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Factorial domains

Definition

An integral domain R is factorial if for each non-unit r € R,
© there is a factorization r = u; - - - uy as a product of irreducibles, and

@ this factorization is unique (up to reordering and unit multiple).
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Definition

An integral domain R is factorial if for each non-unit r € R,
© there is a factorization r = u; - - - uy as a product of irreducibles, and

@ this factorization is unique (up to reordering and unit multiple).

Z is factorial: each z = p; - - - pi for primes p; - - - pk.
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Factorial domains

Definition

An integral domain R is atomic if for each non-unit r € R,

© there is a factorization r = u; - - - uy as a product of irreducibles, and

O this factorization is it { : it mltiple).

Z is factorial: each z = p; - - - pi for primes p; - - - pk.
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Factorial domains

Definition

An integral domain R is atomic if for each non-unit r € R,

© there is a factorization r = u; - - - uy as a product of irreducibles, and

O this factorization is it { : e mltiple).

Z is factorial: each z = p; - - - pi for primes p; - - - pk.

If R = Z[v/—5], then 6 € R has two distinct factorizations:
6=2-3=(1+v=5)(1—v=5b)
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Factorial domains

Definition

An integral domain R is atomic if for each non-unit r € R,

© there is a factorization r = u; - - - uy as a product of irreducibles, and

O this factorization is it { : e mltiple).

Z is factorial: each z = p; - - - pi for primes p; - - - pk.

If R = Z[v/—5], then 6 € R has two distinct factorizations:
6=2-3=(1+v=5)(1—v=5b)

To prove: define a valuation a + b\/—5 — a® + 5b°.
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Factorial domains

Definition

An integral domain R is atomic if for each non-unit r € R,

© there is a factorization r = u; - - - uy as a product of irreducibles, and

O this factorization is it { : e mltiple).

Z is factorial: each z = p; - - - pi for primes p; - - - pk.

If R = Z[v/—5], then 6 € R has two distinct factorizations:
6=2-3=(1+v=5)(1—v=5b)

To prove: define a valuation a + b\/—5 — a® + 5b°.
The point: it's complicated.
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Factorial domains

Definition

An integral domain R is atomic if for each non-unit r € R,

© there is a factorization r = u; - - - uy as a product of irreducibles, and

O this factorization is it { : e mltiple).

Z is factorial: each z = p; - - - pi for primes p; - - - pk.
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Factorial domains

Definition

An integral domain R is atomic if for each non-unit r € R,

© there is a factorization r = u; - - - uy as a product of irreducibles, and

O this factorization is it { : e mltiple).

Z is factorial: each z = p; - - - pi for primes p; - - - pk.

Let R = C[x?, x3].
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Factorial domains

Definition

An integral domain R is atomic if for each non-unit r € R,

© there is a factorization r = u; - - - uy as a product of irreducibles, and

O this factorization is it { : e mltiple).

Z is factorial: each z = p; - - - pi for primes p; - - - pk.

Let R = C[x?, x3].

QO x2 and x3 are irreducible.
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Factorial domains

Definition

An integral domain R is atomic if for each non-unit r € R,

© there is a factorization r = u; - - - uy as a product of irreducibles, and

O this factorization is it { : e mltiple).

Z is factorial: each z = p; - - - pi for primes p; - - - pk.

Let R = C[x?, x3].
@ x2 and x3 are irreducible.

Q x5 =x3-x3=x2.x2.x2
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Factorial domains

Definition
An integral domain R is atomic if for each non-unit r € R,

© there is a factorization r = u; - - - uy as a product of irreducibles, and

O this factorization is it { : e mltiple).

Z is factorial: each z = p; - - - pi for primes p; - - - pk.

Observation

Christopher O'Neill (Texas A&M University) Invariants of non-unique factorization November 11, 2014 2/22



Factorial domains

Definition

An integral domain R is atomic if for each non-unit r € R,

© there is a factorization r = u; - - - uy as a product of irreducibles, and

O this factorization is it { : e mltiple).

Z is factorial: each z = p; - - - pi for primes p; - - - pk.

Observation
@ Where's the addition?
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Factorial domains

Definition

An integral domain R is atomic if for each non-unit r € R,

© there is a factorization r = u; - - - uy as a product of irreducibles, and

O this factorization is it { : e mltiple).

Z is factorial: each z = p; - - - pi for primes p; - - - pk.

Observation
@ Where's the addition?

@ Factorization in (cancellative comutative) monoids:
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Factorial domains

Definition

An integral domain R is atomic if for each non-unit r € R,

© there is a factorization r = u; - - - uy as a product of irreducibles, and

O this factorization is it { : e mltiple).

Z is factorial: each z = p; - - - pi for primes p; - - - pk.

Observation
@ Where's the addition?

@ Factorization in (cancellative comutative) monoids:

(R, +:°) ~ (R\{0},")
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Factorial domains

Definition

An integral domain R is atomic if for each non-unit r € R,

© there is a factorization r = u; - - - uy as a product of irreducibles, and

O this factorization is it { : e mltiple).

Z is factorial: each z = p; - - - pi for primes p; - - - pk.

Observation
@ Where's the addition?

e Factorization in (cancellative comutative) monoids:

(R, +,) ~ (R\{0},-)
(C[M]7+7') ~ (M’)
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Numerical monoids

Definition

A numerical monoid S is an additive submonoid of N with [N\ §| < co.
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Numerical monoids

Definition

A numerical monoid S is an additive submonoid of N with [N\ §| < co.

Let S =(2,3) ={2,3,4,5,...} under addition.
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Numerical monoids

Definition

A numerical monoid S is an additive submonoid of N with [N\ §| < co.

Let S = (2,3) = {2,3,4,5,...} under addition. C[S] = C[x?, x3].
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Numerical monoids

Definition

A numerical monoid S is an additive submonoid of N with [N\ §| < co.

Let S = (2,3) = {2,3,4,5,...} under addition. C[S] = C[x?, x3].

x0=x3.x3=x2.x2.x2
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Numerical monoids

Definition

A numerical monoid S is an additive submonoid of N with [N\ §| < co.

Let S = (2,3) = {2,3,4,5,...} under addition. C[S] = C[x?, x3].

X=x3.x3=x2.x2.x2 ~ 6=34+3=24+2+2.
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Numerical monoids

Definition

A numerical monoid S is an additive submonoid of N with [N\ §| < co.

Let S = (2,3) = {2,3,4,5,...} under addition. C[S] = C[x?, x3].

X=x3.x3=x2.x2.x2 ~ 6=34+3=24+2+2.

Factorizations are additive!
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Numerical monoids

Definition

A numerical monoid S is an additive submonoid of N with [N\ §| < co.

Let S = (2,3) = {2,3,4,5,...} under addition. C[S] = C[x?, x3].
X=x3.x3=x2.x2.x2 ~ 6=3+3=2+4+2+2.

Factorizations are additive!

McN = (6,9,20) = {0,6,9,12,15,18,20,21,...}.
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Numerical monoids

Definition

A numerical monoid S is an additive submonoid of N with [N\ §| < co.

Let S = (2,3) = {2,3,4,5,...} under addition. C[S] = C[x?, x3].
X=x3.x3=x2.x2.x2 ~ 6=3+3=2+4+2+2.

Factorizations are additive!

McN = (6,9,20) = {0,6,9,12,15,18,20,21,...}. “McNugget Monoid”
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Numerical monoids

Definition

A numerical monoid S is an additive submonoid of N with [N\ §| < co.

Let S = (2,3) = {2,3,4,5,...} under addition. C[S] = C[x?, x3].
X=x3.x3=x2.x2.x2 ~ 6=3+3=2+4+2+2.

Factorizations are additive!

McN = (6,9,20) = {0,6,9,12,15,18,20,21,...}. “McNugget Monoid”
60 = 7(6)+2(9)

Christopher O'Neill (Texas A&M University) Invariants of non-unique factorization November 11, 2014 3/22



Numerical monoids

Definition

A numerical monoid S is an additive submonoid of N with [N\ §| < co.

Let S = (2,3) = {2,3,4,5,...} under addition. C[S] = C[x?, x3].
X=x3.x3=x2.x2.x2 ~ 6=3+3=2+4+2+2.

Factorizations are additive!

McN = (6,9,20) = {0,6,9,12,15,18,20,21,...}. “McNugget Monoid”

60 = 7(6)+2(9)
= 3(20)
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Numerical monoids

Definition

A numerical monoid S is an additive submonoid of N with [N\ §| < co.

Let S = (2,3) = {2,3,4,5,...} under addition. C[S] = C[x?, x3].
X=x3.x3=x2.x2.x2 ~ 6=3+3=2+4+2+2.

Factorizations are additive!

McN = (6,9,20) = {0,6,9,12,15,18,20,21,...}. “McNugget Monoid”

60 = 7(6)+2(9) s (7,2,0)
= 3(20) (0,0,3)
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Factorization invariants: towards the catenary degree
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Factorization invariants: towards the catenary degree

Definition
Fix a numerical monoid S = (ny,...,nk). Forne S,

Zs(n) = {(a1,...,ak) ENK:n=ain + -+ axni}
denotes the set of factorizations of m.
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Factorization invariants: towards the catenary degree

Definition
Fix a numerical monoid S = (ny,...,nk). Forne S,

Zs(n) = {(a1,...,ak) ENK:n=ain + -+ axni}
denotes the set of factorizations of m. For f,f" € Zs(n),

Ifl = A+--+1f

Christopher O'Neill (Texas A&M University)

Invariants of non-unique factorization November 11, 2014



Factorization invariants: towards the catenary degree

Definition
Fix a numerical monoid S = (ny,...,nk). Forne S,

Zs(n) = {(a1,...,ak) ENK:n=ain + -+ axni}
denotes the set of factorizations of m. For f,f" € Zs(n),

|f| = fA+---+1 (Iengthoff)
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Factorization invariants: towards the catenary degree

Fix a numerical monoid S = (ny,...,nk). Forne S,
Zs(n) = {(a1,...,ak) ENK:n=ain + -+ axni}
denotes the set of factorizations of m. For f,f" € Zs(n),

|f| = fA+---+1 (Iengthoff)
ged(f,f') = (min(f,f]),...,min(f, f)))
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Factorization invariants: towards the catenary degree

Fix a numerical monoid S = (ny,...,nk). Forne S,
Zs(n) = {(a1,...,ak) ENK:n=ain + -+ axni}
denotes the set of factorizations of m. For f,f" € Zs(n),

|f| = fA+---+1 (/ength of f)
ged(f,f') = (min(f,f]),...,min(f, f)))
d(f,f') = max{|f —gcd(f,f')|,|f —gcd(f,f')[}
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Factorization invariants: towards the catenary degree

S=(4,6,7) CN,
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Factorization invariants: towards the catenary degree

$={4,67)CN, f=(3,11),f =(1,0,3) € Z5(25).
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Factorization invariants: towards the catenary degree

$={4,67)CN, f=(3,11),f =(1,0,3) € Z5(25).
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Factorization invariants: towards the catenary degree

S=(4,67) CN, f=(31,1),f =(1,0,3) € Zs(25).
e g =gcd(f,f")
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Factorization invariants: towards the catenary degree
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Factorization invariants: towards the catenary degree

$={4,67)CN, f=(3,11),f =(1,0,3) € Z5(25).
o g =gcd(f,f")=(1,0,1).
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Factorization invariants: towards the catenary degree

$={4,67)CN, f=(3,11),f =(1,0,3) € Z5(25).
o g =gcd(f,f")=(1,0,1).
e d(f,f")
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Factorization invariants: towards the catenary degree

S=(4,6,7)CN, f=(3,1,1),f = (1,0,3) € Z5(25).
o g =gcd(f,f")=(1,0,1).
o d(f,f") = max{|f —gl, | — g}
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Factorization invariants: towards the catenary degree

S=(4,6,7)CN, f=(3,1,1),f = (1,0,3) € Z5(25).
o g =gcd(f,f")=(1,0,1).
o d(f,f") = max{|f —gl, | — g}
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Factorization invariants: towards the catenary degree

$={4,67)CN, f=(3,11),f =(1,0,3) € Z5(25).
o g =gcd(f,f")=(1,0,1).
o d(f,f") = max{|f —gl,|f" — g|} =3.
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The catenary degree

Fix a numerical monoid S = (ny,...,ny). For n € S, define the catenary
degree c(n) as follows:
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The catenary degree

Fix a numerical monoid S = (ny,...,ny). For n € S, define the catenary
degree c(n) as follows:

@ Construct a complete graph G with vertex set Zs(n) where each edge
(f,f') has label d(f, f') (catenary graph).
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The catenary degree

Fix a numerical monoid S = (ny,...,ny). For n € S, define the catenary
degree c(n) as follows:

@ Construct a complete graph G with vertex set Zs(n) where each edge
(f, ') has label d(f, f") (catenary graph).
@ Locate the largest edge weight e in G.
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The catenary degree

Fix a numerical monoid S = (ny,...,ny). For n € S, define the catenary
degree c(n) as follows:

@ Construct a complete graph G with vertex set Zs(n) where each edge
(f, ') has label d(f, f") (catenary graph).

@ Locate the largest edge weight e in G.

© Remove all edges from G with weight e.

Christopher O'Neill (Texas A&M University) Invariants of non-unique factorization November 11, 2014 6 /22



The catenary degree

Fix a numerical monoid S = (ny,...,ny). For n € S, define the catenary
degree c(n) as follows:

@ Construct a complete graph G with vertex set Zs(n) where each edge
(f, ') has label d(f, f") (catenary graph).

@ Locate the largest edge weight e in G.

© Remove all edges from G with weight e.

@ If G is disconnected, return e. Otherwise, return to step 2.
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The catenary degree

Definition
Fix a numerical monoid S = (ny,...,ny). For n € S, define the catenary
degree c(n) as follows:
@ Construct a complete graph G with vertex set Zs(n) where each edge
(f, ') has label d(f, f") (catenary graph).
@ Locate the largest edge weight e in G.
© Remove all edges from G with weight e.

@ If G is disconnected, return e. Otherwise, return to step 2.

If |Zs(n)| = 1, define c(n) = 0.
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A Big Example

S = (11,36, 39), n = 450
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A Big Example

S = (11,36, 39), n = 450

066 o7 (27,1,3)

(3,4,7) (24,3,2)

(9,0,9) 16 (18,7,0)
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A Big Example

S = (11,36, 39), n = 450

066 o7 (27,1,3)

(3,4,7) (24,3,2)

(9,0,9) 16 (18,7,0)
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A Big Example

S = (11,36, 39), n = 450

(0,6,6) (27,1,3)

(24,3,2)

(9,0,9) 16 (18,7,0)
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A Big Example

S = (11,36, 39), n = 450

(0,6,6) (27,1,3)

(24,3,2)

(9,0,9) 16 (18,7,0)
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A Big Example

S = (11,36, 39), n = 450

(0,6,6) (27,1,3)

(24,3,2)

(9,0,9) 16 (18,7,0)
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A Big Example

S = (11,36, 39), n = 450

(0,6,6) (27,1,3)

(3,4,7) 8 8 (24,3,2)

6,28 8 21,51
(6.2,8) 17 178 ( )

(9,0,9) 16 (18,7,0)
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A Big Example

S = (11,36, 39), n = 450

(3,4,7)

(0,6,6) (27,1,3)
8 8
12 12
18 18
18
6,2,8 8
( ) 17 178
4

(9,0,9) 16 (18,7,0)

(24,3,2)

(21,5,1)
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A Big Example

S = (11,36, 39), n = 450

(0,6,6) (27,1,3)

(24,3,2)

(9,0,9) 16 (18,7,0)
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A Big Example

S = (11,36, 39), n = 450

(0,6,6) (27,1,3)
p
4
(3,4,7) 8 8 (24,3,2)
4 12 12 4
18 18
18
6,2,8 8 21,5,1
(6,2,8) - 178 ( )
4
9,09 16 (187,0)
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A Big Example

S = (11,36, 39), n = 450

(0,6,6) (27.1.3)
p
4
(3,4,7) 8 8 (24,3,2)
4 12 12 4
Q y
18
62,8 8 21,5,1
(6,2,8) .- -8 (21,5,1)
4

(9,0,9) 16 (18,7,0)
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A Big Example

S = (11,36, 39), n = 450

4
(3,4,7)
4
(6,2,8)
4

(0,6,6) (27,1,3)
p L
8 8
12 12
8
17 178

(9,0,9) 16 (18,7,0)

(24,3,2)

(21,5,1)
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A Big Example

S = (11,36, 39), n = 450

4
(3,4,7)
4
(6,2,8)
4

(0,6,6) (27,1,3)
p L
8 8
12 12
8
17 178

(9,0,9) 16 (18,7,0)

(24,3,2)

(21,5,1)
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A Big Example

S = (11,36, 39), n = 450

(0,6,6) (2751 )]
p
4 4
(3,4,7) 8 8 (24,3,2)
4 12 12 4
(6,2,8) 8 8 (21,5,1)
4 4

(9,0,9) 16 (18,7,0)
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A Big Example

S = (11,36, 39), n = 450

(0,6,6) (2751 )]
p
4 4
(3,4,7) 8 8 (24,3,2)
4 12 12 4
(6,2,8) 8 8 (21,5,1)
4 4

(9,0,9) 16 (18,7,0)
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A Big Example

S = (11,36, 39), n = 450

(27,1,3)
L

(24,3,2)
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A Big Example

S = (11,36,39), n = 450, c(n) = 16

(0,6',6) (2751 ,3)

(24,3,2)
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A Big Example, Method 2
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A Big Example, Method 2

S = (11,36, 39), n = 450

(0,6,6) 27,1,3)
[ ] [ ]
3,4,7) (24,3,2)
* [ ]
6,2,8) *215,1)
[ ] [ ]
(9,0.9) (18,7,0)
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A Big Example, Method 2

S = (11,36, 39), n = 450

(0,6,6) (27,1,3)
4 4
(3,4,7) (24,3,2)
4 4
(6,2,8) (21,5,1)
4 4
(9,0,9) (18,7,0)
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A Big Example, Method 2

S = (11,36, 39), n = 450

(0,6,6) (2751 )]
p
4 4
(3,4,7) 8 8 (24,3,2)
4 12 12 4
(6,2,8) 8 8 (21,5,1)
4 4

(9,0,9) 16 (18,7,0)
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A Big Example, Method 2

S = (11,36,39), n = 450, c(n) = 16

(0,6,6) (2751 )]
p
4 4
(3,4,7) 8 8 (24,3,2)
4 12 12 4
(6,2,8) 8 8 (21,5,1)
4 4

(9,0,9) 16 (18,7,0)
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Betti elements

Definition

For an element n € S = (ny,..., nk), let V,, denote the subgraph of the
catenary graph in which only edges (f, f’) with gcd(f, f’) # 0 are drawn.
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Betti elements

Definition

For an element n € S = (ny,..., nk), let V,, denote the subgraph of the
catenary graph in which only edges (f, f’) with gcd(f, f’) # 0 are drawn.
We say n is a Betti element of S if V, is disconnected.
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Betti elements

For an element n € S = (ny,..., nk), let V,, denote the subgraph of the

catenary graph in which only edges (f, f’) with gcd(f, f’) # 0 are drawn.
We say n is a Betti element of S if V, is disconnected.

S =(10,15,17) has Betti elements 30 and 85.
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Betti elements

For an element n € S = (ny,..., nk), let V,, denote the subgraph of the

catenary graph in which only edges (f, f’) with gcd(f, f’) # 0 are drawn.
We say n is a Betti element of S if V, is disconnected.

S =(10,15,17) has Betti elements 30 and 85.
V30 . V85 . (0,0,5)
*

(3,0,0) o e (0,2,0) (1,5,0) (7,1,0)

(4,3,0)
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Maximal catenary degree in S

max{c(n) : n € S} = max{c(b) : b Betti element of S}.
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Maximal catenary degree in S

max{c(n) : n € S} = max{c(b) : b Betti element of S}.

Key concept: Cover morphisms.
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Maximal catenary degree in S

max{c(n) : n € S} = max{c(b) : b Betti element of S}.

Key concept: Cover morphisms.

o ®
o
® o ® ¢ ®
o
o ®
Zs(n) Zs(n+ n;)

Christopher O'Neill (Texas A&M University) Invariants of non-unique factorization November 11, 2014 10 / 22



Maximal catenary degree in S

max{c(n) : n € S} = max{c(b) : b Betti element of S}.

Key concept: Cover morphisms.

o /\ o
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Maximal catenary degree in S

max{c(n) : n € S} = max{c(b) : b Betti element of S}.

Key concept: Cover morphisms.

o /\ o

® o
o ] O O
o
o O
Zs(n) < Zs(n+ n;)
f f+ €;
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Maximal catenary degree in S

max{c(n) : n € S} = max{c(b) : b Betti element of S}.
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Maximal catenary degree in S

max{c(n) : n € S} = max{c(b) : b Betti element of S}.

Key concept: Cover morphisms.

Zs(n + n,-)
f+ e
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Maximal catenary degree in S

max{c(n) : n € S} = max{c(b) : b Betti element of S}.
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Maximal catenary degree in S

max{c(n) : n € S} = max{c(b) : b Betti element of S}.

Idea for proof:
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Maximal catenary degree in S

max{c(n) : n € S} = max{c(b) : b Betti element of S}.

Idea for proof:
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Maximal catenary degree in S

max{c(n) : n € S} = max{c(b) : b Betti element of S}.

Idea for proof: The catenary graph of each n € S is “spanned” by certain
edges determined by Betti elements.
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Minimal (nonzero) catenary degree in S

min{c(n) > 0: n € S} = min{c(b) : b Betti element of S}.
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Minimal (nonzero) catenary degree in S

Conjecture Theorem (O., Ponomarenko, Tate, Webb)
min{c(n) > 0: n € S} = min{c(b) : b Betti element of S}.
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Minimal (nonzero) catenary degree in S

Conjecture Theorem (O., Ponomarenko, Tate, Webb)
min{c(n) > 0: n € S} = min{c(b) : b Betti element of S}.

B = min{c(b) : b Betti element of S}.
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Minimal (nonzero) catenary degree in S

Conjecture Theorem (O., Ponomarenko, Tate, Webb)
min{c(n) > 0: n € S} = min{c(b) : b Betti element of S}.

B = min{c(b) : b Betti element of S}.

IFF,f € Zs(n)

fe
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Minimal (nonzero) catenary degree in S

Conjecture Theorem (O., Ponomarenko, Tate, Webb)
min{c(n) > 0: n € S} = min{c(b) : b Betti element of S}.

B = min{c(b) : b Betti element of S}.

Iff,f" € Zs(n) and d(f,f’) < B,

f/
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Minimal (nonzero) catenary degree in S

Conjecture Theorem (O., Ponomarenko, Tate, Webb)
min{c(n) > 0: n € S} = min{c(b) : b Betti element of S}.

B = min{c(b) : b Betti element of S}.

If f,f' € Zs(n) and d(f, ') < B, then there exists f" € Zs(n)
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Minimal (nonzero) catenary degree in S

Conjecture Theorem (O., Ponomarenko, Tate, Webb)
min{c(n) > 0: n € S} = min{c(b) : b Betti element of S}.

B = min{c(b) : b Betti element of S}.

Iff,f" € Zs(n) and d(f, ") < B, then there exists f" € Zs(n) with

max {

LIy < 7.

S
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Minimal (nonzero) catenary degree in S

Conjecture Theorem (O., Ponomarenko, Tate, Webb)
min{c(n) > 0: n € S} = min{c(b) : b Betti element of S}.
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Minimal (nonzero) catenary degree in S

Conjecture Theorem (O., Ponomarenko, Tate, Webb)
min{c(n) > 0: n € S} = min{c(b) : b Betti element of S}.

Proof of theorem:
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Minimal (nonzero) catenary degree in S

Conjecture Theorem (O., Ponomarenko, Tate, Webb)
min{c(n) > 0: n € S} = min{c(b) : b Betti element of S}.

Proof of theorem:

e Fixnes
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Minimal (nonzero) catenary degree in S

Conjecture Theorem (O., Ponomarenko, Tate, Webb)
min{c(n) > 0: n € S} = min{c(b) : b Betti element of S}.

Proof of theorem: Catenary graph of n:

e Fixnes
®
® ®
®
®
d ®
° L4 °
®
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Minimal (nonzero) catenary degree in S

Conjecture Theorem (O., Ponomarenko, Tate, Webb)
min{c(n) > 0: n € S} = min{c(b) : b Betti element of S}.

Proof of theorem: Catenary graph of n:

o
-

e Fixnes
@ Draw edges with weight < B
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Minimal (nonzero) catenary degree in S

Conjecture Theorem (O., Ponomarenko, Tate, Webb)
min{c(n) > 0: n € S} = min{c(b) : b Betti element of S}.

Proof of theorem: Catenary graph of n:

e Fixnes
@ Draw edges with weight < B

o f € Zs(n) with |f| maximal ./‘
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Minimal (nonzero) catenary degree in S

Conjecture Theorem (O., Ponomarenko, Tate, Webb)
min{c(n) > 0: n € S} = min{c(b) : b Betti element of S}.

Proof of theorem: Catenary graph of n:
e Fixnes
@ Draw edges with weight < B

o f € Zs(n) with |f| maximal ./‘
o f' € Zs(n) with d(f,f') < B '\/f/
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Minimal (nonzero) catenary degree in S

Conjecture Theorem (O., Ponomarenko, Tate, Webb)
min{c(n) > 0: n € S} = min{c(b) : b Betti element of S}.

Proof of theorem: Catenary graph of n:
e Fixnes
@ Draw edges with weight < B
o f € Zs(n) with |f| maximal ./‘
o f' € Zs(n) with d(f,f') < B 1!
e Lemma = |f"| > |f] '\/
f ;”
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Minimal (nonzero) catenary degree in S

Conjecture Theorem (O., Ponomarenko, Tate, Webb)
min{c(n) > 0: n € S} = min{c(b) : b Betti element of S}.

Proof of theorem: Catenary graph of n:
e Fixnes
@ Draw edges with weight < B
o f € Zs(n) with |f| maximal ./‘
o f' € Zs(n) with d(f,f') < B 1!
e Lemma = |f"| > |f] '\/
e maximality of |f| = f °
" has no edges! 7
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Switching gears: w-primality
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Switching gears: w-primality

Definition (w-primality)

Fix a cancellative, commutative, atomic monoid M. For x € M, w(x) is
the smallest positive integer m such that whenever x | []7_; uj for r > m,
there exists a subset T C {1,...,r} with |T| < m such that x | [];c7 u;.
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Switching gears: w-primality

Definition (w-primality)

Fix a cancellative, commutative, atomic monoid M. For x € M, w(x) is
the smallest positive integer m such that whenever x | []7_; uj for r > m,
there exists a subset T C {1,...,r} with |T| < m such that x | [];c7 u;.

w(x) = 1 if and only if x is prime (i.e. x | ab implies x | a or x | b).
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Switching gears: w-primality

Definition (w-primality)

Fix a cancellative, commutative, atomic monoid M. For x € M, w(x) is
the smallest positive integer m such that whenever x | []7_; uj for r > m,
there exists a subset T C {1,...,r} with |T| < m such that x | [];c7 u;.

w(x) = 1 if and only if x is prime (i.e. x | ab implies x | a or x | b).

M is factorial if and only if every irreducible element u € M is prime.
Moreover, w(p1 - - - p;) = r for any primes pi,...,p, € M.
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Switching gears: w-primality

Definition (w-primality)

Fix a cancellative, commutative, atomic monoid M. For x € M, w(x) is
the smallest positive integer m such that whenever x | []7_; uj for r > m,
there exists a subset T C {1,...,r} with |T| < m such that x | [];c7 u;.
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Switching gears: w-primality

Definition (w-primality)

Fix a cancellative, commutative, atomic monoid M. For x € M, w(x) is
the smallest positive integer m such that whenever x | []7_; uj for r > m,
there exists a subset T C {1,...,r} with |T| < m such that x | [];c7 u;.

R = C[x?,x%]
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Switching gears: w-primality

Definition (w-primality)

Fix a cancellative, commutative, atomic monoid M. For x € M, w(x) is
the smallest positive integer m such that whenever x | []7_; uj for r > m,
there exists a subset T C {1,...,r} with |T| < m such that x | [];c7 u;.

Example
R = C[x2,x3] (think § = (2,3) C N).
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Switching gears: w-primality

Definition (w-primality)

Fix a cancellative, commutative, atomic monoid M. For x € M, w(x) is
the smallest positive integer m such that whenever x | []7_; uj for r > m,
there exists a subset T C {1,...,r} with |T| < m such that x | [];c7 u;.

Example
R = C[x?,x%] (think S = (2,3) C N). To compute w(x?):
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Switching gears: w-primality

Definition (w-primality)

Fix a cancellative, commutative, atomic monoid M. For x € M, w(x) is
the smallest positive integer m such that whenever x | []7_; uj for r > m,
there exists a subset T C {1,...,r} with |T| < m such that x | [];c7 u;.

R = C[x?,x%] (think S = (2,3) C N). To compute w(x?):

o x? | x?,
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Switching gears: w-primality

Definition (w-primality)

Fix a cancellative, commutative, atomic monoid M. For x € M, w(x) is
the smallest positive integer m such that whenever x | []7_; uj for r > m,
there exists a subset T C {1,...,r} with |T| < m such that x | [];c7 u;.

R = C[x?,x%] (think S = (2,3) C N). To compute w(x?):

o x? | x?,

3

o x? | x3.x3since x* € R,
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Switching gears: w-primality

Definition (w-primality)

Fix a cancellative, commutative, atomic monoid M. For x € M, w(x) is
the smallest positive integer m such that whenever x | []7_; uj for r > m,
there exists a subset T C {1,...,r} with |T| < m such that x | [];c7 u;.

R = C[x?,x%] (think S = (2,3) C N). To compute w(x?):

o x? | x?,

o x? | x3.x3since x* € R,
° x2 | upupus with each u; = x2 or x3
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Switching gears: w-primality

Definition (w-primality)

Fix a cancellative, commutative, atomic monoid M. For x € M, w(x) is
the smallest positive integer m such that whenever x | []7_; uj for r > m,

there exists a subset T C {1,...,r} with |T| < m such that x | [];c7 u;.
R = C[x?,x%] (think S = (2,3) C N). To compute w(x?):
o x? | x?,

o x? | x3.x3since x* € R,
2

o x? | upupuz with each u; = x? or x3 = some u; can be omitted.
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Switching gears: w-primality

Definition (w-primality)

Fix a cancellative, commutative, atomic monoid M. For x € M, w(x) is
the smallest positive integer m such that whenever x | []7_; uj for r > m,
there exists a subset T C {1,...,r} with |T| < m such that x | [];c7 u;.

R = C[x?,x%] (think S = (2,3) C N). To compute w(x?):
o x? | x?,

o x? | x3.x3since x* € R,
2

o x? | upupuz with each u; = x? or x3 = some u; can be omitted.

o w(x?)=2.
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Switching gears: w-primality

Definition (w-primality)

Fix a cancellative, commutative, atomic monoid M. For x € M, w(x) is
the smallest positive integer m such that whenever x | []7_; uj for r > m,
there exists a subset T C {1,...,r} with |T| < m such that x | [];c7 u;.
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Switching gears: w-primality

Definition (w-primality)

Fix a cancellative, commutative, atomic monoid M. For x € M, w(x) is
the smallest positive integer m such that whenever x | []7_; uj for r > m,
there exists a subset T C {1,...,r} with |T| < m such that x | [];c7 u;.

Definition
A bullet for x € M is a product ug - - - u, of irreducible elements such that
(i) x divides uy - - - ur, and (ii) x does not divide uj - - - u,/u; for each i < r.
The set of bullets of x is denoted bul(x).

\
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Switching gears: w-primality

Definition (w-primality)

Fix a cancellative, commutative, atomic monoid M. For x € M, w(x) is
the smallest positive integer m such that whenever x | []7_; uj for r > m,
there exists a subset T C {1,...,r} with |T| < m such that x | [];c7 u;.

Definition
A bullet for x € M is a product ug - - - u, of irreducible elements such that
(i) x divides uy - - - ur, and (ii) x does not divide uj - - - u,/u; for each i < r.
The set of bullets of x is denoted bul(x).

\

Proposition

wpm(x) = max{r: uy---u, € bul(x)}.
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Algorithms to compute w-primality

w-primality in a numerical monoid S = (ny, ..., ng):
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Algorithms to compute w-primality

w-primality in a numerical monoid S = (ny, ..., ng):

o Bulletsin S: byny + -+ + bgng +— E: (bl,...,bk) e Nk,
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Algorithms to compute w-primality

w-primality in a numerical monoid S = (ny, ..., ng):

o Bulletsin S: byny + -+ + bgng +— E: (bl,...,bk) e Nk,

@ For each i < k, we have c¢;€; € bul(n) for some ¢; > 0.
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Algorithms to compute w-primality

w-primality in a numerical monoid S = (ny, ..., nk):
o Bulletsin S: biny + -+ byng <+ E: (bl,...,bk) e Nk,
@ For each i < k, we have c¢;€; € bul(n) for some ¢; > 0.
e bul(n) c [T<,[0, ci].
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Algorithms to compute w-primality

w-primality in a numerical monoid S = (ny, ..., nk):
o Bulletsin S: biny + -+ byng <+ E: (bl,...,bk) e Nk,
@ For each i < k, we have c¢;€; € bul(n) for some ¢; > 0.
e bul(n) c [T<,[0, ci].

Algorithm
Search Hf‘zl[O, ¢j] for bullets, compute w(n) = max{|b| : b € bul(n)}.
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Algorithms to compute w-primality

w-primality in a numerical monoid S = (ny, ..., ng):

o Bulletsin S: biny + -+ byng <+ E: (bl,...,bk) e Nk,
@ For each i < k, we have c¢;€; € bul(n) for some ¢; > 0.
e bul(n) c [T<,[0, ci].

Algorithm
Search Hf‘zl[O, ¢j] for bullets, compute w(n) = max{|b| : b € bul(n)}.

Several improvements on this algorithm exist. \
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Quasilinearity for numerical monoids

Theorem ((O.—Pelayo, 2013), (Garcia-Garcia et.al., 2013))

ws(n) = n_11” + ao(n) for n>> 0, where ag(n) periodic with period n;.
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Quasilinearity for numerical monoids

Theorem ((O.—Pelayo, 2013), (Garcia-Garcia et.al., 2013))

ws(n) = n_11” + ao(n) for n>> 0, where ag(n) periodic with period n;.
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Quasilinearity for numerical monoids

Dissonance point: minimum Ny such that w(n) is quasilinear for n > Np.
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Quasilinearity for numerical monoids

Dissonance point: minimum Ny such that w(n) is quasilinear for n > Np.

Question (O.-Pelayo, 2013)

The upper bound for dissonance point is large. Can we do better?
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Quasilinearity for numerical monoids
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Question (O.-Pelayo, 2013)

The upper bound for dissonance point is large. Can we do better?

Roadblock

Existing algorithms are slow for large n.

Question (O.—-Pelayo, 2014)

Can we dynamically (inductively) compute several w-values at once?
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Quasilinearity for numerical monoids

Dissonance point: minimum Ny such that w(n) is quasilinear for n > Np.

Question (O.-Pelayo, 2013)

The upper bound for dissonance point is large. Can we do better?

Roadblock
Existing algorithms are slow for large n.

Question (O.—-Pelayo, 2014)

Can we dynamically (inductively) compute several w-values at once?

Answer (Barron-O.-Pelayo, 2014)
Yes!

Christopher O'Neill (Texas A&M University) Invariants of non-unique factorization November 11, 2014 16 / 22



Toward a dynamic algorithm. . . the inductive step

Forne€ S, let Z(n) = {3 € Nk Zf'(:l ain; = n}.
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Forne€ S, let Z(n) = {3 € Nk Zf'(:l ain; = n}.
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Toward a dynamic algorithm. . . the inductive step

Forne S, let Z(n) = {5 Nk : 3% a;n; = n}.
For each i < k,
i Z(n—n;)) — Z(n)
a — d+e.
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Toward a dynamic algorithm. . . the inductive step

Forne€ S, let Z(n) = {3 € Nk Zf'(:l ain; = n}.
For each i < k,
;i - Z(n — n,-) — Z(n)
a — d+é.
In particular,

Z(n) = | J 6i(Z(n - m))

i<k
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Toward a dynamic algorithm. .. the inductive step

Forne€ S, let Z(n) = {3 € Nk Zf'(:l ain; = n}.
For each i < k,

;i - Z(n — n,-) — Z(n)
a — d+e.
In particular,

Z(n) = | J 6i(Z(n - m))

i<k

Definition /Proposition (Cover morphisms)

Fix n € S and i < k. The i-th cover morphism for n is the map
;i = bul(n — n;) — bul(n)
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Toward a dynamic algorithm. .. the inductive step

Forne€ S, let Z(n) = {3 € Nk Zf'(:l ain; = n}.
For each i < k,
;i - Z(n — n,-) — Z(n)
a — d+e.
In particular,
Z(n) = |J ¢i(2(n - m))

i<k

Definition /Proposition (Cover morphisms)

Fix n € S and i < k. The i-th cover morphism for n is the map
;i = bul(n — n;) — bul(n)

given by

EI—> E—l:e,- Zjl-;lbjnj—n—n,-gés
b Z};lbjnj—n—nies
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Toward a dynamic algorithm. .. the inductive step

Forne€ S, let Z(n) = {3 € Nk Zf'(:l ain; = n}.
For each i < k,
;i - Z(n — n,-) — Z(n)
a — d+e.
In particular,
Z(n) = |J ¢i(2(n - m))

i<k

Definition /Proposition (Cover morphisms)

Fix n € S and i < k. The i-th cover morphism for n is the map
;i = bul(n — n;) — bul(n)

given by

b Z};lbjnj—n—nies
Moreover, bul(n) = ;< i(bul(n — n;)).**

Ei—>{ E—l:e,- Zjl-;lbjnj—n—n,-gés
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Toward a dynamic algorithm. . . the base case

Definition (w-primality in numerical monoids)

Fix a numerical monoid S and n € S.

Christopher O'Neill (Texas A&M University) Invariants of non-unique factorization November 11, 2014 18 / 22



Toward a dynamic algorithm. . . the base case

Definition (w-primality in numerical monoids)

Fix a numerical monoid S and n € S.
ws(n) is the minimal m such that whenever (3>~7_; nj;) —n€ S for r > m,
there exists T C {1,...,r} with [T| < mand (3> ;crn;) —neS.
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Toward a dynamic algorithm. . . the base case

Definition (w-primality in numerical monoids)

Fix a numerical monoid S and n € 5.
ws(n) is the minimal m such that whenever (3>~7_; nj;) —n€ S for r > m,
there exists T C {1,...,r} with [T| < mand (3> ;crn;) —neS.
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Toward a dynamic algorithm. . . the base case

Definition (w-primality in numerical monoids)

Fix a numerical monoid S and n € Z = q(5).
ws(n) is the minimal m such that whenever (3>~7_; nj;) —n€ S for r > m,
there exists T C {1,...,r} with [T| < mand (3> ;crn;) —neS.
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Definition (w-primality in numerical monoids)

Fix a numerical monoid S and n € Z = q(S).
ws(n) is the minimal m such that whenever (3>~7_; nj;) —n€ S for r > m,
there exists T C {1,...,r} with [T| < mand (3> ;crn;) —neS.

All properties of w extend from S to Z.
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ws(n) is the minimal m such that whenever (3>~7_; nj;) —n€ S for r > m,
there exists T C {1,...,r} with [T| < mand (3> ;crn;) —neS.

All properties of w extend from S to Z.

Proposition
For n € Z, the following are equivalent:
(i) w(n) =0, (ii) bul(n) = {0}, (iii)y —n € S.

November 11, 2014 18 / 22

Christopher O'Neill (Texas A&M University) Invariants of non-unique factorization



Toward a dynamic algorithm. . .the base case

Definition (w-primality in numerical monoids)

Fix a numerical monoid S and n € Z = q(S).
ws(n) is the minimal m such that whenever (3>~7_; nj;) —n€ S for r > m,
there exists T C {1,...,r} with [T| < mand (3> ;crn;) —neS.

All properties of w extend from S to Z.

Proposition

For n € Z, the following are equivalent:

(i) w(n) =0, (ii) bul(n) = {0}, (iii)y —n € S.
S =(3,5):
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Definition (w-primality in numerical monoids)

Fix a numerical monoid S and n € Z = q(S).
ws(n) is the minimal m such that whenever (3>~7_; nj;) —n€ S for r > m,
there exists T C {1,...,r} with [T| < mand (3> ;crn;) —neS.

All properties of w extend from S to Z.

Proposition

For n € Z, the following are equivalent:

(i) w(n) =0, (ii) bul(n) = {0}, (iii)y —n € S.
S =(3,5):
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November 11, 2014 18 / 22

Christopher O'Neill (Texas A&M University) Invariants of non-unique factorization



Toward a dynamic algorithm. . .the base case

Definition (w-primality in numerical monoids)

Fix a numerical monoid S and n € Z = q(S).
ws(n) is the minimal m such that whenever (3>~7_; nj;) —n€ S for r > m,
there exists T C {1,...,r} with [T| < mand (3> ;crn;) —neS.

All properties of w extend from S to Z.

Proposition

For n € Z, the following are equivalent:

(i) w(n) =0, (ii) bul(n) = {0}, (iii)y —n € S.
S =(3,5):

B S . L e S &
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ws(n) is the minimal m such that whenever (3>~7_; nj;) —n€ S for r > m,
there exists T C {1,...,r} with [T| < mand (3> ;crn;) —neS.

All properties of w extend from S to Z.

Proposition
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Toward a dynamic algorithm. . .the base case

Definition (w-primality in numerical monoids)

Fix a numerical monoid S and n € Z = q(S).
ws(n) is the minimal m such that whenever (3>~7_; nj;) —n€ S for r > m,
there exists T C {1,...,r} with [T| < mand (3> ;crn;) —neS.

All properties of w extend from S to Z.

Proposition
For n € Z, the following are equivalent:
(i) w(n) =0, (ii) bul(n) = {0}, (iii)y —n € S.

S =(3,5):

o % % % Py Py P Py Py Py
- - ¢ L 4 & * *
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Toward a dynamic algorithm. . .the base case

Definition (w-primality in numerical monoids)

Fix a numerical monoid S and n € Z = q(S).
ws(n) is the minimal m such that whenever (3>~7_; nj;) —n€ S for r > m,
there exists T C {1,...,r} with [T| < mand (3> ;crn;) —neS.

All properties of w extend from S to Z.

Proposition
For n € Z, the following are equivalent:
(i) w(n) =0, (ii) bul(n) = {0}, (iii)y —n € S.

S =(3,5):

o % % % Py Py P Py Py Py
- - ¢ L 4 & * *
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A dynamic algorithm!

McN = (6,9,20) = {0,6,9,12,15,18,20,21,...}.
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A dynamic algorithm!

McN = (6,9,20) = {0,6,9,12,15,18,20,21,...}.
n€Z w(n) bul(n) n€Z w(n) bul(n)
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A dynamic algorithm!

McN = (6,9,20) = {0,6,9,12,15,18,20,21,...}.
n€Z w(n) bul(n) n€Z w(n) bul(n)

<4 0 {0}
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A dynamic algorithm!

McN = (6,9,20) = {0,6,9,12,15,18,20,21,...}.
n€Z w(n) bul(n) n€Z w(n) bul(n)

<—44 0 {0}
—43 1 {&,&,8}
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A dynamic algorithm!

McN = (6,9,20) = {0,6,9,12,15,18,20,21,...}.

n€Z w(n) bul(n) n€Z w(n) bul(n)
<—44 0 {0}
1
0

43 (6.8 &)
—42 {0}

3 0 {0)
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A dynamic algorithm!

McN = (6,9,20) = {0,6,9,12,15,18,20,21,...}.

n€Z w(n) bul(n) n€Z w(n) bul(n)
<—44 0 {0}
1
0

—43 {e1, &, &}
—42 {0}

-38 0 {0}

—& 2 {24,&,&}

Christopher O'Neill (Texas A&M University) Invariants of non-unique factorization November 11, 2014 19 / 22



A dynamic algorithm!

McN = (6,9,20) = {0,6,9,12,15,18,20,21,...}.

n€Z w(n) bul(n) n€Z w(n) bul(n)
<—44 0 {0}

—43 1 {&,&, &)

—42 0 {0}

-38 0 {0}

=37 2 {2&,&,&}

36 o {0}

-35 0o {0}

—34 2 {&,28,&})
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A dynamic algorithm!

McN = (6,9,20) = {0,6,9,12,15,18,20,21,...}.

n€Z w(n) bul(n) n€Z w(n) bul(n)
<—44 0 {0}
—43 1 {&,&,&}
—42 0 {0}
-38 0 {0}
=37 2 {2&,&,&}
36 o {0}
-35 0o {0}
—34 2 {&,28,&})
-33 0 {0}
-32 0 {0}
-31 3 {34,&,&}
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A dynamic algorithm!

McN = (6,9,20) = {0,6,9,12,15,18,20,21,...}.

n€Z w(n) bul(n) n€Z w(n) bul(n)
<—44 0 {0}
—43 1 {&,&,&}
—42 0o {0}
-38 0 {0}
=37 2 {2&,&,&}
36 o {0}
-35 0o {0}
—34 2 {&,28,&})
-33 0 {0}
-32 0 {0}
-31 3

{361, &, &}
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A dynamic algorithm!

McN = (6,9,20) = {0,6,9,12,15,18,20,21,...}.

n€Z w(n) bul(n) n€Z w(n) bul(n)

<—44 0 {0} 6 3 (38,28, 6}

—43 1 {&a,&, 8} 7 6 {66,3&,28,(3,1,0)}
—42 0o {0} 8 8 (861,68, (5,2,0),...}

: : : 9 3 {361,38,6}

—38 0 {0} 10 5 {561,4&,28,(2,2,0)}
—37 2 {28,&,8)} 11 10 {10&,7&,(7,1,0),...}
-36 0 {0} 12 3 (363,261,286}

-35 0 {0} 13 7 {76,,5&, (4,1,0),...}
—34 2 {&,28,&) 14 9 {96,686, (6,2,0),...}
-33 0 {0} 15 4 {4&,,38,38,(1,1,0)}
-32 0 {0} : : :

31 3 {38,&,6}
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A dynamic algorithm!

McN = (6,9,20) = {0,6,9,12,15,18,20,21,...}.
n€Z w(n) bul(n) n€Z w(n) bul(n)
<—44 0 {0} 6 3 (38,28, 6}
—43 1 {a,&,&} 7 6 {6€},38,26,(3,1,0)}
—42 0 {0} 8 8 {861,668, (5,2,0),...}
: : E 9 3 {361,386, &}
—38 0o {0} 10 5 {561,4&,28,(2,2,0)}
—& 2 {28,8,8) 11 10 {106,7&,(7,1,0),...}
-36 0o {0} 12 3 {3&,26,,28)
-35 0 {0} 13 7 {78,58&,(4,1,0),...}
—34 2 {&,28,8} 14 9 {9é1,6&, (6,2,0),...}
33 0 {0} 15 4 {46,,36,38,(1,1,0)}
-32 0 {0} : : :
—31 3 {38,&,&} 149 33 {33&,...}
: : : 150 25  {25&,...}

Christopher O'Neill (Texas A&M University) Invariants of non-unique factorization November 11, 2014 19 / 22



A dynamic algorithm!

McN = (6,9,20) = {0,6,9,12,15,18,20,21,...}.

n€Z w(n) bul(n) n€Z w(n) bul(n)
6 3 {36,28, &}
9 3 {341,363, &}

12 3 {3&3,261,2&}

15 4 {4é1,38,36,(1,1,0)}

149 33 {33&,...}
150 25 {25&,...}
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Runtime comparison
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http://www.gap-system.org/Packages/numericalsgps.html

Runtime comparison

neS ws(n) Existing Dynamic

(6 9,20) 1000 170 Im 1.3s 6ms
(11,13,15) 1000 97 Om 10.7s 5ms
(11,13,15) 3000 279 14m 34.7s 15ms
(11,13, 15) 10000 915 42ms
(15,27,32,35) 1000 69 3m 54.7s 9ms
(100, 121,142,163, 284) 25715 308 Om 27s
(1001,1211,1421,1631,2841) 357362 405 —— 57m 27s
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http://www.gap-system.org/Packages/numericalsgps.html

Runtime comparison

neS ws(n) Existing Dynamic

(6 9,20) 1000 170 Im 1.3s 6ms
(11,13,15) 1000 97 Om 10.7s 5ms
(11,13,15) 3000 279 14m 34.7s 15ms
(11,13, 15) 10000 915 42ms
(15,27,32,35) 1000 69 3m 54.7s 9ms
(100, 121,142,163, 284) 25715 308 Om 27s
(1001,1211,1421,1631,2841) 357362 405 —— 57m 27s

GAP Numerical Semigroups Package, available at
http://www.gap-system.org/Packages/numericalsgps.html.
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Future directions

What about more general (finitely generated) monoids M?
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@ lterative construction of bullets from cover maps?
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Future directions

What about more general (finitely generated) monoids M?
@ Characterization of wy in terms of maximal length bullets? v
e Extension of wy to q(M)? v
@ lterative construction of bullets from cover maps? v

Issue:
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Future directions

What about more general (finitely generated) monoids M?
@ Characterization of wy in terms of maximal length bullets? v
e Extension of wy to q(M)? v
@ lterative construction of bullets from cover maps? v

Issue: the base case!
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Future directions

What about more general (finitely generated) monoids M?
@ Characterization of wy in terms of maximal length bullets? v
e Extension of wy to q(M)? v
@ lterative construction of bullets from cover maps? v

Issue: the base case!
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Future directions

What about more general (finitely generated) monoids M?
@ Characterization of wy in terms of maximal length bullets? v
e Extension of wy to q(M)? v
@ lterative construction of bullets from cover maps? v

Issue: the base case!

P v v e e e
P « e e e e
P « e e e e
. . . . . ® * L ] L] .
P ® @ + s s
e e e e
« . ,"'" . . . . .
P P
P e e e
P P

Christopher O'Neill (Texas A&M University) Invariants of non-unique factorization November 11, 2014 21 /22




Future directions

What about more general (finitely generated) monoids M?
@ Characterization of wy in terms of maximal length bullets? v
e Extension of wy to q(M)? v
@ lterative construction of bullets from cover maps? v

Issue: the base case!
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Future directions

What about more general (finitely generated) monoids M?
@ Characterization of wy in terms of maximal length bullets? v
e Extension of wy to q(M)? v

@ lterative construction of bullets from cover maps? v
Issue: the base case!

Problem

Find a dynamic algorithm to compute w-primality in M.
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Future directions

What about more general (finitely generated) monoids M?
@ Characterization of wy in terms of maximal length bullets? v
e Extension of wy to q(M)? v

@ lterative construction of bullets from cover maps? v
Issue: the base case!

Problem
Find a dynamic algorithm to compute w-primality in M.
Problem
Find a dynamic algorithm to compute catenary degrees.
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