Catenary degrees of elements in numerical monoids

Christopher O'Neill

Texas A&M University

coneill@math tamu edu

Joint with Vadim Ponomarenko, Reuben Tate*, and Gautam Webb*

October 26, 2014

Definition

An integral domain R is factorial if for each non-unit $r \in R$,

- **1** there is a factorization $r = u_1 \cdots u_k$ as a product of irreducibles, and
- 4 this factorization is unique (up to reordering and unit multiple).

Definition

An integral domain R is factorial if for each non-unit $r \in R$,

- there is a factorization $r = u_1 \cdots u_k$ as a product of irreducibles, and
- ② this factorization is unique (up to reordering and unit multiple).

Example

 \mathbb{Z} is factorial: each $z = p_1 \cdots p_k$ for primes $p_1 \cdots p_k$.

Definition

An integral domain R is *atomic* if for each non-unit $r \in R$,

- there is a factorization $r = u_1 \cdots u_k$ as a product of irreducibles, and
- 2 this factorization is unique (up to reordering and unit multiple).

Example

 \mathbb{Z} is factorial: each $z = p_1 \cdots p_k$ for primes $p_1 \cdots p_k$.

Definition

An integral domain R is atomic if for each non-unit $r \in R$,

- there is a factorization $r = u_1 \cdots u_k$ as a product of irreducibles, and
- this factorization is unique (up to reordering and unit multiple).

Example

 \mathbb{Z} is factorial: each $z = p_1 \cdots p_k$ for primes $p_1 \cdots p_k$.

Example

Let $R = \mathbb{C}[x^2, x^3]$.

Definition

An integral domain R is atomic if for each non-unit $r \in R$,

- there is a factorization $r = u_1 \cdots u_k$ as a product of irreducibles, and
- this factorization is unique (up to reordering and unit multiple).

Example

 \mathbb{Z} is factorial: each $z = p_1 \cdots p_k$ for primes $p_1 \cdots p_k$.

Example

Let $R = \mathbb{C}[x^2, x^3]$.

 \mathbf{Q} \mathbf{x}^2 and \mathbf{x}^3 are irreducible

Definition

An integral domain R is atomic if for each non-unit $r \in R$,

- there is a factorization $r = u_1 \cdots u_k$ as a product of irreducibles, and
- this factorization is unique (up to reordering and unit multiple).

Example

 \mathbb{Z} is factorial: each $z = p_1 \cdots p_k$ for primes $p_1 \cdots p_k$.

Example

Let $R = \mathbb{C}[x^2, x^3]$.

- \mathbf{Q} \mathbf{x}^2 and \mathbf{x}^3 are irreducible
- $x^6 = x^3 \cdot x^3 = x^2 \cdot x^2 \cdot x^2$

Definition

An integral domain R is *atomic* if for each non-unit $r \in R$,

- **1** there is a factorization $r = u_1 \cdots u_k$ as a product of irreducibles, and
- this factorization is unique (up to reordering and unit multiple).

Example

 \mathbb{Z} is factorial: each $z = p_1 \cdots p_k$ for primes $p_1 \cdots p_k$.

Definition

An integral domain R is atomic if for each non-unit $r \in R$,

- there is a factorization $r = u_1 \cdots u_k$ as a product of irreducibles, and
- this factorization is unique (up to reordering and unit multiple).

Example

 \mathbb{Z} is factorial: each $z = p_1 \cdots p_k$ for primes $p_1 \cdots p_k$.

Observation

• Where's the addition?

Definition

An integral domain R is *atomic* if for each non-unit $r \in R$,

- there is a factorization $r = u_1 \cdots u_k$ as a product of irreducibles, and
- this factorization is unique (up to reordering and unit multiple).

Example

 \mathbb{Z} is factorial: each $z = p_1 \cdots p_k$ for primes $p_1 \cdots p_k$.

- Where's the addition?
- Factorization in (cancellative comutative) monoids:

Definition

An integral domain R is atomic if for each non-unit $r \in R$,

- there is a factorization $r = u_1 \cdots u_k$ as a product of irreducibles, and
- 2 this factorization is unique (up to reordering and unit multiple).

Example

 \mathbb{Z} is factorial: each $z = p_1 \cdots p_k$ for primes $p_1 \cdots p_k$.

- Where's the addition?
- Factorization in (cancellative comutative) monoids:

$$(R,+,\cdot) \quad \rightsquigarrow \quad (R\setminus\{0\},\cdot)$$

Definition

An integral domain R is atomic if for each non-unit $r \in R$,

- there is a factorization $r = u_1 \cdots u_k$ as a product of irreducibles, and
- 2 this factorization is unique (up to reordering and unit multiple).

Example

 \mathbb{Z} is factorial: each $z = p_1 \cdots p_k$ for primes $p_1 \cdots p_k$.

- Where's the addition?
- Factorization in (cancellative comutative) monoids:

$$(R,+,\cdot) \quad \rightsquigarrow \quad (R\setminus\{0\},\cdot)$$

 $(\mathbb{C}[M],+,\cdot) \quad \rightsquigarrow \quad (M,\cdot)$

Definition

A numerical monoid S is an **additive** submonoid of \mathbb{N} with $|\mathbb{N} \setminus S| < \infty$.

Definition

A numerical monoid S is an additive submonoid of \mathbb{N} with $|\mathbb{N} \setminus S| < \infty$.

Example

Let $S = (2,3) = \{2,3,4,5,...\}$ under **addition**.

Definition

A numerical monoid S is an **additive** submonoid of \mathbb{N} with $|\mathbb{N} \setminus S| < \infty$.

Example

Let $S = \langle 2, 3 \rangle = \{2, 3, 4, 5, \ldots\}$ under **addition**. $\mathbb{C}[S] = \mathbb{C}[x^2, x^3]$.

Definition

A numerical monoid S is an additive submonoid of \mathbb{N} with $|\mathbb{N} \setminus S| < \infty$.

Let
$$S = \langle 2, 3 \rangle = \{2, 3, 4, 5, ...\}$$
 under **addition**. $\mathbb{C}[S] = \mathbb{C}[x^2, x^3]$. $x^6 = x^3 \cdot x^3 = x^2 \cdot x^2 \cdot x^2$

Definition

A numerical monoid S is an **additive** submonoid of \mathbb{N} with $|\mathbb{N} \setminus S| < \infty$.

Let
$$S = \langle 2, 3 \rangle = \{2, 3, 4, 5, ...\}$$
 under **addition**. $\mathbb{C}[S] = \mathbb{C}[x^2, x^3]$. $x^6 = x^3 \cdot x^3 = x^2 \cdot x^2 \cdot x^2 \implies 6 = 3 + 3 = 2 + 2 + 2$.

Definition

A numerical monoid S is an **additive** submonoid of \mathbb{N} with $|\mathbb{N} \setminus S| < \infty$.

Example

Let
$$S = (2,3) = \{2,3,4,5,...\}$$
 under **addition**. $\mathbb{C}[S] = \mathbb{C}[x^2,x^3]$.

$$x^6 = x^3 \cdot x^3 = x^2 \cdot x^2 \cdot x^2 \quad \leadsto \quad 6 = 3 + 3 = 2 + 2 + 2.$$

Factorizations are additive!

Definition

A numerical monoid S is an **additive** submonoid of \mathbb{N} with $|\mathbb{N} \setminus S| < \infty$.

Example

Let
$$S = \langle 2, 3 \rangle = \{2, 3, 4, 5, ...\}$$
 under **addition**. $\mathbb{C}[S] = \mathbb{C}[x^2, x^3]$. $x^6 = x^3 \cdot x^3 = x^2 \cdot x^2 \cdot x^2 \implies 6 = 3 + 3 = 2 + 2 + 2$.

Factorizations are additive!

Example

 $McN = \langle 6, 9, 20 \rangle = \{0, 6, 9, 12, 15, 18, 20, 21, \ldots \}.$

Definition

A numerical monoid S is an **additive** submonoid of \mathbb{N} with $|\mathbb{N} \setminus S| < \infty$.

Example

Let
$$S = \langle 2, 3 \rangle = \{2, 3, 4, 5, ...\}$$
 under **addition**. $\mathbb{C}[S] = \mathbb{C}[x^2, x^3]$. $x^6 = x^3 \cdot x^3 = x^2 \cdot x^2 \cdot x^2 \implies 6 = 3 + 3 = 2 + 2 + 2$.

Factorizations are additive!

Example

 $\textit{McN} = \langle 6, 9, 20 \rangle = \{0, 6, 9, 12, 15, 18, 20, 21, \ldots \}.$ "McNugget Monoid"

Definition

A numerical monoid S is an additive submonoid of \mathbb{N} with $|\mathbb{N} \setminus S| < \infty$.

Example

Let
$$S = \langle 2, 3 \rangle = \{2, 3, 4, 5, ...\}$$
 under **addition**. $\mathbb{C}[S] = \mathbb{C}[x^2, x^3]$. $x^6 = x^3 \cdot x^3 = x^2 \cdot x^2 \cdot x^2 \implies 6 = 3 + 3 = 2 + 2 + 2$.

Factorizations are additive!

$$\mathit{McN} = \langle 6, 9, 20 \rangle = \{0, 6, 9, 12, 15, 18, 20, 21, \ldots \}$$
. "McNugget Monoid"
$$60 = 7(6) + 2(9)$$

Definition

A numerical monoid S is an **additive** submonoid of \mathbb{N} with $|\mathbb{N} \setminus S| < \infty$.

Example

Let
$$S = \langle 2, 3 \rangle = \{2, 3, 4, 5, ...\}$$
 under **addition**. $\mathbb{C}[S] = \mathbb{C}[x^2, x^3]$. $x^6 = x^3 \cdot x^3 = x^2 \cdot x^2 \cdot x^2 \quad \rightsquigarrow \quad 6 = 3 + 3 = 2 + 2 + 2$.

Factorizations are additive!

$$McN = \langle 6, 9, 20 \rangle = \{0, 6, 9, 12, 15, 18, 20, 21, \ldots \}$$
. "McNugget Monoid"
$$60 = 7(6) + 2(9)$$
$$= 3(20)$$

Definition

A numerical monoid S is an **additive** submonoid of \mathbb{N} with $|\mathbb{N} \setminus S| < \infty$.

Example

Let
$$S = \langle 2, 3 \rangle = \{2, 3, 4, 5, ...\}$$
 under **addition**. $\mathbb{C}[S] = \mathbb{C}[x^2, x^3]$. $x^6 = x^3 \cdot x^3 = x^2 \cdot x^2 \cdot x^2 \implies 6 = 3 + 3 = 2 + 2 + 2$.

Factorizations are additive!

$$McN = \langle 6, 9, 20 \rangle = \{0, 6, 9, 12, 15, 18, 20, 21, \ldots \}.$$
 "McNugget Monoid"
$$60 = 7(6) + 2(9) \qquad \rightsquigarrow \qquad (7, 2, 0)$$
$$= \qquad 3(20) \qquad \rightsquigarrow \qquad (0, 0, 3)$$

Definition

Fix a numerical monoid $S = \langle n_1, \dots, n_k \rangle$. For $n \in S$,

$$\mathsf{Z}_{\mathcal{S}}(n) = \left\{ (a_1, \dots, a_k) \in \mathbb{N}^k : n = a_1 n_1 + \dots + a_k n_k \right\}$$

denotes the set of factorizations of m.

Definition

Fix a numerical monoid $S = \langle n_1, \dots, n_k \rangle$. For $n \in S$,

$$Z_S(n) = \{(a_1, \ldots, a_k) \in \mathbb{N}^k : n = a_1 n_1 + \cdots + a_k n_k\}$$

$$|f| = f_1 + \cdots + f_k$$

Definition

Fix a numerical monoid $S = \langle n_1, \dots, n_k \rangle$. For $n \in S$,

$$\mathsf{Z}_{S}(n) = \{(a_{1}, \ldots, a_{k}) \in \mathbb{N}^{k} : n = a_{1}n_{1} + \cdots + a_{k}n_{k}\}$$

$$|f| = f_1 + \cdots + f_k \quad (length \ of \ f)$$

Definition

Fix a numerical monoid $S = \langle n_1, \dots, n_k \rangle$. For $n \in S$,

$$Z_S(n) = \{(a_1, \dots, a_k) \in \mathbb{N}^k : n = a_1 n_1 + \dots + a_k n_k\}$$

$$|f| = f_1 + \dots + f_k \quad (length \text{ of } f)$$

$$\gcd(f, f') = (\min(f_1, f'_1), \dots, \min(f_k, f'_k))$$

Definition

Fix a numerical monoid $S = \langle n_1, \dots, n_k \rangle$. For $n \in S$,

$$\mathsf{Z}_{S}(n) = \{(a_{1}, \ldots, a_{k}) \in \mathbb{N}^{k} : n = a_{1}n_{1} + \cdots + a_{k}n_{k}\}$$

$$|f| = f_1 + \dots + f_k \quad (length \text{ of } f)$$

$$\gcd(f, f') = (\min(f_1, f'_1), \dots, \min(f_k, f'_k))$$

$$d(f, f') = \max\{|f - \gcd(f, f')|, |f' - \gcd(f, f')|\}$$

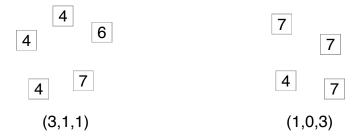
$$S=\langle 4,6,7
angle \subset \mathbb{N}$$
 ,

$$S = \langle 4, 6, 7 \rangle \subset \mathbb{N}, \ f = (3, 1, 1), f' = (1, 0, 3) \in \mathsf{Z}_{S}(25).$$

$$S = \langle 4, 6, 7 \rangle \subset \mathbb{N}, \ f = (3, 1, 1), f' = (1, 0, 3) \in \mathsf{Z}_{S}(25).$$

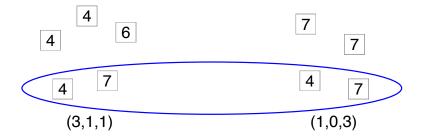
$$S = \langle 4, 6, 7 \rangle \subset \mathbb{N}, \ f = (3, 1, 1), f' = (1, 0, 3) \in \mathsf{Z}_{S}(25).$$

•
$$g = \gcd(f, f')$$



$$S = \langle 4, 6, 7 \rangle \subset \mathbb{N}, \ f = (3, 1, 1), f' = (1, 0, 3) \in \mathsf{Z}_{S}(25).$$

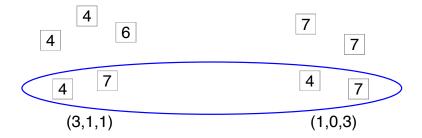
•
$$g = \gcd(f, f')$$



Example

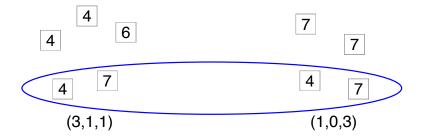
$$S = \langle 4, 6, 7 \rangle \subset \mathbb{N}, \ f = (3, 1, 1), f' = (1, 0, 3) \in \mathsf{Z}_{S}(25).$$

• $g = \gcd(f, f') = (1, 0, 1).$



$$S = \langle 4, 6, 7 \rangle \subset \mathbb{N}, \ f = (3, 1, 1), f' = (1, 0, 3) \in \mathsf{Z}_{S}(25).$$

- $g = \gcd(f, f') = (1, 0, 1).$
- \bullet d(f, f')

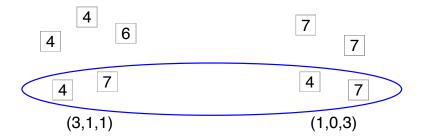


Factorization invariants: towards the catenary degree

Example

$$S = \langle 4, 6, 7 \rangle \subset \mathbb{N}, \ f = (3, 1, 1), f' = (1, 0, 3) \in \mathsf{Z}_{S}(25).$$

- $g = \gcd(f, f') = (1, 0, 1).$
- $d(f, f') = \max\{|f g|, |f' g|\}$

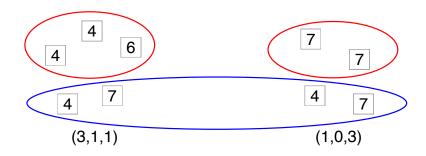


Factorization invariants: towards the catenary degree

Example

$$S = \langle 4, 6, 7 \rangle \subset \mathbb{N}, \ f = (3, 1, 1), f' = (1, 0, 3) \in \mathsf{Z}_{S}(25).$$

- $g = \gcd(f, f') = (1, 0, 1)$.
- $d(f, f') = \max\{|f g|, |f' g|\}$

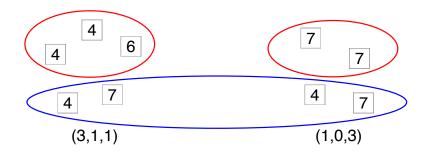


Factorization invariants: towards the catenary degree

Example

$$S = \langle 4, 6, 7 \rangle \subset \mathbb{N}, \ f = (3, 1, 1), f' = (1, 0, 3) \in \mathsf{Z}_{S}(25).$$

- $g = \gcd(f, f') = (1, 0, 1).$
- $d(f, f') = \max\{|f g|, |f' g|\} = 3.$



Definition

Definition

Fix a numerical monoid $S = \langle n_1, \dots, n_k \rangle$. For $n \in S$, define the *catenary degree* c(n) as follows:

1 Construct a complete graph G with vertex set $Z_S(n)$ where each edge (f, f') has label d(f, f') (catenary graph).

Definition

- Construct a complete graph G with vertex set $Z_S(n)$ where each edge (f, f') has label d(f, f') (catenary graph).
- 2 Locate the largest edge weight e in G.

Definition

- Construct a complete graph G with vertex set $Z_S(n)$ where each edge (f, f') has label d(f, f') (catenary graph).
- 2 Locate the largest edge weight e in G.
- 3 Remove all edges from G with weight e.

Definition

- Construct a complete graph G with vertex set $Z_S(n)$ where each edge (f, f') has label d(f, f') (catenary graph).
- 2 Locate the largest edge weight e in G.
- Remove all edges from G with weight e.
- If *G* is disconnected, return *e*. Otherwise, return to step 2.

Definition

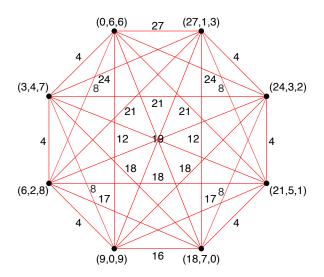
Fix a numerical monoid $S = \langle n_1, \dots, n_k \rangle$. For $n \in S$, define the *catenary degree* c(n) as follows:

- Construct a complete graph G with vertex set $Z_S(n)$ where each edge (f, f') has label d(f, f') (catenary graph).
- 2 Locate the largest edge weight e in G.
- 3 Remove all edges from G with weight e.
- If *G* is disconnected, return *e*. Otherwise, return to step 2.

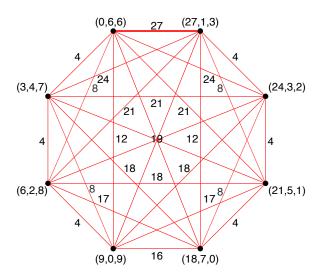
If $|Z_S(n)| = 1$, define c(n) = 0.

$$S = \langle 11, 36, 39 \rangle, n = 450$$

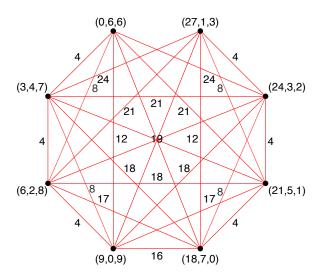
$$S = \langle 11, 36, 39 \rangle, n = 450$$



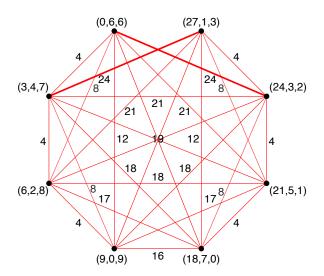
$$S = \langle 11, 36, 39 \rangle, n = 450$$



$$S = \langle 11, 36, 39 \rangle, n = 450$$



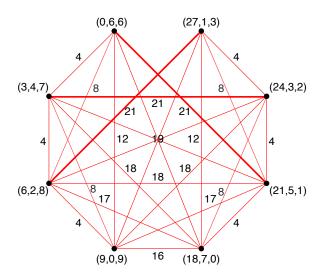
$$S = \langle 11, 36, 39 \rangle, n = 450$$



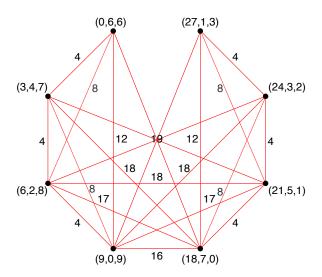
$$S = \langle 11, 36, 39 \rangle, n = 450$$



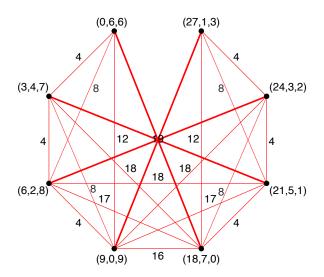
$$S = \langle 11, 36, 39 \rangle, n = 450$$



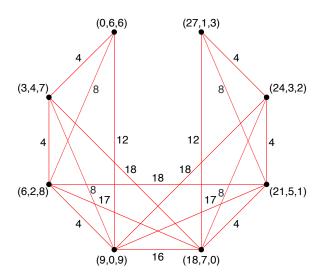
$$S = \langle 11, 36, 39 \rangle, n = 450$$



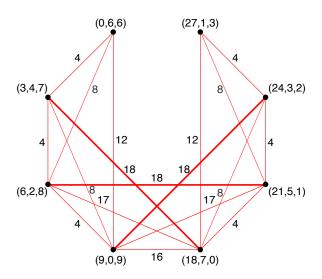
$$S = \langle 11, 36, 39 \rangle, n = 450$$



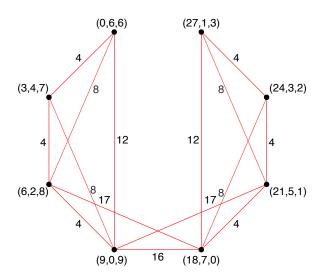
$$S = \langle 11, 36, 39 \rangle, n = 450$$



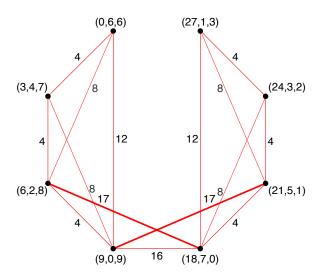
$$S = \langle 11, 36, 39 \rangle, n = 450$$



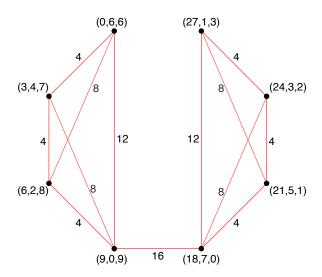
$$S = \langle 11, 36, 39 \rangle, n = 450$$



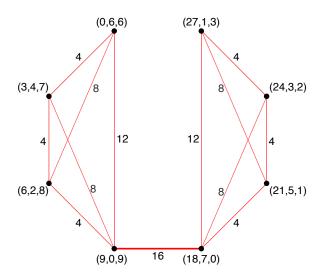
$$S = \langle 11, 36, 39 \rangle, n = 450$$



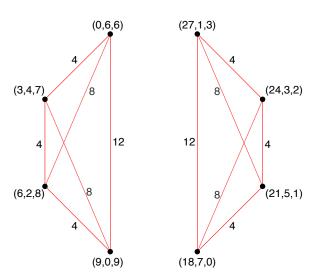
$$S = \langle 11, 36, 39 \rangle, n = 450$$



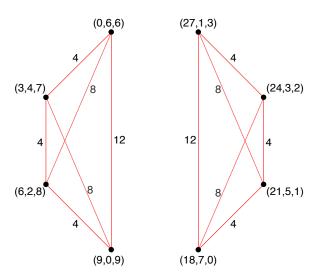
$$S = \langle 11, 36, 39 \rangle, n = 450$$



$$S = \langle 11, 36, 39 \rangle, n = 450$$



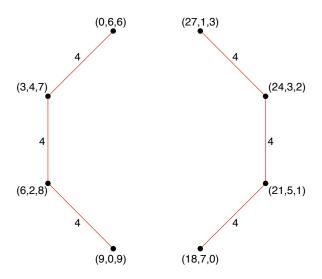
$$S = \langle 11, 36, 39 \rangle, n = 450, c(n) = 16$$



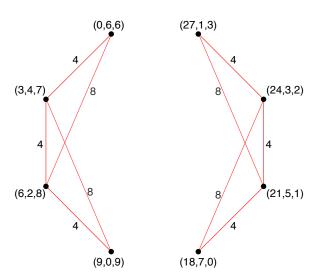
$$S = \langle 11, 36, 39 \rangle, n = 450$$

$$S = \langle 11, 36, 39 \rangle, n = 450$$

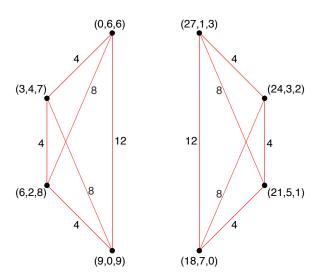
$$S = \langle 11, 36, 39 \rangle, n = 450$$



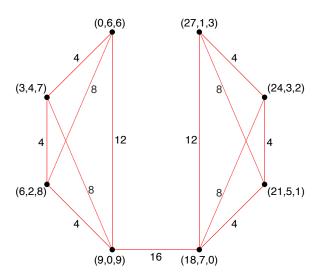
$$S = \langle 11, 36, 39 \rangle, n = 450$$



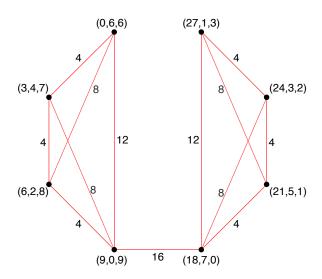
$$S = \langle 11, 36, 39 \rangle, n = 450$$



$$S = \langle 11, 36, 39 \rangle, n = 450$$



$$S = \langle 11, 36, 39 \rangle, n = 450, c(n) = 16$$



Betti elements

Definition

For an element $n \in S = \langle n_1, \dots, n_k \rangle$, let ∇_n denote the unlabeled graph with vertex set $Z_S(n)$ and an edge (f, f') whenever $gcd(f, f') \neq 0$.

Betti elements

Definition

For an element $n \in S = \langle n_1, \dots, n_k \rangle$, let ∇_n denote the unlabeled graph with vertex set $Z_S(n)$ and an edge (f, f') whenever $\gcd(f, f') \neq 0$. We say n is a *Betti element* of S if ∇_n is disconnected.

Betti elements

Definition

For an element $n \in S = \langle n_1, \dots, n_k \rangle$, let ∇_n denote the unlabeled graph with vertex set $Z_S(n)$ and an edge (f, f') whenever $\gcd(f, f') \neq 0$. We say n is a *Betti element* of S if ∇_n is disconnected.

Example

 $S = \langle 10, 15, 17 \rangle$ has Betti elements 30 and 85.

Betti elements

Definition

For an element $n \in S = \langle n_1, \dots, n_k \rangle$, let ∇_n denote the unlabeled graph with vertex set $Z_S(n)$ and an edge (f, f') whenever $\gcd(f, f') \neq 0$. We say n is a *Betti element* of S if ∇_n is disconnected.

Example

 $S = \langle 10, 15, 17 \rangle$ has Betti elements 30 and 85.

 ∇_{30} : ∇_{85} : (0,0,5)

(3,0,0) ● (0,2,0)

(1,5,0) • (7,1,0) (4,3,0)

Theorem

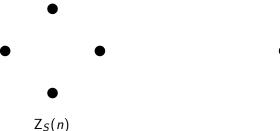
 $\max\{c(n): n \in S\} = \max\{c(b): b \text{ Betti element of } S\}.$

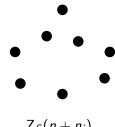
Theorem

 $\max\{c(n): n \in S\} = \max\{c(b): b \text{ Betti element of } S\}.$

Theorem

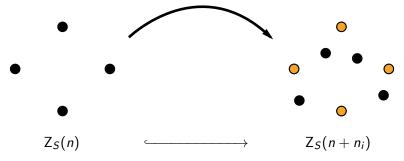
$$\max\{c(n): n \in S\} = \max\{c(b): b \text{ Betti element of } S\}.$$





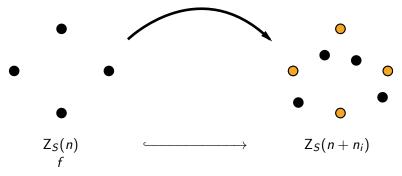
Theorem

 $\max\{c(n): n \in S\} = \max\{c(b): b \text{ Betti element of } S\}.$



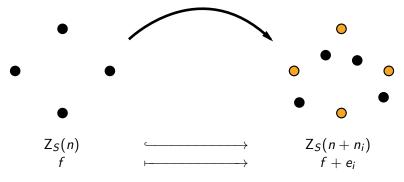
Theorem

 $\max\{c(n): n \in S\} = \max\{c(b): b \text{ Betti element of } S\}.$



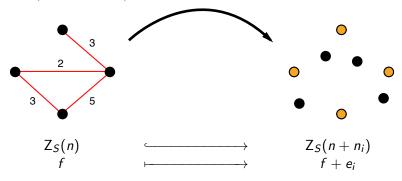
Theorem

 $\max\{c(n): n \in S\} = \max\{c(b): b \text{ Betti element of } S\}.$



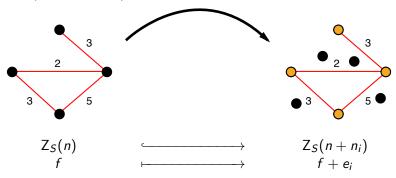
Theorem

 $\max\{c(n): n \in S\} = \max\{c(b): b \text{ Betti element of } S\}.$



Theorem

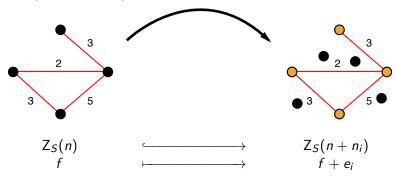
 $\max\{c(n): n \in S\} = \max\{c(b): b \text{ Betti element of } S\}.$



Theorem

 $\max\{c(n): n \in S\} = \max\{c(b): b \text{ Betti element of } S\}.$

Key concept: Cover morphisms.

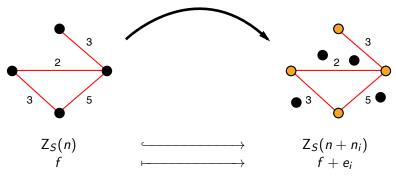


Idea for proof of Theorem:

Theorem

$$\max\{c(n): n \in S\} = \max\{c(b): b \text{ Betti element of } S\}.$$

Key concept: Cover morphisms.



Idea for proof of Theorem: Images of edges between connected components in ∇_b "span" the catenary graph of each $n \in S$.

Conjecture

 $\min\{c(n) > 0 : n \in S\} = \min\{c(b) : b \text{ Betti element of } S\}.$

Conjecture Theorem (O., Ponomarenko, Tate, Webb)

 $\min\{c(n) > 0 : n \in S\} = \min\{c(b) : b \text{ Betti element of } S\}.$

Conjecture Theorem (O., Ponomarenko, Tate, Webb)

 $\min\{c(n) > 0 : n \in S\} = \min\{c(b) : b \text{ Betti element of } S\}.$

 $B = \min\{c(b) : b \text{ Betti element of } S\}.$

Conjecture Theorem (O., Ponomarenko, Tate, Webb)

 $\min\{c(n) > 0 : n \in S\} = \min\{c(b) : b \text{ Betti element of } S\}.$

 $B = \min\{c(b) : b \text{ Betti element of } S\}.$

Lemma

If $f, f' \in Z_S(n)$

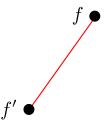
Conjecture Theorem (O., Ponomarenko, Tate, Webb)

 $\min\{c(n) > 0 : n \in S\} = \min\{c(b) : b \text{ Betti element of } S\}.$

 $B = \min\{c(b) : b \text{ Betti element of } S\}.$

Lemma

If $f, f' \in Z_S(n)$ and d(f, f') < B,



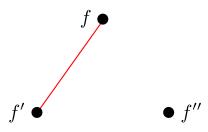
Conjecture Theorem (O., Ponomarenko, Tate, Webb)

 $\min\{c(n) > 0 : n \in S\} = \min\{c(b) : b \text{ Betti element of } S\}.$

 $B = \min\{c(b) : b \text{ Betti element of } S\}.$

Lemma

If $f, f' \in Z_S(n)$ and d(f, f') < B, then there exists $f'' \in Z_S(n)$



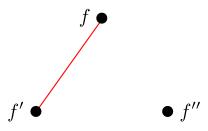
Conjecture Theorem (O., Ponomarenko, Tate, Webb)

 $\min\{c(n) > 0 : n \in S\} = \min\{c(b) : b \text{ Betti element of } S\}.$

 $B = \min\{c(b) : b \text{ Betti element of } S\}.$

Lemma

If $f, f' \in Z_S(n)$ and d(f, f') < B, then there exists $f'' \in Z_S(n)$ with $\max \{|f|, |f'|\} < |f''|$.



Conjecture Theorem (O., Ponomarenko, Tate, Webb)

 $\min\{c(n) > 0 : n \in S\} = \min\{c(b) : b \text{ Betti element of } S\}.$

Conjecture Theorem (O., Ponomarenko, Tate, Webb)

 $\min\{c(n) > 0 : n \in S\} = \min\{c(b) : b \text{ Betti element of } S\}.$

Proof of theorem:

Conjecture Theorem (O., Ponomarenko, Tate, Webb)

 $\min\{c(n) > 0 : n \in S\} = \min\{c(b) : b \text{ Betti element of } S\}.$

Proof of theorem:

Fix n ∈ S

Conjecture Theorem (O., Ponomarenko, Tate, Webb)

 $\min\{c(n) > 0 : n \in S\} = \min\{c(b) : b \text{ Betti element of } S\}.$

Proof of theorem:

Fix n ∈ S

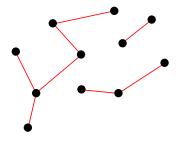
- - • •

Conjecture Theorem (O., Ponomarenko, Tate, Webb)

 $\min\{c(n) > 0 : n \in S\} = \min\{c(b) : b \text{ Betti element of } S\}.$

Proof of theorem:

- Fix n ∈ S
- Draw edges with weight < B

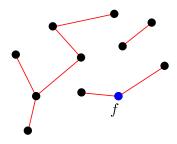


Conjecture Theorem (O., Ponomarenko, Tate, Webb)

 $\min\{c(n) > 0 : n \in S\} = \min\{c(b) : b \text{ Betti element of } S\}.$

Proof of theorem:

- Fix n ∈ S
- Draw edges with weight < B
- $f \in \mathsf{Z}_{\mathcal{S}}(n)$ with |f| maximal

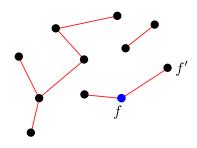


Conjecture Theorem (O., Ponomarenko, Tate, Webb)

 $\min\{c(n) > 0 : n \in S\} = \min\{c(b) : b \text{ Betti element of } S\}.$

Proof of theorem:

- Fix n ∈ S
- Draw edges with weight < B
- $f \in \mathsf{Z}_{S}(n)$ with |f| maximal
- $f' \in Z_S(n)$ with d(f, f') < B

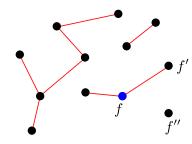


Conjecture Theorem (O., Ponomarenko, Tate, Webb)

 $\min\{c(n) > 0 : n \in S\} = \min\{c(b) : b \text{ Betti element of } S\}.$

Proof of theorem:

- Fix n ∈ S
- Draw edges with weight < B
- $f \in \mathsf{Z}_{S}(n)$ with |f| maximal
- $f' \in Z_S(n)$ with d(f, f') < B
- Lemma $\Rightarrow |f''| > |f|$

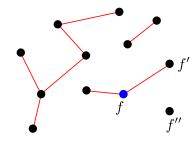


Conjecture Theorem (O., Ponomarenko, Tate, Webb)

 $\min\{c(n) > 0 : n \in S\} = \min\{c(b) : b \text{ Betti element of } S\}.$

Proof of theorem:

- Fix n ∈ S
- Draw edges with weight < B
- $f \in \mathsf{Z}_{S}(n)$ with |f| maximal
- $f' \in Z_S(n)$ with d(f, f') < B
- Lemma $\Rightarrow |f''| > |f|$
- maximality of $|f| \Rightarrow f''$ has no edges!



General observations:

General observations:

• The catenary degree is heavily governed by Betti elements.

General observations:

- The catenary degree is heavily governed by Betti elements.
- The catenary degree is graph-theoretic.

General observations:

- The catenary degree is heavily governed by Betti elements.
- The catenary degree is graph-theoretic.
- The catenary degree is tricky!

References

Alfred Geroldinger, Franz Halter-Koch (2006)

Nonunique factorization: Algebraic, Combinatorial, and Analytic Theory. Chapman & Hall/CRC, Boca Raton, FL, 2006.

Scott Champan, Pedro García-Sánchez, David Llena, Vadim Ponomarenko, José Rosales (2006)

The catenary and tame degree in finitely generated cancellative commutative monoids.

Manus. Math, 120 (2006) 253 - 264.

Christopher O'Neill, Vadim Ponomarenko, Reuben Tate, Gautam Webb (2014) On the set of catenary degrees in numerical monoids.

In preparation.

Manuel Delgado, Pedro García-Sánchez, Jose Morais GAP Numerical Semigroups Package.

http://www.gap-system.org/Packages/numericalsgps.html.

References

Alfred Geroldinger, Franz Halter-Koch (2006)

Nonunique factorization: Algebraic, Combinatorial, and Analytic Theory. Chapman & Hall/CRC, Boca Raton, FL, 2006.

Scott Champan, Pedro García-Sánchez, David Llena, Vadim Ponomarenko, José Rosales (2006)

The catenary and tame degree in finitely generated cancellative commutative monoids.

Manus. Math, 120 (2006) 253 - 264.

Christopher O'Neill, Vadim Ponomarenko, Reuben Tate, Gautam Webb (2014) On the set of catenary degrees in numerical monoids.

In preparation.

Manuel Delgado, Pedro García-Sánchez, Jose Morais GAP Numerical Semigroups Package.

http://www.gap-system.org/Packages/numericalsgps.html.

Thanks!