Invariants of non-unique factorization

Christopher O'Neill

Texas A&M University

coneill@math.tamu.edu

Joint with Roberto Pelayo

October 21, 2014

Definition

An integral domain R is *factorial* if for each non-unit $r \in R$,

- **()** there is a *factorization* $r = u_1 \cdots u_k$ as a product of irreducibles, and
- 2 this factorization is unique (up to reordering and unit multiple).

Definition

An integral domain R is *factorial* if for each non-unit $r \in R$,

- **(**) there is a *factorization* $r = u_1 \cdots u_k$ as a product of irreducibles, and
- 2 this factorization is unique (up to reordering and unit multiple).

Example

 \mathbb{Z} is factorial: each $z = p_1 \cdots p_k$ for primes $p_1 \cdots p_k$.

Definition

An integral domain R is *atomic* if for each non-unit $r \in R$,

- **()** there is a *factorization* $r = u_1 \cdots u_k$ as a product of irreducibles, and
- 2 this factorization is unique (up to reordering and unit multiple).

Example

 \mathbb{Z} is factorial: each $z = p_1 \cdots p_k$ for primes $p_1 \cdots p_k$.

Definition

An integral domain R is *atomic* if for each non-unit $r \in R$,

- **()** there is a *factorization* $r = u_1 \cdots u_k$ as a product of irreducibles, and
- **2** this factorization is unique (up to reordering and unit multiple).

Example

 \mathbb{Z} is factorial: each $z = p_1 \cdots p_k$ for primes $p_1 \cdots p_k$.

Example

If $R = \mathbb{Z}[\sqrt{-5}]$, then $6 \in R$ has two distinct factorizations:

$$6 = 2 \cdot 3 = (1 + \sqrt{-5})(1 - \sqrt{-5})$$

Definition

An integral domain R is *atomic* if for each non-unit $r \in R$,

- **()** there is a *factorization* $r = u_1 \cdots u_k$ as a product of irreducibles, and
- 2 this factorization is unique (up to reordering and unit multiple).

Example

 \mathbb{Z} is factorial: each $z = p_1 \cdots p_k$ for primes $p_1 \cdots p_k$.

Example

If $R = \mathbb{Z}[\sqrt{-5}]$, then $6 \in R$ has two distinct factorizations:

$$6 = 2 \cdot 3 = (1 + \sqrt{-5})(1 - \sqrt{-5})$$

To prove: define a valuation $a + b\sqrt{-5} \mapsto a^2 + 5b^2$.

Definition

An integral domain R is *atomic* if for each non-unit $r \in R$,

- **()** there is a *factorization* $r = u_1 \cdots u_k$ as a product of irreducibles, and
- 2 this factorization is unique (up to reordering and unit multiple).

Example

 \mathbb{Z} is factorial: each $z = p_1 \cdots p_k$ for primes $p_1 \cdots p_k$.

Example

If $R = \mathbb{Z}[\sqrt{-5}]$, then $6 \in R$ has two distinct factorizations:

$$6 = 2 \cdot 3 = (1 + \sqrt{-5})(1 - \sqrt{-5})$$

To prove: define a valuation $a + b\sqrt{-5} \mapsto a^2 + 5b^2$. The point: it's nontrivial.

Definition

An integral domain R is *atomic* if for each non-unit $r \in R$,

- **()** there is a *factorization* $r = u_1 \cdots u_k$ as a product of irreducibles, and
- **2** this factorization is unique (up to reordering and unit multiple).

Example

 \mathbb{Z} is factorial: each $z = p_1 \cdots p_k$ for primes $p_1 \cdots p_k$.

Example

Definition

An integral domain R is *atomic* if for each non-unit $r \in R$,

- **()** there is a *factorization* $r = u_1 \cdots u_k$ as a product of irreducibles, and
- **2** this factorization is unique (up to reordering and unit multiple).

Example

 \mathbb{Z} is factorial: each $z = p_1 \cdots p_k$ for primes $p_1 \cdots p_k$.

Example

Let
$$R = \mathbb{C}[x^2, x^3]$$
.

Definition

An integral domain R is *atomic* if for each non-unit $r \in R$,

- **()** there is a *factorization* $r = u_1 \cdots u_k$ as a product of irreducibles, and
- **2** this factorization is unique (up to reordering and unit multiple).

Example

 \mathbb{Z} is factorial: each $z = p_1 \cdots p_k$ for primes $p_1 \cdots p_k$.

Example

Let $R = \mathbb{C}[x^2, x^3]$. • x^2 and x^3 are irreducible.

Definition

An integral domain R is *atomic* if for each non-unit $r \in R$,

- **()** there is a *factorization* $r = u_1 \cdots u_k$ as a product of irreducibles, and
- **2** this factorization is unique (up to reordering and unit multiple).

Example

 \mathbb{Z} is factorial: each $z = p_1 \cdots p_k$ for primes $p_1 \cdots p_k$.

Example

Let
$$R = \mathbb{C}[x^2, x^3]$$
.
• x^2 and x^3 are irreducible.
• $x^6 = x^3 \cdot x^3 = x^2 \cdot x^2 \cdot x^2$.

Definition

An integral domain R is *atomic* if for each non-unit $r \in R$,

- **()** there is a *factorization* $r = u_1 \cdots u_k$ as a product of irreducibles, and
- 2 this factorization is unique (up to reordering and unit multiple).

Example

 \mathbb{Z} is factorial: each $z = p_1 \cdots p_k$ for primes $p_1 \cdots p_k$.

Definition

An integral domain R is *atomic* if for each non-unit $r \in R$,

- **()** there is a *factorization* $r = u_1 \cdots u_k$ as a product of irreducibles, and
- 2 this factorization is unique (up to reordering and unit multiple).

Example

 \mathbb{Z} is factorial: each $z = p_1 \cdots p_k$ for primes $p_1 \cdots p_k$.

Observation

• Where's the addition?

Definition

An integral domain R is *atomic* if for each non-unit $r \in R$,

- **()** there is a *factorization* $r = u_1 \cdots u_k$ as a product of irreducibles, and
- 2 this factorization is unique (up to reordering and unit multiple).

Example

 \mathbb{Z} is factorial: each $z = p_1 \cdots p_k$ for primes $p_1 \cdots p_k$.

- Where's the addition?
- Factorization in (cancellative comutative) monoids:

Definition

An integral domain R is *atomic* if for each non-unit $r \in R$,

- **()** there is a *factorization* $r = u_1 \cdots u_k$ as a product of irreducibles, and
- 2 this factorization is unique (up to reordering and unit multiple).

Example

 \mathbb{Z} is factorial: each $z = p_1 \cdots p_k$ for primes $p_1 \cdots p_k$.

- Where's the addition?
- Factorization in (cancellative comutative) monoids:

$$(R,+,\cdot) \quad \rightsquigarrow \quad (R \setminus \{0\},\cdot)$$

Definition

An integral domain R is *atomic* if for each non-unit $r \in R$,

- **()** there is a *factorization* $r = u_1 \cdots u_k$ as a product of irreducibles, and
- 2 this factorization is unique (up to reordering and unit multiple).

Example

 \mathbb{Z} is factorial: each $z = p_1 \cdots p_k$ for primes $p_1 \cdots p_k$.

- Where's the addition?
- Factorization in (cancellative comutative) monoids:

$$\begin{array}{rcl} (R,+,\cdot) & \rightsquigarrow & (R\setminus\{0\},\cdot)\\ (\mathbb{C}[M],+,\cdot) & \rightsquigarrow & (M,\cdot) \end{array}$$

An arithmetical congruence monoid is a multiplicative submonoid

$$M_{a,b} = \{n : n \equiv a \mod b\} \subset \mathbb{Z}_{>0}$$

for a, b > 0 with $a^2 \equiv a \mod b$.

An arithmetical congruence monoid is a multiplicative submonoid

$$M_{a,b} = \{n : n \equiv a \mod b\} \subset \mathbb{Z}_{>0}$$

for a, b > 0 with $a^2 \equiv a \mod b$.

Example

The Hilbert monoid $M_{1,4}$.

An arithmetical congruence monoid is a multiplicative submonoid

$$M_{a,b} = \{n : n \equiv a \mod b\} \subset \mathbb{Z}_{>0}$$

for a, b > 0 with $a^2 \equiv a \mod b$.

Example

The Hilbert monoid $M_{1,4}$.

• Every product in $M_{1,4}$ is a product in \mathbb{Z} .

An arithmetical congruence monoid is a multiplicative submonoid

$$M_{a,b} = \{n : n \equiv a \mod b\} \subset \mathbb{Z}_{>0}$$

for a, b > 0 with $a^2 \equiv a \mod b$.

Example

The Hilbert monoid $M_{1,4}$.

- Every product in $M_{1,4}$ is a product in \mathbb{Z} .
- 9,21,49 \in $M_{1,4}$ are irreducible.

An arithmetical congruence monoid is a multiplicative submonoid

$$M_{a,b} = \{n : n \equiv a \mod b\} \subset \mathbb{Z}_{>0}$$

for a, b > 0 with $a^2 \equiv a \mod b$.

Example

The Hilbert monoid $M_{1,4}$.

- Every product in $M_{1,4}$ is a product in \mathbb{Z} .
- 9,21,49 \in $M_{1,4}$ are irreducible.
- $441 = 9 \cdot 49 = 21 \cdot 21$.

A numerical monoid S is an additive submonoid of \mathbb{N} with $|\mathbb{N} \setminus S| < \infty$.

A numerical monoid S is an **additive** submonoid of \mathbb{N} with $|\mathbb{N} \setminus S| < \infty$.

Example

Let $S = \langle 2, 3 \rangle = \{2, 3, 4, 5, ...\}$ under addition.

A numerical monoid S is an **additive** submonoid of \mathbb{N} with $|\mathbb{N} \setminus S| < \infty$.

Example

Let $S = \langle 2, 3 \rangle = \{2, 3, 4, 5, ...\}$ under addition.

•
$$\mathbb{C}[S] = \mathbb{C}[x^2, x^3].$$

A numerical monoid S is an **additive** submonoid of \mathbb{N} with $|\mathbb{N} \setminus S| < \infty$.

Example

Let $S = \langle 2, 3 \rangle = \{2, 3, 4, 5, ...\}$ under addition.

•
$$\mathbb{C}[S] = \mathbb{C}[x^2, x^3].$$

•
$$6 = 2 + 2 + 2 = 3 + 3$$
.

A numerical monoid S is an **additive** submonoid of \mathbb{N} with $|\mathbb{N} \setminus S| < \infty$.

Example

Let $S = \langle 2, 3 \rangle = \{2, 3, 4, 5, ...\}$ under addition.

•
$$\mathbb{C}[S] = \mathbb{C}[x^2, x^3].$$

• 6 = 2 + 2 + 2 = 3 + 3. Factorizations are additive!

A numerical monoid S is an **additive** submonoid of \mathbb{N} with $|\mathbb{N} \setminus S| < \infty$.

Example

Let $S = \langle 2, 3 \rangle = \{2, 3, 4, 5, ...\}$ under addition.

•
$$\mathbb{C}[S] = \mathbb{C}[x^2, x^3].$$

• 6 = 2 + 2 + 2 = 3 + 3. Factorizations are additive!

Example

 $McN = \langle 6, 9, 20 \rangle = \{0, 6, 9, 12, 15, 18, 20, 21, \ldots \}.$

A numerical monoid S is an **additive** submonoid of \mathbb{N} with $|\mathbb{N} \setminus S| < \infty$.

Example

Let $S = \langle 2, 3 \rangle = \{2, 3, 4, 5, ...\}$ under addition.

•
$$\mathbb{C}[S] = \mathbb{C}[x^2, x^3].$$

• 6 = 2 + 2 + 2 = 3 + 3. Factorizations are additive!

Example

 $\mathit{McN} = \langle 6, 9, 20 \rangle = \{0, 6, 9, 12, 15, 18, 20, 21, \ldots \}.$ "McNugget Monoid"

Factorization invariants

Christopher O'Neill (Texas A&M University) Invariants of non-unique factorization

Factorization invariants

Definition

Fix a commutative, cancellative monoid (M, \cdot) . For non-unit $m \in M$,

$$Z_M(m) = \{u_1 \cdots u_k = m : u_1, \dots, u_k \text{ irreducible}\}$$

denotes the set of factorizations of m.

Fix a commutative, cancellative monoid (M, \cdot) . For non-unit $m \in M$,

$$\mathsf{Z}_M(m) = \{u_1 \cdots u_k = m : u_1, \dots, u_k \text{ irreducible}\}$$

denotes the set of factorizations of m. The elasticity of m is

$$\rho(m) = \frac{\max \text{ length in } Z_M(m)}{\min \text{ length in } Z_M(m)}$$

Fix a commutative, cancellative monoid (M, \cdot) . For non-unit $m \in M$,

$$\mathsf{Z}_M(m) = \{u_1 \cdots u_k = m : u_1, \dots, u_k \text{ irreducible}\}$$

denotes the set of factorizations of m. The elasticity of m is

$$\rho(m) = \frac{\max \text{ length in } Z_M(m)}{\min \text{ length in } Z_M(m)}$$

The *elasticity* of *M* is $\rho(M) = \sup_{m \in M} \rho(m)$.

Fix a commutative, cancellative monoid (M, \cdot) . For non-unit $m \in M$,

$$\mathsf{Z}_M(m) = \{u_1 \cdots u_k = m : u_1, \dots, u_k \text{ irreducible}\}$$

denotes the set of factorizations of m. The elasticity of m is

$$\rho(m) = \frac{\max \text{ length in } Z_M(m)}{\min \text{ length in } Z_M(m)}$$

The *elasticity* of *M* is $\rho(M) = \sup_{m \in M} \rho(m)$.

Example (The good)

The Hilbert monoid: $\rho(M_{1,4}) = 1$.

Fix a commutative, cancellative monoid (M, \cdot) . For non-unit $m \in M$,

$$\mathsf{Z}_M(m) = \{u_1 \cdots u_k = m : u_1, \dots, u_k \text{ irreducible}\}$$

denotes the set of factorizations of m. The elasticity of m is

$$\rho(m) = \frac{\max \text{ length in } Z_M(m)}{\min \text{ length in } Z_M(m)}$$

The *elasticity* of *M* is $\rho(M) = \sup_{m \in M} \rho(m)$.

Example (The good)

The Hilbert monoid: $\rho(M_{1,4}) = 1$.

• Every factorization of $m \in M_{1,4}$ has the same length.

Fix a commutative, cancellative monoid (M, \cdot) . For non-unit $m \in M$,

$$\mathsf{Z}_M(m) = \{u_1 \cdots u_k = m : u_1, \dots, u_k \text{ irreducible}\}$$

denotes the set of factorizations of m. The elasticity of m is

$$\rho(m) = \frac{\max \text{ length in } Z_M(m)}{\min \text{ length in } Z_M(m)}$$

The *elasticity* of *M* is $\rho(M) = \sup_{m \in M} \rho(m)$.

Example (The good)

The Hilbert monoid: $\rho(M_{1,4}) = 1$.

- Every factorization of $m \in M_{1,4}$ has the same length.
- This is (almost) the best we could hope for.

Fix a commutative, cancellative monoid (M, \cdot) . For non-unit $m \in M$,

$$\mathsf{Z}_M(m) = \{u_1 \cdots u_k = m : u_1, \dots, u_k \text{ irreducible}\}$$

denotes the set of factorizations of m. The elasticity of m is

$$\rho(m) = \frac{\max \text{ length in } Z_M(m)}{\min \text{ length in } Z_M(m)}.$$

The *elasticity* of *M* is $\rho(M) = \sup_{m \in M} \rho(m)$.

Example (The bad)

Numerical monoids:
$$S = \langle n_1 < \ldots < n_k \rangle \subset \mathbb{N}$$
. $\rho(S) = n_k/n_1$.

Fix a commutative, cancellative monoid (M, \cdot) . For non-unit $m \in M$,

$$\mathsf{Z}_M(m) = \{u_1 \cdots u_k = m : u_1, \dots, u_k \text{ irreducible}\}$$

denotes the set of factorizations of m. The elasticity of m is

$$\rho(m) = \frac{\max \text{ length in } Z_M(m)}{\min \text{ length in } Z_M(m)}$$

The *elasticity* of *M* is $\rho(M) = \sup_{m \in M} \rho(m)$.

Example (The bad)

Numerical monoids:
$$S = \langle n_1 < \ldots < n_k \rangle \subset \mathbb{N}$$
. $\rho(S) = n_k/n_1$.

•
$$n_1n_k = n_1 + \cdots + n_1 = n_k + \cdots + n_k$$
, so $\rho(n_1n_k) = n_k/n_1$.

Fix a commutative, cancellative monoid (M, \cdot) . For non-unit $m \in M$,

$$\mathsf{Z}_M(m) = \{u_1 \cdots u_k = m : u_1, \dots, u_k \text{ irreducible}\}$$

denotes the set of factorizations of m. The elasticity of m is

$$\rho(m) = \frac{\max \text{ length in } Z_M(m)}{\min \text{ length in } Z_M(m)}$$

The *elasticity* of *M* is $\rho(M) = \sup_{m \in M} \rho(m)$.

Example (The bad)

Numerical monoids:
$$S = \langle n_1 < \ldots < n_k \rangle \subset \mathbb{N}$$
. $\rho(S) = n_k/n_1$.

•
$$n_1n_k = n_1 + \cdots + n_1 = n_k + \cdots + n_k$$
, so $\rho(n_1n_k) = n_k/n_1$.

•
$$\rho(n) \leq n_k/n_1$$
 for all $n \in S$.

Fix a commutative, cancellative monoid (M, \cdot) . For non-unit $m \in M$,

$$\mathsf{Z}_M(m) = \{u_1 \cdots u_k = m : u_1, \dots, u_k \text{ irreducible}\}$$

denotes the set of factorizations of m. The elasticity of m is

$$\rho(m) = \frac{\max \text{ length in } Z_M(m)}{\min \text{ length in } Z_M(m)}$$

The *elasticity* of *M* is $\rho(M) = \sup_{m \in M} \rho(m)$.

Example (The ugly)

The Meyerson monoid: $\rho(M_{4,6}) = 2$.

Fix a commutative, cancellative monoid (M, \cdot) . For non-unit $m \in M$,

$$\mathsf{Z}_M(m) = \{u_1 \cdots u_k = m : u_1, \dots, u_k \text{ irreducible}\}$$

denotes the set of factorizations of m. The elasticity of m is

$$\rho(m) = \frac{\max \text{ length in } Z_M(m)}{\min \text{ length in } Z_M(m)}$$

The *elasticity* of *M* is $\rho(M) = \sup_{m \in M} \rho(m)$.

Example (The ugly)

The Meyerson monoid: $\rho(M_{4,6}) = 2$.

• $\rho(m) < 2$ for all $m \in M_{4,6}!$

Fix a commutative, cancellative monoid (M, \cdot) . For non-unit $m \in M$,

$$\mathsf{Z}_M(m) = \{u_1 \cdots u_k = m : u_1, \dots, u_k \text{ irreducible}\}$$

denotes the set of factorizations of m. The elasticity of m is

$$\rho(m) = \frac{\max \text{ length in } Z_M(m)}{\min \text{ length in } Z_M(m)}$$

The *elasticity* of *M* is $\rho(M) = \sup_{m \in M} \rho(m)$.

Example (The ugly)

The Meyerson monoid: $\rho(M_{4,6}) = 2$.

- $\rho(m) < 2$ for all $m \in M_{4,6}!$
- Elasticity of $M_{4,6}$ is not accepted.

Definition (ω -primality)

Fix a cancellative, commutative, atomic monoid M. For $x \in M$, $\omega(x)$ is the smallest positive integer m such that whenever $x \mid \prod_{i=1}^{r} u_i$ for r > m, there exists a subset $T \subset \{1, \ldots, r\}$ with $|T| \leq m$ such that $x \mid \prod_{i \in T} u_i$.

Definition (ω -primality)

Fix a cancellative, commutative, atomic monoid M. For $x \in M$, $\omega(x)$ is the smallest positive integer m such that whenever $x \mid \prod_{i=1}^{r} u_i$ for r > m, there exists a subset $T \subset \{1, \ldots, r\}$ with $|T| \leq m$ such that $x \mid \prod_{i \in T} u_i$.

Fact

 $\omega(x) = 1$ if and only if x is prime (i.e. $x \mid ab$ implies $x \mid a$ or $x \mid b$).

Definition (ω -primality)

Fix a cancellative, commutative, atomic monoid M. For $x \in M$, $\omega(x)$ is the smallest positive integer m such that whenever $x \mid \prod_{i=1}^{r} u_i$ for r > m, there exists a subset $T \subset \{1, \ldots, r\}$ with $|T| \leq m$ such that $x \mid \prod_{i \in T} u_i$.

Fact

$$\omega(x) = 1$$
 if and only if x is prime (i.e. $x \mid ab$ implies $x \mid a$ or $x \mid b$).

Fact

M is factorial if and only if every irreducible element of *M* is prime. Moreover, $\omega(p_1 \cdots p_r) = r$ for any primes $p_1, \ldots, p_r \in M$.

Quasilinearity for numerical monoids

Theorem (O.–Pelayo, 2013)

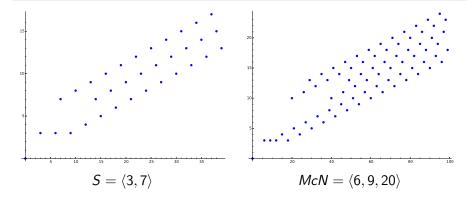
Fix a numerical monoid
$$S = \langle n_1, ..., n_k \rangle \subset \mathbb{N}$$
. For $n \gg 0$,
 $\omega_S(n) = \frac{1}{n_1}n + a_0(n)$
where $a_0(n)$ periodic with period n_1 .

Quasilinearity for numerical monoids

Theorem (O.–Pelayo, 2013)

Fix a numerical monoid
$$S = \langle n_1, \dots, n_k \rangle \subset \mathbb{N}$$
. For $n \gg 0$,
 $\omega_S(n) = \frac{1}{n_1}n + a_0(n)$

where $a_0(n)$ periodic with period n_1 .



References

Alfred Geroldinger, Franz Halter-Koch (2006)

Nonunique factorization: Algebraic, Combinatorial, and Analytic Theory. Chapman & Hall/CRC, Boca Raton, FL, 2006.

Christopher O'Neill, Roberto Pelayo (2014) How do you measure primality? *American Mathematical Monthly*, forthcoming.

Manuel Delgado, Pedro García-Sánchez, Jose Morais GAP Numerical Semigroups Package http://www.gap-system.org/Packages/numericalsgps.html.

References

Alfred Geroldinger, Franz Halter-Koch (2006)

Nonunique factorization: Algebraic, Combinatorial, and Analytic Theory. Chapman & Hall/CRC, Boca Raton, FL, 2006.

Christopher O'Neill, Roberto Pelayo (2014) How do you measure primality? *American Mathematical Monthly*, forthcoming.

Manuel Delgado, Pedro García-Sánchez, Jose Morais GAP Numerical Semigroups Package http://www.gap-system.org/Packages/numericalsgps.html.

Thanks!