 \rangle = \langle x^2 - 2x + 2 \rangle \cap \langle x^2 + 2x + 2 \rangle$.

Answer (Kahle-Miller-O., 2014)

No.

Assume k is algebraically closed. Does every binomial ideal I have a *binomial* irreducible decomposition, that is, an expression $I = \bigcap_i J_i$ where each J_i is irreducible and binomial?

Example

If
$$\Bbbk = \mathbb{Q}$$
, then $\langle x^4 + 4 \rangle = \langle x^2 - 2x + 2 \rangle \cap \langle x^2 + 2x + 2 \rangle$.

Answer (Kahle-Miller-O., 2014)

No.

$$I = \langle x^2y - xy^2, x^3, y^3 \rangle \subset \Bbbk[x, y].$$

• Question: easy to state

- Question: easy to state
- Counter example: small

- Question: easy to state
- Counter example: small
- Proof: short and elementary

- Question: easy to state
- Counter example: small
- Proof: short and elementary

So, why was this problem was open for almost 20 years?

- Question: easy to state
- Counter example: small
- Proof: short and elementary

So, why was this problem was open for almost 20 years? Answer: Needed to know where to look.

• Review primary decomposition

- Review primary decomposition
- Irreducible decomposition of monomial ideals

- Review primary decomposition
- Irreducible decomposition of monomial ideals
- Irreducible decomposition of binomial ideals

- Review primary decomposition
- Irreducible decomposition of monomial ideals
- Irreducible decomposition of binomial ideals
- Examine the counterexample, with proof (time permitting).

An ideal I is primary if $ab \in I$ implies $a^{\ell} \in I$ or $b^{\ell} \in I$ for some $\ell \ge 1$.

An ideal *I* is *primary* if $ab \in I$ implies $a^{\ell} \in I$ or $b^{\ell} \in I$ for some $\ell \ge 1$.

If I is primary, then $\mathfrak{p} = \sqrt{I}$ is prime, and we say I is \mathfrak{p} -primary.

An ideal *I* is *primary* if $ab \in I$ implies $a^{\ell} \in I$ or $b^{\ell} \in I$ for some $\ell \ge 1$.

If I is primary, then $\mathfrak{p} = \sqrt{I}$ is prime, and we say I is \mathfrak{p} -primary.

Fact

Any ideal in a Noetherean ring is a finite intersection of primary ideals (that is, admits a primary decomposition).

An ideal *I* is *primary* if $ab \in I$ implies $a^{\ell} \in I$ or $b^{\ell} \in I$ for some $\ell \ge 1$.

If I is primary, then $\mathfrak{p} = \sqrt{I}$ is prime, and we say I is \mathfrak{p} -primary.

Fact

Any ideal in a Noetherean ring is a finite intersection of primary ideals (that is, admits a primary decomposition).

Example

Primary ideals in \mathbb{Z} are of the form $\langle p^r \rangle$ for p prime, and $\sqrt{\langle p^r \rangle} = \langle p \rangle$. For $a = p_1^{r_1} \cdots p_{\ell}^{r_{\ell}} \in \mathbb{Z}$, $\langle a \rangle = \bigcap_i \langle p_i^{r_i} \rangle$.

Fact

Irreducible ideals are primary.

Fact

Irreducible ideals are primary.

Definition

Given a p-primary ideal $I \subset \Bbbk[x_1, \ldots, x_n]$, the *socle* of I is the ideal

$$\operatorname{soc}_{\mathfrak{p}}(I) = \{f : \mathfrak{p}f \subset I\} \subset I$$

We say I has simple socle if dim_k soc_p(I)/I = 1.

Fact

Irreducible ideals are primary.

Definition

Given a p-primary ideal $I \subset \Bbbk[x_1, \ldots, x_n]$, the *socle* of I is the ideal

$$\operatorname{soc}_{\mathfrak{p}}(I) = \{f : \mathfrak{p}f \subset I\} \subset I$$

We say I has simple socle if dim_k soc_p(I)/I = 1.

Fact

A p-primary ideal I is irreducible if and only if it has simple socle.

Let
$$I = \langle x^2 - xy, xy - y^2, x^4, y^4 \rangle \subset \Bbbk[x, y]$$
, and let $\mathfrak{p} = \langle x, y \rangle$.

Let
$$I = \langle x^2 - xy, xy - y^2, x^4, y^4 \rangle \subset \Bbbk[x, y]$$
, and let $\mathfrak{p} = \langle x, y \rangle$.
 $x - y \in \mathsf{soc}_{\mathfrak{p}}(I)$

Let
$$I = \langle x^2 - xy, xy - y^2, x^4, y^4 \rangle \subset \Bbbk[x, y]$$
, and let $\mathfrak{p} = \langle x, y \rangle$.
 $x - y \in \operatorname{soc}_{\mathfrak{p}}(I)$
 $x^4, x^3y, x^2y^2, xy^3, y^4 \in I$

Let
$$I = \langle x^2 - xy, xy - y^2, x^4, y^4 \rangle \subset \mathbb{k}[x, y]$$
, and let $\mathfrak{p} = \langle x, y \rangle$.
 $x - y \in \operatorname{soc}_{\mathfrak{p}}(I)$
 $x^4, x^3y, x^2y^2, xy^3, y^4 \in I$
 $\Rightarrow x^3, x^2y, xy^2, y^3 \in \operatorname{soc}_{\mathfrak{p}}(I)$

Let
$$I = \langle x^2 - xy, xy - y^2, x^4, y^4 \rangle \subset \mathbb{k}[x, y]$$
, and let $\mathfrak{p} = \langle x, y \rangle$.
 $x - y \in \operatorname{soc}_{\mathfrak{p}}(I)$
 $x^4, x^3y, x^2y^2, xy^3, y^4 \in I$
 $\Rightarrow x^3, x^2y, xy^2, y^3 \in \operatorname{soc}_{\mathfrak{p}}(I)$
 $\operatorname{soc}_{\mathfrak{p}}(I)/I = \{f : \mathfrak{p}f \subset I\}/I$

Let
$$I = \langle x^2 - xy, xy - y^2, x^4, y^4 \rangle \subset \mathbb{k}[x, y]$$
, and let $\mathfrak{p} = \langle x, y \rangle$.
 $x - y \in \operatorname{soc}_{\mathfrak{p}}(I)$
 $x^4, x^3y, x^2y^2, xy^3, y^4 \in I$
 $\Rightarrow x^3, x^2y, xy^2, y^3 \in \operatorname{soc}_{\mathfrak{p}}(I)$
 $\operatorname{soc}_{\mathfrak{p}}(I)/I = \{f : \mathfrak{p}f \subset I\}/I$
 $= \{f : xf, yf \in I\}/I$

Let
$$I = \langle x^2 - xy, xy - y^2, x^4, y^4 \rangle \subset \mathbb{k}[x, y]$$
, and let $\mathfrak{p} = \langle x, y \rangle$.

$$\begin{aligned} x - y \in \operatorname{soc}_{\mathfrak{p}}(I) \\ x^4, x^3y, x^2y^2, xy^3, y^4 \in I \\ \Rightarrow x^3, x^2y, xy^2, y^3 \in \operatorname{soc}_{\mathfrak{p}}(I) \end{aligned}$$

$$\begin{aligned} \operatorname{soc}_{\mathfrak{p}}(I)/I &= \{f : \mathfrak{p}f \subset I\}/I \\ &= \{f : xf, yf \in I\}/I \\ &= \mathbb{k}\{x - y, x^3\} \end{aligned}$$
Let
$$I = \langle x^2 - xy, xy - y^2, x^4, y^4 \rangle \subset \mathbb{k}[x, y]$$
, and let $\mathfrak{p} = \langle x, y \rangle$.

$$\begin{aligned} x - y \in \operatorname{soc}_{\mathfrak{p}}(I) \\ x^4, x^3y, x^2y^2, xy^3, y^4 \in I \\ \Rightarrow x^3, x^2y, xy^2, y^3 \in \operatorname{soc}_{\mathfrak{p}}(I) \end{aligned}$$

$$\begin{aligned} \operatorname{soc}_{\mathfrak{p}}(I)/I &= \{f : \mathfrak{p}f \subset I\}/I \\ &= \{f : xf, yf \in I\}/I \\ &= \mathbb{k}\{x - y, x^3\} \end{aligned}$$

so dim_k(soc_p(I)/I) = 2.

Long long ago, in an algebraic setting not far away...

Long long ago, in an algebraic setting not far away...

 $I = \langle x^4, x^3y, x^2y^2, y^4 \rangle$

 $I = \langle x^4, x^3y, x^2y^2, y^4 \rangle$ $\mathbf{x}^{\mathbf{a}} = x_1^{a_1} \cdots x_n^{a_n} \in \mathbb{k}[x_1, \dots, x_n]$

$$I = \langle x^4, x^3y, x^2y^2, y^4 \rangle$$
$$\mathbf{x}^{\mathbf{a}} = x_1^{a_1} \cdots x_n^{a_n} \in \mathbb{k}[x_1, \dots, x_n]$$
$$\longleftrightarrow \mathbf{a} = (a_1, \dots, a_n) \in \mathbb{N}^n$$

$$I = \langle x^4, x^3y, x^2y^2, y^4 \rangle$$
$$\mathbf{x}^{\mathbf{a}} = x_1^{a_1} \cdots x_n^{a_n} \in \mathbb{k}[x_1, \dots, x_n]$$
$$\longleftrightarrow \mathbf{a} = (a_1, \dots, a_n) \in \mathbb{N}^n$$

$$I = \langle x^4, x^3y, x^2y^2, y^4 \rangle$$
$$\mathbf{x}^{\mathbf{a}} = x_1^{a_1} \cdots x_n^{a_n} \in \mathbb{k}[x_1, \dots, x_n]$$
$$\longleftrightarrow \mathbf{a} = (a_1, \dots, a_n) \in \mathbb{N}^n$$

$$I = \langle x^4, x^3y, x^2y^2, y^4 \rangle$$

$$\mathbf{x}^{\mathbf{a}} = x_1^{a_1} \cdots x_n^{a_n} \in \mathbb{k}[x_1, \dots, x_n]$$
$$\longleftrightarrow \mathbf{a} = (a_1, \dots, a_n) \in \mathbb{N}^n$$

Connect all monomials $\mathbf{x}^{\mathbf{a}} \in \mathbf{I}$

$$I = \langle x^4, x^3y, x^2y^2, y^4 \rangle$$

$$\mathbf{x}^{\mathbf{a}} = x_1^{a_1} \cdots x_n^{a_n} \in \mathbb{k}[x_1, \dots, x_n]$$
$$\longleftrightarrow \mathbf{a} = (a_1, \dots, a_n) \in \mathbb{N}^n$$

Connect all monomials $\mathbf{x^a} \in \mathbf{\textit{I}}$

$$I = \langle x^4, x^3y, x^2y^2, y^4 \rangle$$

$$\mathbf{x}^{\mathbf{a}} = x_1^{a_1} \cdots x_n^{a_n} \in \mathbb{k}[x_1, \dots, x_n]$$
$$\longleftrightarrow \mathbf{a} = (a_1, \dots, a_n) \in \mathbb{N}^n$$

Connect all monomials $\mathbf{x^a} \in \mathbf{\textit{I}}$

$$I = \langle x^4, x^3y, x^2y^2, y^4 \rangle$$

$$\mathbf{x}^{\mathbf{a}} = x_1^{a_1} \cdots x_n^{a_n} \in \mathbb{k}[x_1, \dots, x_n]$$
$$\longleftrightarrow \mathbf{a} = (a_1, \dots, a_n) \in \mathbb{N}^n$$

Connect all monomials $\mathbf{x^a} \in \mathbf{\textit{I}}$

$$I = \langle x^4, x^3y, x^2y^2, y^4 \rangle$$

$$\mathbf{x}^{\mathbf{a}} = x_1^{a_1} \cdots x_n^{a_n} \in \mathbb{k}[x_1, \dots, x_n]$$
$$\longleftrightarrow \mathbf{a} = (a_1, \dots, a_n) \in \mathbb{N}^n$$

Connect all monomials $\mathbf{x^a} \in \mathbf{\textit{I}}$

$$I = \langle x^4, x^3y, x^2y^2, y^4 \rangle$$

$$\mathbf{x}^{\mathbf{a}} = x_1^{a_1} \cdots x_n^{a_n} \in \mathbb{k}[x_1, \dots, x_n]$$
$$\longleftrightarrow \mathbf{a} = (a_1, \dots, a_n) \in \mathbb{N}^n$$

Connect all monomials $\mathbf{x^a} \in \mathbf{\textit{I}}$

$$I = \langle x^4, x^3y, x^2y^2, y^4 \rangle$$

$$\mathbf{x}^{\mathbf{a}} = x_1^{a_1} \cdots x_n^{a_n} \in \mathbb{k}[x_1, \dots, x_n]$$
$$\longleftrightarrow \mathbf{a} = (a_1, \dots, a_n) \in \mathbb{N}^n$$

Connect all monomials $\mathbf{x}^{\mathbf{a}} \in \mathbf{I}$

Generators of *I* are "Inward-pointing corners"

$$I = \langle x^4, x^3y, x^2y^2, y^4 \rangle$$

$$\mathbf{x}^{\mathbf{a}} = x_1^{a_1} \cdots x_n^{a_n} \in \mathbb{k}[x_1, \dots, x_n]$$
$$\longleftrightarrow \mathbf{a} = (a_1, \dots, a_n) \in \mathbb{N}^n$$

Connect all monomials $\mathbf{x}^{\mathbf{a}} \in \mathbf{I}$

Generators of *I* are "Inward-pointing corners"

Fact

If a monomial ideal I is p-primary, then p is a monomial ideal.

Fact

If a monomial ideal I is p-primary, then p is a monomial ideal.

Fact

Any monomial ideal I admits a monomial irreducible decomposition, that is, an expression of the form

$$I = \bigcap_{i=1}^{r} J_i$$

for irreducible monomial ideals J_1, \ldots, J_r .

$$I = \langle x^4, x^3y, x^2y^2, y^4 \rangle$$

$$I = \langle x^4, x^3y, x^2y^2, y^4 \rangle$$

I is \mathfrak{p} -primary, $\mathfrak{p} = \langle x, y \rangle$

$$I = \langle x^4, x^3y, x^2y^2, y^4 \rangle$$

I is \mathfrak{p} -primary, $\mathfrak{p} = \langle x, y \rangle$

 $\mathsf{soc}_{\mathfrak{p}}(I)/I = \Bbbk\{x^3, x^2y, xy^3\}$

$$I = \langle x^4, x^3y, x^2y^2, y^4 \rangle$$

I is \mathfrak{p} -primary, $\mathfrak{p} = \langle x, y \rangle$

 $\mathsf{soc}_{\mathfrak{p}}(I)/I = \Bbbk\{x^3, x^2y, xy^3\}$

$$I = \langle x^4, x^3y, x^2y^2, y^4 \rangle$$

I is \mathfrak{p} -primary, $\mathfrak{p} = \langle x, y \rangle$

 $\mathsf{soc}_{\mathfrak{p}}(I)/I = \Bbbk\{x^3, x^2y, xy^3\}$

$$I = \langle x^4, x^3y, x^2y^2, y^4 \rangle$$

I is \mathfrak{p} -primary, $\mathfrak{p} = \langle x, y \rangle$

 $soc_{\mathfrak{p}}(I)/I = \Bbbk\{x^3, x^2y, xy^3\}$ "Outward-pointing corners"

$$I = \langle x^4, x^3y, x^2y^2, y^4 \rangle$$

I is \mathfrak{p} -primary, $\mathfrak{p} = \langle x, y \rangle$

 $soc_{\mathfrak{p}}(I)/I = \Bbbk\{x^3, x^2y, xy^3\}$ "Outward-pointing corners"

Irreducible decomposition: $I = J_1 \cap J_2 \cap J_3$

$$I = \langle x^4, x^3y, x^2y^2, y^4 \rangle$$

I is \mathfrak{p} -primary, $\mathfrak{p} = \langle x, y \rangle$

 $soc_{\mathfrak{p}}(I)/I = \Bbbk\{x^3, x^2y, xy^3\}$ "Outward-pointing corners"

Irreducible decomposition: $I = J_1 \cap J_2 \cap J_3$

$$I = \langle x^4, x^3y, x^2y^2, y^4 \rangle$$

I is \mathfrak{p} -primary, $\mathfrak{p} = \langle x, y \rangle$

 $soc_{\mathfrak{p}}(I)/I = \Bbbk\{x^3, x^2y, xy^3\}$ "Outward-pointing corners"

Irreducible decomposition: $I = J_1 \cap J_2 \cap J_3$

$$J_1 = \langle x^4, y \rangle$$

$$I = \langle x^4, x^3y, x^2y^2, y^4 \rangle$$

I is \mathfrak{p} -primary, $\mathfrak{p} = \langle x, y \rangle$

 $soc_{\mathfrak{p}}(I)/I = \Bbbk\{x^3, x^2y, xy^3\}$ "Outward-pointing corners"

Irreducible decomposition: $I = J_1 \cap J_2 \cap J_3$

$$\begin{array}{l} J_1 = \langle x^4, y \rangle \\ J_2 = \langle x^3, y^2 \rangle \end{array}$$

$$I = \langle x^4, x^3y, x^2y^2, y^4 \rangle$$

I is \mathfrak{p} -primary, $\mathfrak{p} = \langle x, y \rangle$

 $soc_{\mathfrak{p}}(I)/I = \Bbbk\{x^3, x^2y, xy^3\}$ "Outward-pointing corners"

Irreducible decomposition: $I = J_1 \cap J_2 \cap J_3$

$$egin{aligned} &J_1=\langle x^4,y
angle\ &J_2=\langle x^3,y^2
angle\ &J_3=\langle x^2,y^4
angle \end{aligned}$$

$$I = \langle x^4, x^3y, x^2y^2, y^4 \rangle$$

I is \mathfrak{p} -primary, $\mathfrak{p} = \langle x, y \rangle$

 $soc_{\mathfrak{p}}(I)/I = \Bbbk\{x^3, x^2y, xy^3\}$ "Outward-pointing corners"

Irreducible decomposition: $I = J_1 \cap J_2 \cap J_3$

$$egin{aligned} &J_1=\langle x^4,y
angle\ &J_2=\langle x^3,y^2
angle\ &J_3=\langle x^2,y^4
angle \end{aligned}$$

$$I = \langle x^4, x^3y, x^2y^2, y^4 \rangle$$

I is \mathfrak{p} -primary, $\mathfrak{p} = \langle x, y \rangle$

 $soc_{\mathfrak{p}}(I)/I = \Bbbk\{x^3, x^2y, xy^3\}$ "Outward-pointing corners"

Irreducible decomposition: $I = J_1 \cap J_2 \cap J_3$

$$egin{aligned} &J_1=\langle x^4,y
angle\ &J_2=\langle x^3,y^2
angle\ &J_3=\langle x^2,y^4
angle \end{aligned}$$

Fix an *irredundant* irreducible decomposition

$$I = \bigcap_{i=1}^r J_i$$

for a p-primary ideal I.

Fix an *irredundant* irreducible decomposition

$$I = \bigcap_{i=1}^r J_i$$

for a p-primary ideal I.

•
$$r = \dim_{\mathbb{k}} \operatorname{soc}_{\mathfrak{p}}(I)/I$$
.

Fix an *irredundant* irreducible decomposition

$$I = \bigcap_{i=1}^r J_i$$

for a p-primary ideal I.

•
$$r = \dim_{\mathbb{k}} \operatorname{soc}_{\mathfrak{p}}(I)/I$$
.

• For each *i*, the map $R/I \rightarrow R/J_i$ induces a nonzero map on socles.

Fix an *irredundant* irreducible decomposition

$$I = \bigcap_{i=1}^r J_i$$

for a p-primary ideal I.

•
$$r = \dim_{\mathbb{k}} \operatorname{soc}_{\mathfrak{p}}(I)/I$$
.

- For each *i*, the map $R/I \rightarrow R/J_i$ induces a nonzero map on socles.
- More generally, $\operatorname{soc}_{\mathfrak{p}}(I)/I \cong \bigoplus_{i=1}^{r} \operatorname{soc}_{\mathfrak{p}}(J_{i})/J_{i}$.

Fix an *irredundant* irreducible decomposition

$$I = \bigcap_{i=1}^r J_i$$

for a p-primary ideal I.

- $r = \dim_{\mathbb{k}} \operatorname{soc}_{\mathfrak{p}}(I)/I$.
- For each *i*, the map $R/I \rightarrow R/J_i$ induces a nonzero map on socles.
- More generally, $\operatorname{soc}_{\mathfrak{p}}(I)/I \cong \bigoplus_{i=1}^{r} \operatorname{soc}_{\mathfrak{p}}(J_{i})/J_{i}$.
- If I is monomial ideal, then $soc_p(I)$ is monomial.
And now, back to our original programming...

And now, back to our original programming...

Binomial ideals

If $\mathbb{k} = \overline{\mathbb{k}}$, every binomial ideal admits a binomial primary decomposition.

If $\mathbb{k} = \overline{\mathbb{k}}$, every binomial ideal admits a binomial primary decomposition.

Question (Eisenbud-Sturmfels, 1996)

Does the same hold for irreducible decomposition?

If $\mathbb{k} = \overline{\mathbb{k}}$, every binomial ideal admits a binomial primary decomposition.

Question (Eisenbud-Sturmfels, 1996)

Does the same hold for irreducible decomposition?

• In 2002, Dickenstein, Matusevich and Miller investigate the combinatorics of binomial primary decomposition.

If $\mathbb{k} = \overline{\mathbb{k}}$, every binomial ideal admits a binomial primary decomposition.

Question (Eisenbud-Sturmfels, 1996)

Does the same hold for irreducible decomposition?

- In 2002, Dickenstein, Matusevich and Miller investigate the combinatorics of binomial primary decomposition.
- In 2013, Kahle and Miller give a combinatorial method of explicitly constructing binomial primary decomposition.

$$I = \langle x^2 - xy, xy - y^2, x^4, y^4 \rangle$$

 $I = \langle x^2 - xy, xy - y^2, x^4, y^4 \rangle$ $\mathbf{x}^{\mathbf{a}} \in \mathbb{k}[x_1, \dots, x_n] \longleftrightarrow \mathbf{a} \in \mathbb{N}^n$

$$I = \langle x^2 - xy, xy - y^2, x^4, y^4 \rangle$$
$$\mathbf{x}^{\mathbf{a}} \in \mathbb{k}[x_1, \dots, x_n] \longleftrightarrow \mathbf{a} \in \mathbb{N}^n$$

Define relation \sim_I on \mathbb{N}^n :

$$I = \langle x^2 - xy, xy - y^2, x^4, y^4 \rangle$$
$$\mathbf{x}^{\mathbf{a}} \in \mathbb{k}[x_1, \dots, x_n] \longleftrightarrow \mathbf{a} \in \mathbb{N}^n$$

Define relation \sim_I on \mathbb{N}^n :

$$\mathbf{a} \sim_{I} \mathbf{b} \in \mathbb{N}^{n} \longleftrightarrow \mathbf{x}^{\mathbf{a}} - \lambda \mathbf{x}^{\mathbf{b}} \in I$$
for some nonzero $\lambda \in \mathbb{k}$

$$I = \langle x^2 - xy, xy - y^2, x^4, y^4 \rangle$$
$$\mathbf{x}^{\mathbf{a}} \in \mathbb{k}[x_1, \dots, x_n] \longleftrightarrow \mathbf{a} \in \mathbb{N}^n$$

Define relation \sim_I on \mathbb{N}^n :

$$x^2 - xy \in I$$
,

$$I = \langle x^2 - xy, xy - y^2, x^4, y^4 \rangle$$
$$\mathbf{x}^{\mathbf{a}} \in \mathbb{k}[x_1, \dots, x_n] \longleftrightarrow \mathbf{a} \in \mathbb{N}^n$$

Define relation \sim_I on \mathbb{N}^n :

$$x^2 - xy \in I$$
, $xy - y^2 \in I$,

$$I = \langle x^2 - xy, xy - y^2, x^4, y^4 \rangle$$
$$\mathbf{x}^{\mathbf{a}} \in \mathbb{k}[x_1, \dots, x_n] \longleftrightarrow \mathbf{a} \in \mathbb{N}^n$$

Define relation \sim_I on \mathbb{N}^n :

$$x^2 - xy \in I, xy - y^2 \in I,$$

 $x(x^2 - xy) = x^3 - x^2y \in I,$

$$I = \langle x^2 - xy, xy - y^2, x^4, y^4 \rangle$$
$$\mathbf{x}^{\mathbf{a}} \in \mathbb{k}[x_1, \dots, x_n] \longleftrightarrow \mathbf{a} \in \mathbb{N}^n$$

Define relation \sim_I on \mathbb{N}^n :

$$x^2 - xy \in I, xy - y^2 \in I,$$

 $x(x^2 - xy) = x^3 - x^2y \in I, ...$

$$I = \langle x^2 - xy, xy - y^2, x^4, y^4 \rangle$$
$$\mathbf{x}^{\mathbf{a}} \in \mathbb{k}[x_1, \dots, x_n] \longleftrightarrow \mathbf{a} \in \mathbb{N}^n$$

Define relation \sim_I on \mathbb{N}^n :

$$x^2 - xy \in I, xy - y^2 \in I,$$

 $x(x^2 - xy) = x^3 - x^2y \in I, ...$

$$\mathbf{x}^{\mathbf{a}}, \mathbf{x}^{\mathbf{b}} \in I \Rightarrow \mathbf{x}^{\mathbf{a}} - \mathbf{x}^{\mathbf{b}} \in I$$

$$I = \langle x^2 - xy, xy - y^2, x^4, y^4 \rangle$$
$$\mathbf{x}^{\mathbf{a}} \in \mathbb{k}[x_1, \dots, x_n] \longleftrightarrow \mathbf{a} \in \mathbb{N}^n$$

Define relation \sim_I on \mathbb{N}^n :

$$x^2 - xy \in I, xy - y^2 \in I,$$

 $x(x^2 - xy) = x^3 - x^2y \in I, ...$

$$\mathbf{x}^{\mathbf{a}}, \mathbf{x}^{\mathbf{b}} \in I \Rightarrow \mathbf{x}^{\mathbf{a}} - \mathbf{x}^{\mathbf{b}} \in I$$

$$I = \langle x^2 - xy, xy - y^2, x^4, y^4 \rangle$$
$$\mathbf{x}^{\mathbf{a}} \in \mathbb{k}[x_1, \dots, x_n] \longleftrightarrow \mathbf{a} \in \mathbb{N}^n$$

Define relation \sim_I on \mathbb{N}^n :

$$x^2 - xy \in I, xy - y^2 \in I,$$

 $x(x^2 - xy) = x^3 - x^2y \in I, ...$

$$\mathbf{x^a}, \mathbf{x^b} \in \mathbf{\textit{I}} \Rightarrow \mathbf{x^a} - \mathbf{x^b} \in \mathbf{\textit{I}}$$

$$(x^2 = xy \text{ in } \mathbb{k}[x, y]/I)$$

Fix a binomial ideal $I \subset \mathbb{k}[x_1, \ldots, x_n]$.

Fix a binomial ideal $I \subset \mathbb{k}[x_1, \ldots, x_n]$.

• The equivalence relation \sim_I induced by I on \mathbb{N}^n is a *congruence*:

 $\mathbf{a} \sim_I \mathbf{b}$ implies $\mathbf{a} + \mathbf{c} \sim_I \mathbf{b} + \mathbf{c}$

for $\mathbf{a}, \mathbf{b}, \mathbf{c} \in \mathbb{N}^n$. In particular, $(\mathbb{N}^n/\sim_I, +)$ is well defined.

- Fix a binomial ideal $I \subset \mathbb{k}[x_1, \ldots, x_n]$.
 - The equivalence relation \sim_I induced by I on \mathbb{N}^n is a *congruence*:

 $\mathbf{a} \sim_I \mathbf{b}$ implies $\mathbf{a} + \mathbf{c} \sim_I \mathbf{b} + \mathbf{c}$

for $\mathbf{a}, \mathbf{b}, \mathbf{c} \in \mathbb{N}^n$. In particular, $(\mathbb{N}^n/\sim_I, +)$ is well defined.

• The monomials in I form a single class $\infty \in \mathbb{N}^n/\sim_I$, called the *nil*.

Fix a binomial ideal $I \subset \mathbb{k}[x_1, \ldots, x_n]$.

• The equivalence relation \sim_I induced by I on \mathbb{N}^n is a *congruence*:

 $\mathbf{a} \sim_I \mathbf{b}$ implies $\mathbf{a} + \mathbf{c} \sim_I \mathbf{b} + \mathbf{c}$

for $\mathbf{a}, \mathbf{b}, \mathbf{c} \in \mathbb{N}^n$. In particular, $(\mathbb{N}^n/\sim_I, +)$ is well defined.

- The monomials in I form a single class $\infty \in \mathbb{N}^n/\sim_I$, called the *nil*.
- The nil ∞ corresponds to 0 in the quotient $k[x_1, \ldots, x_n]/I$.

Fix a binomial ideal $I \subset \mathbb{k}[x_1, \ldots, x_n]$.

• The equivalence relation \sim_I induced by I on \mathbb{N}^n is a *congruence*:

 $\mathbf{a} \sim_I \mathbf{b}$ implies $\mathbf{a} + \mathbf{c} \sim_I \mathbf{b} + \mathbf{c}$

for $\mathbf{a}, \mathbf{b}, \mathbf{c} \in \mathbb{N}^n$. In particular, $(\mathbb{N}^n/\sim_I, +)$ is well defined.

- The monomials in I form a single class $\infty \in \mathbb{N}^n/\sim_I$, called the *nil*.
- The nil ∞ corresponds to 0 in the quotient $\Bbbk[x_1,\ldots,x_n]/I$.
- Each non-nil $\overline{\mathbf{a}} \in \mathbb{N}^n / \sim_I$ represents a distinct monomial modulo I.

 $I = \langle x^2 - xy, xy - y^2, x^4, y^4 \rangle$

$$I = \langle x^2 - xy, xy - y^2, x^4, y^4 \rangle$$

Monoid
$$\mathbb{N}^2/\sim_I$$

For $k = \overline{k}$, every binomial ideal has an expression of the form

$$I = \bigcap_{i=1}^{r} J_i$$

where each J_i is binomial, primary, and has a unique monomial in its socle.

For $k = \overline{k}$, every binomial ideal has an expression of the form

$$I = \bigcap_{i=1}^{r} J_i$$

where each J_i is binomial, primary, and has a unique monomial in its socle.

To construct a binomial irreducible decomposition for I, we can assume

For $k = \overline{k}$, every binomial ideal has an expression of the form

$$I = \bigcap_{i=1}^{r} J_i$$

where each J_i is binomial, primary, and has a unique monomial in its socle.

To construct a binomial irreducible decomposition for I, we can assume

• I is primary to the maximal ideal m,

For $k = \overline{k}$, every binomial ideal has an expression of the form

$$I = \bigcap_{i=1}^{r} J_i$$

where each J_i is binomial, primary, and has a unique monomial in its socle.

To construct a binomial irreducible decomposition for I, we can assume

- I is primary to the maximal ideal m,
- $\operatorname{soc}_{\mathfrak{m}}(I)/I$ has a unique monomial.

$$I = \langle x^2 - xy, xy - y^2, x^4, y^4 \rangle$$

$$I = \langle x^2 - xy, xy - y^2, x^4, y^4 \rangle$$

$$I = \langle x^2 - xy, xy - y^2, x^4, y^4 \rangle$$

$$\operatorname{soc}_{\mathfrak{m}}(I)/I = \mathbb{k}\{x^3, x - y\}$$

$$I = \langle x^2 - xy, xy - y^2, x^4, y^4 \rangle$$

$$\operatorname{soc}_{\mathfrak{m}}(I)/I = \Bbbk\{x^3, x - y\}$$

$$I = \langle x^2 - xy, xy - y^2, x^4, y^4 \rangle$$

$$\operatorname{soc}_{\mathfrak{m}}(I)/I = \mathbb{k}\{x^3, x - y\}$$

$$I = \langle x^2 - xy, xy - y^2, x^4, y^4 \rangle$$

$$\operatorname{soc}_{\mathfrak{m}}(I)/I = \Bbbk\{x^3, x - y\}$$

$$I = \langle x^2 - xy, xy - y^2, x^4, y^4 \rangle$$

$$\operatorname{soc}_{\mathfrak{m}}(I)/I = \Bbbk\{x^3, x - y\}$$

$$I = \langle x^2 - xy, xy - y^2, x^4, y^4 \rangle$$

 $\mathbb{N}^n/\sim_I \longleftrightarrow$ monomials mod I

$$\operatorname{soc}_{\mathfrak{m}}(I)/I = \Bbbk\{x^3, x - y\}$$

witnesses: monomials that merge with something in each direction

$$I = \langle x^2 - xy, xy - y^2, x^4, y^4 \rangle$$

 $\mathbb{N}^n/\sim_I \longleftrightarrow$ monomials mod I

$$\operatorname{soc}_{\mathfrak{m}}(I)/I = \Bbbk\{x^3, x - y\}$$

witnesses: monomials that merge with something in each direction

Definition

A monomial $\mathbf{x}^{\mathbf{a}}$ is a *witness* for I if for each $\mathbf{x}^{\mathbf{p}} \in \mathfrak{p}$,

$$\mathbf{p} + \mathbf{a} \sim_I \mathbf{p} + \mathbf{a}'$$
 for some $\mathbf{a}' \not\sim_I \mathbf{a}$,

that is, \boldsymbol{x}^a merges with another monomial modulo l when multiplied by any monomial in $\boldsymbol{\mathfrak{p}}.$

Definition

A monomial $\mathbf{x}^{\mathbf{a}}$ is a *witness* for *I* if for each $\mathbf{x}^{\mathbf{p}} \in \mathfrak{p}$,

$$\mathbf{p} + \mathbf{a} \sim_I \mathbf{p} + \mathbf{a}'$$
 for some $\mathbf{a}' \not\sim_I \mathbf{a}$,

that is, $\mathbf{x}^{\mathbf{a}}$ merges with another monomial modulo I when multiplied by any monomial in \mathfrak{p} .

Theorem (Kahle-Miller, 2013)

For any \mathfrak{p} -primary binomial ideal I, any $f \in \text{soc}_{\mathfrak{p}}(I)/I$ is a sum of witnesses.

$$I = \langle x^2 - xy, xy - y^2, x^4, y^4 \rangle$$

$$I = \langle x^2 - xy, xy - y^2, x^4, y^4 \rangle$$
$$soc_{\mathfrak{m}}(I)/I = \mathbb{k}\{x^3, x - y\}$$

$$I = \langle x^2 - xy, xy - y^2, x^4, y^4 \rangle$$
$$soc_{\mathfrak{m}}(I)/I = \mathbb{k}\{x^3, x - y\}$$

$$I = \langle x^2 - xy, xy - y^2, x^4, y^4 \rangle$$
$$soc_{\mathfrak{m}}(I)/I = \mathbb{k}\{x^3, x - y\}$$

$$I = \langle x^2 - xy, xy - y^2, x^4, y^4 \rangle$$
$$soc_{\mathfrak{m}}(I)/I = \mathbb{k}\{x^3, x - y\}$$

$$J = \langle x - y, x^4, y^4 \rangle$$

$$I = \langle x^2 - xy, xy - y^2, x^4, y^4 \rangle$$
$$soc_{\mathfrak{m}}(I)/I = \mathbb{k}\{x^3, x - y\}$$

$$J = \langle x - y, x^4, y^4 \rangle$$

$$\operatorname{soc}_{\mathfrak{m}}(J)/J = \Bbbk\{x^3\}$$

• One irreducible component per witness monomial.

- One irreducible component per witness monomial.
- For each component, force chosen witness to be maximal.

- One irreducible component per witness monomial.
- For each component, force chosen witness to be maximal.
- Soccularize to remove other socle elements.

$$I = \langle x^2 - xy, xy - y^2, x^4, y^4 \rangle$$

$$I = \langle x^2 - xy, xy - y^2, x^4, y^4 \rangle$$

$$I = \langle x^2 - xy, xy - y^2, x^4, y^4 \rangle$$

$$I = \langle x^2 - xy, xy - y^2, x^4, y^4 \rangle$$

 $I = \langle x^2 - xy, xy - y^2, x^4, y^4 \rangle$ Witnesses: **x**³, *x*, *y* $J_1 = \langle x - y, x^4, y^4 \rangle,$

 $I = \langle x^2 - xy, xy - y^2, x^4, y^4 \rangle$ Witnesses: x^3 , **x**, y $J_1 = \langle x - y, x^4, y^4 \rangle$,

 $I = \langle x^2 - xy, xy - y^2, x^4, y^4 \rangle$ Witnesses: x^3 , **x**, y $J_1 = \langle x - y, x^4, y^4 \rangle$, $J_2 = \langle x^2, y \rangle$,

$$I = \langle x^2 - xy, xy - y^2, x^4, y^4 \rangle$$

Witnesses: x^3 , x , y
$$J_1 = \langle x - y, x^4, y^4 \rangle$$
,
$$J_2 = \langle x^2, y \rangle$$
,

$$I = \langle x^2 - xy, xy - y^2, x^4, y^4 \rangle$$

Witnesses: x^3 , x , y
$$J_1 = \langle x - y, x^4, y^4 \rangle$$
,
$$J_2 = \langle x^2, y \rangle$$
, $J_3 = \langle x, y^2 \rangle$

 $I = \langle x^2 - xy, xy - y^2, x^4, y^4 \rangle$ Witnesses: x^3 , x, y $J_1 = \langle x - y, x^4, y^4 \rangle$, $J_2 = \langle x^2, y \rangle$, $J_3 = \langle x, y^2 \rangle$ $I = J_1 \cap J_2 \cap J_3$

 $I = \langle x^2 - xy, xy - y^2, x^4, y^4 \rangle$ Witnesses: x^3, x, y $J_1 = \langle x - y, x^4, y^4 \rangle,$ $J_2 = \langle x^2, y \rangle, J_3 = \langle x, y^2 \rangle$ $I = J_1 \cap J_2 \cap J_3$ $= J_1 \cap J_2$

$$I = \langle x^2 - xy, xy + y^2, x^4, y^4 \rangle$$

 $I = \langle x^2 - xy, xy + y^2, x^4, y^4 \rangle$

$$I = \langle x^2 - xy, xy + y^2, x^4, y^4 \rangle$$

 $I = \langle x^2 - xy, xy + y^2, x^4, y^4 \rangle$ Witnesses: x^3 , x, y $soc_m(I)/I = \Bbbk\{x^3\}$

 $I = \langle x^2 - xy, xy + y^2, x^4, y^4 \rangle$ Witnesses: x^3, x, y $\operatorname{soc}_{\mathfrak{m}}(I)/I = \mathbb{k}\{x^3\}$ $I = I \cap \langle x^2, y \rangle \cap \langle x, y^2 \rangle$

$$I = \langle xy - y^2, x^3 - xy^2, x^4, y^4 \rangle$$

 $I = \langle xy - y^2, x^3 - xy^2, x^4, y^4 \rangle$

$$I = \langle xy - y^2, x^3 - xy^2, x^4, y^4 \rangle$$

$$I = \langle xy - y^2, x^3 - xy^2, x^4, y^4 \rangle$$

Witnesses: x^3 , x^2 , xy
 $\operatorname{soc}_{\mathfrak{m}}(I)/I = \mathbb{k}\{x^3, x^2 - xy\}$

$$I = \langle xy - y^2, x^3 - xy^2, x^4, y^4 \rangle$$

Witnesses: **x**³, x², xy
soc_m(I)/I = $\mathbb{k} \{x^3, x^2 - xy\}$
Soccularize:

$$I = \langle xy - y^2, x^3 - xy^2, x^4, y^4 \rangle$$

Witnesses: **x**³, x², xy
soc_m(I)/I = \mathbb{K} {x³, x² - xy}
Soccularize:

$$I = \langle xy - y^2, x^3 - xy^2, x^4, y^4 \rangle$$

Witnesses: **x**³, x², xy
soc_m(I)/I = $\mathbb{k} \{x^3, x^2 - xy\}$
Soccularize:

$$I = \langle xy - y^2, x^3 - xy^2, x^4, y^4 \rangle$$

Witnesses: $\mathbf{x^3}$, x^2 , xy
 $\operatorname{soc}_{\mathfrak{m}}(I)/I = \mathbb{k}\{x^3, x^2 - xy\}$

Soccularize: New witnesses!

$$I = \langle xy - y^2, x^3 - xy^2, x^4, y^4 \rangle$$

Witnesses: x^3 , x^2 , xy

$$\operatorname{soc}_{\mathfrak{m}}(I)/I = \Bbbk\{x^3, x^2 - xy\}$$

$$I = \langle xy - y^2, x^3 - xy^2, x^4, y^4 \rangle$$

Witnesses: x^3 , x^2 , xy

$$\operatorname{soc}_{\mathfrak{m}}(I)/I = \Bbbk\{x^3, x^2 - xy\}$$

$$I = \langle xy - y^2, x^3 - xy^2, x^4, y^4 \rangle$$

Witnesses: x^3 , x^2 , xy

$$\operatorname{soc}_{\mathfrak{m}}(I)/I = \Bbbk\{x^3, x^2 - xy\}$$

$$J_1 = \langle x - y, x^4, y^4 \rangle$$

$$I = \langle xy - y^2, x^3 - xy^2, x^4, y^4 \rangle$$

Witnesses: x^3 , x^2 , xy

$$\operatorname{soc}_{\mathfrak{m}}(I)/I = \Bbbk\{x^3, x^2 - xy\}$$

$$J_1 = \langle x - y, x^4, y^4 \rangle$$

$$I = \langle xy - y^2, x^3 - xy^2, x^4, y^4 \rangle$$

Witnesses: x^3 , x^2 , xy

$$\operatorname{soc}_{\mathfrak{m}}(I)/I = \Bbbk\{x^3, x^2 - xy\}$$

$$I = \langle xy - y^2, x^3 - xy^2, x^4, y^4 \rangle$$

Witnesses: x^3 , x^2 , **xy**

$$\operatorname{soc}_{\mathfrak{m}}(I)/I = \Bbbk\{x^3, x^2 - xy\}$$

$$I = \langle xy - y^2, x^3 - xy^2, x^4, y^4 \rangle$$

Witnesses: x^3 , x^2 , **xy**

$$\operatorname{soc}_{\mathfrak{m}}(I)/I = \Bbbk\{x^3, x^2 - xy\}$$

$$\begin{array}{l} J_1 = \langle x-y, x^4, y^4 \rangle \\ J_2 = \langle x^3, y \rangle \\ J_3 = \langle xy-y^2, x^2, y^3 \rangle \end{array}$$

$$I = \langle xy - y^2, x^3 - xy^2, x^4, y^4 \rangle$$

Witnesses: x^3 , x^2 , xy

$$\operatorname{soc}_{\mathfrak{m}}(I)/I = \Bbbk\{x^3, x^2 - xy\}$$

$$J_{1} = \langle x - y, x^{4}, y^{4} \rangle$$
$$J_{2} = \langle x^{3}, y \rangle$$
$$J_{3} = \langle xy - y^{2}, x^{2}, y^{3} \rangle$$
$$I = J_{1} \cap J_{2} \cap J_{3}$$

• One component for each *I*-witness.

- One component for each *I*-witness.
- For the component at a witness w:

- One component for each *I*-witness.
- For the component at a witness w:
 - Add monomials not below w, so w is a unique monomial socle element.

- One component for each *I*-witness.
- For the component at a witness w:
 - Add monomials not below w, so w is a unique monomial socle element.
 - "Soccularize" by merging witness pairs below w.

- One component for each *I*-witness.
- For the component at a witness w:
 - Add monomials not below w, so w is a unique monomial socle element.
 - "Soccularize" by merging witness pairs below w.
 - Repeat with protected witnesses until no new witness pairs are created

- One component for each *I*-witness.
- For the component at a witness w:
 - Add monomials not below w, so w is a unique monomial socle element.
 - "Soccularize" by merging witness pairs below w.
 - Repeat with protected witnesses until no new witness pairs are created

Theorem (Kahle-Miller-O., 2014)

For $\mathbb{k} = \overline{\mathbb{k}}$, any binomial ideal I can be written as $I = \bigcap_{i=1}^{r} J_i$, where each J_i is binomial and \mathfrak{p}_i -primary, and the socle $\operatorname{soc}_{\mathfrak{p}_i}(J_i)/J_i$ contains a unique monomial and no other binomials.

$$I = \langle x^2y - xy^2, x^3, y^3 \rangle$$

$$I = \langle x^2y - xy^2, x^3, y^3 \rangle$$

$$I = \langle x^2y - xy^2, x^3, y^3 \rangle$$

Witnesses: x^2y , x^2 , xy, y^2

$$I = \langle x^2y - xy^2, x^3, y^3 \rangle$$

Witnesses: x^2y , x^2 , xy , y^2
 $\operatorname{soc}_{\mathfrak{m}}(I)/I = \mathbb{K}\{x^2y, x^2 + y^2 - xy\}$

$$I = \langle x^2y - xy^2, x^3, y^3 \rangle$$

Witnesses: x^2y , x^2 , xy , y^2
 $\operatorname{soc}_{\mathfrak{m}}(I)/I = \mathbb{K}\{x^2y, x^2 + y^2 - xy\}$

$$I = \langle x^2y - xy^2, x^3, y^3 \rangle$$

Witnesses: x^2y , x^2 , xy , y^2
 $\operatorname{soc}_{\mathfrak{m}}(I)/I = \mathbb{k}\{x^2y, x^2 + y^2 - xy\}$

$$I = \langle x^2y - xy^2, x^3, y^3 \rangle$$

Witnesses: x^2y , x^2 , xy , y^2
 $\operatorname{soc}_{\mathfrak{m}}(I)/I = \mathbb{k}\{x^2y, x^2 + y^2 - xy\}$

$$I = \langle x^2y - xy^2, x^3, y^3 \rangle$$

Witnesses: x^2y , x^2 , xy , y^2
 $\operatorname{soc}_{\mathfrak{m}}(I)/I = \Bbbk \{x^2y, x^2 + y^2 - xy\}$

$$I = \langle x^2y - xy^2, x^3, y^3 \rangle$$

Witnesses: x^2y , x^2 , xy , y^2
soc_m(I)/ $I = \mathbb{k} \{ x^2y, x^2 + y^2 - xy \}$
 $I = \langle x^2 + y^2 - xy, x^3, y^3 \rangle \cap \langle x^3, y \rangle$

Theorem (Kahle-Miller-O., 2014)

 $I = \langle x^2y - xy^2, x^3, y^3 \rangle$ admits no binomial irreducible decomposition.

Theorem (Kahle-Miller-O., 2014)

 $I = \langle x^2y - xy^2, x^3, y^3 \rangle$ admits no binomial irreducible decomposition.

Proof.

Fix an irredundant irreducible decomposition $I = \bigcap_{i=1}^{r} J_i$.

 $I = \langle x^2y - xy^2, x^3, y^3 \rangle$ admits no binomial irreducible decomposition.

Proof.

Fix an irredundant irreducible decomposition $I = \bigcap_{i=1}^{r} J_i$. We have $r = \dim_{\mathbb{K}}(\operatorname{soc}_{\mathfrak{m}}(I)/I) = 2$, so $I = J_1 \cap J_2$.

 $I = \langle x^2y - xy^2, x^3, y^3 \rangle$ admits no binomial irreducible decomposition.

Proof.

Fix an irredundant irreducible decomposition $I = \bigcap_{i=1}^{r} J_i$. We have $r = \dim_{\Bbbk}(\operatorname{soc}_{\mathfrak{m}}(I)/I) = 2$, so $I = J_1 \cap J_2$. Write $\alpha = x^2 + y^2 - xy$, $\beta = x^2y$, so $\operatorname{soc}_{\mathfrak{m}}(I)/I = \Bbbk\{\alpha, \beta\}$.

 $I = \langle x^2y - xy^2, x^3, y^3 \rangle$ admits no binomial irreducible decomposition.

Proof.

Fix an irredundant irreducible decomposition $I = \bigcap_{i=1}^{r} J_i$. We have $r = \dim_{\Bbbk}(\operatorname{soc}_{\mathfrak{m}}(I)/I) = 2$, so $I = J_1 \cap J_2$. Write $\alpha = x^2 + y^2 - xy$, $\beta = x^2y$, so $\operatorname{soc}_{\mathfrak{m}}(I)/I = \Bbbk\{\alpha, \beta\}$. We know

$$\operatorname{soc}_{\mathfrak{m}}(I)/I \cong \operatorname{soc}_{\mathfrak{m}}(J_1)/J_1 \oplus \operatorname{soc}_{\mathfrak{m}}(J_2)/J_2,$$

so we have $\alpha + \lambda \beta \in \text{soc}_{\mathfrak{m}}(J_i)/J_i$ for some *i*, say i = 1.

 $I = \langle x^2y - xy^2, x^3, y^3 \rangle$ admits no binomial irreducible decomposition.

Proof.

Fix an irredundant irreducible decomposition $I = \bigcap_{i=1}^{r} J_i$. We have $r = \dim_{\Bbbk}(\operatorname{soc}_{\mathfrak{m}}(I)/I) = 2$, so $I = J_1 \cap J_2$. Write $\alpha = x^2 + y^2 - xy$, $\beta = x^2y$, so $\operatorname{soc}_{\mathfrak{m}}(I)/I = \Bbbk\{\alpha, \beta\}$. We know

$$\operatorname{soc}_{\mathfrak{m}}(I)/I \cong \operatorname{soc}_{\mathfrak{m}}(J_1)/J_1 \oplus \operatorname{soc}_{\mathfrak{m}}(J_2)/J_2,$$

so we have $\alpha + \lambda\beta \in \text{soc}_{\mathfrak{m}}(J_i)/J_i$ for some *i*, say *i* = 1. This means $I + \langle \alpha + \lambda\beta \rangle \subset J_1$.

 $I = \langle x^2y - xy^2, x^3, y^3 \rangle$ admits no binomial irreducible decomposition.

Proof.

Fix an irredundant irreducible decomposition $I = \bigcap_{i=1}^{r} J_i$. We have $r = \dim_{\mathbb{K}}(\operatorname{soc}_{\mathfrak{m}}(I)/I) = 2$, so $I = J_1 \cap J_2$. Write $\alpha = x^2 + y^2 - xy$, $\beta = x^2y$, so $\operatorname{soc}_{\mathfrak{m}}(I)/I = \mathbb{K}\{\alpha, \beta\}$. We know

$$\operatorname{soc}_{\mathfrak{m}}(I)/I \cong \operatorname{soc}_{\mathfrak{m}}(J_1)/J_1 \oplus \operatorname{soc}_{\mathfrak{m}}(J_2)/J_2,$$

so we have $\alpha + \lambda\beta \in \text{soc}_{\mathfrak{m}}(J_i)/J_i$ for some *i*, say i = 1. This means $I + \langle \alpha + \lambda\beta \rangle \subset J_1$. But $I + \langle \alpha + \lambda\beta \rangle$ already has simple socle, so $J_1 = I + \langle \alpha + \lambda\beta \rangle$.

References

David Eisenbud, Bernd Sturmfels (1996) Binomial ideals. Duke Math J. 84 (1996), no. 1, 145.

Ezra Miller, Bernd Sturmfels (2005) Combinatorial commutative algebra. *Graduate Texts in Mathematics* 227. Springer-Verlag, New York, 2005.

Thomas Kahle, Ezra Miller (2013)

Decompositions of commutative monoid congruences and binomial ideals. arXiv:1107.4699 [math].

Thomas Kahle, Ezra Miller, Christopher O'Neill (2014) Irreducible decompositions of binomial ideals. To appear.

References

David Eisenbud, Bernd Sturmfels (1996) Binomial ideals. Duke Math J. 84 (1996), no. 1, 145.

Ezra Miller, Bernd Sturmfels (2005) Combinatorial commutative algebra. *Graduate Texts in Mathematics* 227. Springer-Verlag, New York, 2005.

Thomas Kahle, Ezra Miller (2013)

Decompositions of commutative monoid congruences and binomial ideals. arXiv:1107.4699 [math].

Thomas Kahle, Ezra Miller, Christopher O'Neill (2014) Irreducible decompositions of binomial ideals. To appear.

Thanks!

When do they exist?

$$I = \langle x^2y - xy^2, x^4 - x^3y, xy^3 - y^4, x^5, y^5 \rangle$$

When do they exist?

$$I = \langle x^2y - xy^2, x^4 - x^3y, xy^3 - y^4, x^5, y^5 \rangle$$

Witnesses: x^4 , x^3 , x^2y , y^3

$$I = \langle x^2y - xy^2, x^4 - x^3y, xy^3 - y^4, x^5, y^5 \rangle$$

Witnesses: x^4 , x^3 , x^2y , y^3

 $I = J_1 \cap J_2 \cap J_3 \cap J_4$

$$I = \langle x^2y - xy^2, x^4 - x^3y, xy^3 - y^4, x^5, y^5 \rangle$$

Witnesses: x^4 , x^3 , x^2y , y^3

 $I = J_1 \cap J_2 \cap J_3 \cap J_4$

 J_3 not binomial

$$I = \langle x^2y - xy^2, x^4 - x^3y, xy^3 - y^4, x^5, y^5 \rangle$$

Witnesses: x^4 , x^3 , x^2y , y^3

 $I = J_1 \cap J_2 \cap J_3 \cap J_4$

 J_3 not binomial

$$I = \langle x^2y - xy^2, x^4 - x^3y, xy^3 - y^4, x^5, y^5 \rangle$$

Witnesses: x^4 , x^3 , x^2y , y^3

 $I = J_1 \cap J_2 \cap J_3 \cap J_4$

 J_3 not binomial

$$I = \langle x^2y - xy^2, x^4 - x^3y, xy^3 - y^4, x^5, y^5 \rangle$$

Witnesses: x^4 , x^3 , x^2y , y^3

$$I = J_1 \cap J_2 \cap J_3 \cap J_4$$

 J_3 not binomial

Can omit one of J_2 , J_3 , J_4

 $I' = \langle whatever is necessary \rangle$

 $I' = \langle whatever is necessary \rangle$

Witnesses: x^6 , x^5 , x^4y , xy^4 , y^5

 $I' = \langle {
m whatever \ is \ necessary}
angle$

Witnesses: x^6 , x^5 , x^4y , xy^4 , y^5

 $I = J_1 \cap J_2 \cap J_3 \cap J_4 \cap J_5$

 $I' = \langle whatever is necessary \rangle$

Witnesses: x^6 , x^5 , x^4y , xy^4 , y^5

 $I=J_1\cap J_2\cap J_3\cap J_4\cap J_5$

 $I' = \langle whatever is necessary \rangle$

Witnesses: x^6 , x^5 , x^4y , xy^4 , y^5

 $I=J_1\cap J_2\cap J_3\cap J_4\cap J_5$

 $I' = \langle whatever is necessary \rangle$

Witnesses: x^6 , x^5 , x^4y , xy^4 , y^5

 $I=J_1\cap J_2\cap J_3\cap J_4\cap J_5$

 $I' = \langle whatever is necessary \rangle$

Witnesses: x^6 , x^5 , x^4y , xy^4 , y^5

 $I=J_1\cap J_2\cap J_3\cap J_4\cap J_5$

 $I' = \langle whatever is necessary \rangle$

Witnesses: x^6 , x^5 , x^4y , xy^4 , y^5

 $I = J_1 \cap J_2 \cap J_3 \cap J_4 \cap J_5$

 J_3 , J_4 not binomial

Can omit one of J_2 , J_3 , J_4 , J_5

