The set of elasticities in numerical monoids

Christopher O'Neill

Texas A&M University

coneill@math.tamu.edu

Joint with Thomas Barron* and Roberto Pelayo

January 10, 2015

Definition

A numerical monoid S is an **additive** submonoid of \mathbb{N} with $|\mathbb{N} \setminus S| < \infty$.

Definition

A numerical monoid S is an **additive** submonoid of \mathbb{N} with $|\mathbb{N} \setminus S| < \infty$.

$$McN = \langle 6, 9, 20 \rangle = \{0, 6, 9, 12, 15, 18, 20, 21, \ldots \}.$$

Definition

A numerical monoid S is an **additive** submonoid of \mathbb{N} with $|\mathbb{N} \setminus S| < \infty$.

Example

 $McN = \langle 6, 9, 20 \rangle = \{0, 6, 9, 12, 15, 18, 20, 21, \ldots \}$. "McNugget Monoid"

Definition

A numerical monoid S is an **additive** submonoid of \mathbb{N} with $|\mathbb{N} \setminus S| < \infty$.

$$McN = \langle 6,9,20 \rangle = \{0,6,9,12,15,18,20,21,\ldots \}.$$
 "McNugget Monoid"
$$60 = 7(6) + 2(9)$$

Definition

A numerical monoid S is an **additive** submonoid of \mathbb{N} with $|\mathbb{N} \setminus S| < \infty$.

$$McN = \langle 6,9,20 \rangle = \{0,6,9,12,15,18,20,21,\ldots \}$$
. "McNugget Monoid"
$$60 = 7(6) + 2(9)$$

$$= 3(20)$$

Definition

A numerical monoid S is an **additive** submonoid of \mathbb{N} with $|\mathbb{N} \setminus S| < \infty$.

$$McN = \langle 6, 9, 20 \rangle = \{0, 6, 9, 12, 15, 18, 20, 21, \ldots \}.$$
 "McNugget Monoid"
$$60 = 7(6) + 2(9) \qquad \leadsto \qquad (7, 2, 0) \\ = \qquad 3(20) \qquad \leadsto \qquad (0, 0, 3)$$

Definition

Arithmetical numerical monoids have the form $S = \langle a, a+d, \dots, a+kd \rangle$.

Definition

Arithmetical numerical monoids have the form $S = \langle a, a+d, \dots, a+kd \rangle$.

$$S = \langle 7, 7 + 3, 7 + 2 \cdot 3 \rangle$$
. Here, $a = 7$, $d = 3$, $k = 2$.

Definition

Arithmetical numerical monoids have the form $S = \langle a, a+d, \dots, a+kd \rangle$.

$$S = \langle 7, 7 + 3, 7 + 2 \cdot 3 \rangle$$
. Here, $a = 7$, $d = 3$, $k = 2$.

$$40 = 4(7+3) = (7) + 2(7+3) + (7+2\cdot3) = 2(7) + 2(7+2\cdot3).$$

The question

Definition

Fix a numerical monoid $S = \langle n_1, \dots, n_k \rangle$. For $n \in S$,

$$Z_S(n) = \{(a_1, \dots, a_k) \in \mathbb{N}^k : n = a_1 n_1 + \dots + a_k n_k\},\$$

 $L_S(n) = \{a_1 + \dots + a_k : (a_1, \dots, a_k) \in Z_S(n)\}$

denotes the set of factorizations and set of lengths of n.

The question

Definition

Fix a numerical monoid $S = \langle n_1, \dots, n_k \rangle$. For $n \in S$,

$$Z_S(n) = \{(a_1, \ldots, a_k) \in \mathbb{N}^k : n = a_1 n_1 + \cdots + a_k n_k\},\$$

 $L_S(n) = \{a_1 + \cdots + a_k : (a_1, \ldots, a_k) \in Z_S(n)\}$

denotes the set of factorizations and set of lengths of n. Furthermore,

$$Z(S) = \{Z_S(n) : n \in S\},$$

 $\mathcal{L}(S) = \{L_S(n) : n \in S\}$

The question

Definition

Fix a numerical monoid $S = \langle n_1, \dots, n_k \rangle$. For $n \in S$,

$$Z_{S}(n) = \{(a_{1}, \ldots, a_{k}) \in \mathbb{N}^{k} : n = a_{1}n_{1} + \cdots + a_{k}n_{k}\}, L_{S}(n) = \{a_{1} + \cdots + a_{k} : (a_{1}, \ldots, a_{k}) \in Z_{S}(n)\}$$

denotes the set of factorizations and set of lengths of n. Furthermore,

$$Z(S) = \{Z_S(n) : n \in S\},$$

 $\mathcal{L}(S) = \{L_S(n) : n \in S\}$

Question

How strong of an invariant is $\mathcal{L}(S)$?

Theorem (J. Amos, S. Chapman, N. Hine, J. Paixão)

Two distinct arithmetical numerical monoids

$$S = \langle a, a+d, \dots, a+kd \rangle,$$

$$S' = \langle a', a'+d', \dots, a'+k'd' \rangle$$

Theorem (J. Amos, S. Chapman, N. Hine, J. Paixão)

Two distinct arithmetical numerical monoids

$$S = \langle a, a+d, \dots, a+kd \rangle,$$

$$S' = \langle a', a'+d', \dots, a'+k'd' \rangle$$

$$0 d = d'$$

Theorem (J. Amos, S. Chapman, N. Hine, J. Paixão)

Two distinct arithmetical numerical monoids

$$S = \langle a, a+d, \dots, a+kd \rangle,$$

$$S' = \langle a', a'+d', \dots, a'+k'd' \rangle$$

- **1** d = d'

Theorem (J. Amos, S. Chapman, N. Hine, J. Paixão)

Two distinct arithmetical numerical monoids

$$S = \langle a, a+d, \dots, a+kd \rangle,$$

$$S' = \langle a', a'+d', \dots, a'+k'd' \rangle$$

- **1** d = d'
- **3** gcd(a, a + kd) > 1 and gcd(a', a' + k'd') > 1.

Theorem (J. Amos, S. Chapman, N. Hine, J. Paixão)

Two distinct arithmetical numerical monoids

$$S = \langle a, a+d, \dots, a+kd \rangle,$$

$$S' = \langle a', a'+d', \dots, a'+k'd' \rangle$$

satisfy $\mathcal{L}(S) = \mathcal{L}(S')$ if and only if the all of the following hold:

- **1** d = d'
- **3** gcd(a, a + kd) > 1 and gcd(a', a' + k'd') > 1.

Corollary

 $\mathcal{L}(S)$ does not uniquely determine S as a numerical monoid.

Definition

Fix a numerical monoid $S = \langle n_1, \dots, n_k \rangle$. For $n \in S$,

$$\rho_{S}(n) = \max L_{S}(n) / \min L_{S}(n)$$

denotes the *elasticity* of n, and $R(S) = {\rho_S(n) : n \in S}$.

Definition

Fix a numerical monoid $S = \langle n_1, \ldots, n_k \rangle$. For $n \in S$,

$$\rho_{S}(n) = \max L_{S}(n) / \min L_{S}(n)$$

denotes the *elasticity* of n, and $R(S) = \{\rho_S(n) : n \in S\}$.

Fact

 $\mathcal{L}(S)$ determines R(S).

Definition

Fix a numerical monoid $S = \langle n_1, \ldots, n_k \rangle$. For $n \in S$,

$$\rho_{S}(n) = \max L_{S}(n) / \min L_{S}(n)$$

denotes the *elasticity* of n, and $R(S) = \{\rho_S(n) : n \in S\}$.

Fact

 $\mathcal{L}(S)$ determines R(S).

Question

How much stronger of an invariant is $\mathcal{L}(S)$ than R(S)?

Definition

Fix a numerical monoid $S = \langle n_1, \ldots, n_k \rangle$. For $n \in S$,

$$\rho_{\mathcal{S}}(n) = \max \mathsf{L}_{\mathcal{S}}(n) / \min \mathsf{L}_{\mathcal{S}}(n)$$

denotes the *elasticity* of n, and $R(S) = \{\rho_S(n) : n \in S\}$.

Fact

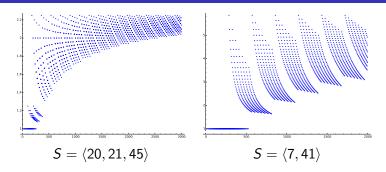
 $\mathcal{L}(S)$ determines R(S).

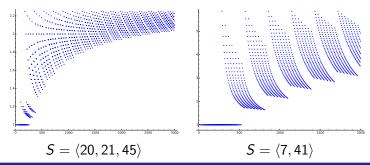
Question

How much stronger of an invariant is $\mathcal{L}(S)$ than R(S)?

Expectation

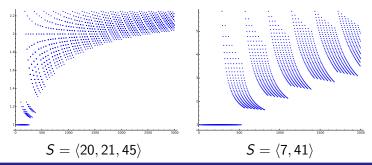
R(S) is a much weaker invariant than $\mathcal{L}(S)$.





Theorem (Barron, O., Pelayo)

Fix a numerical monoid
$$S = \langle n_1, \dots, n_k \rangle$$
. For $n \gg 0$,
$$\max_{} \mathsf{L}_S(n+n_1) = 1 + \max_{} \mathsf{L}_S(n)$$
$$\min_{} \mathsf{L}_S(n+n_k) = 1 + \min_{} \mathsf{L}_S(n)$$

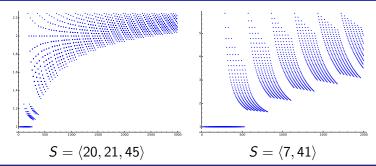


Theorem (Barron, O., Pelayo)

Fix a numerical monoid
$$S = \langle n_1, \dots, n_k \rangle$$
. For $n \gg 0$,

$$\max_{S} L_S(n + n_1 n_k) = n_k + \max_{S} L_S(n)$$

$$\min_{S} L_S(n + n_1 n_k) = n_1 + \min_{S} L_S(n)$$



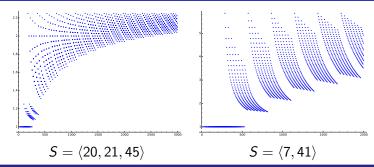
Theorem (Barron, O., Pelayo)

Fix a numerical monoid
$$S = \langle n_1, \dots, n_k \rangle$$
. For $n \gg 0$,

$$\max_{k} L_S(n + \frac{n_1 n_k}{n_1 n_k}) = \frac{n_k + \max_{k} L_S(n)}{n_1 + \min_{k} L_S(n)}$$

Expectation

R(S) is a much weaker invariant than $\mathcal{L}(S)$.



Theorem (Barron, O., Pelayo)

Fix a numerical monoid
$$S = \langle n_1, \dots, n_k \rangle$$
. For $n \gg 0$,

$$\max_{k} L_S(n + \frac{n_1 n_k}{n_1 n_k}) = \frac{n_k + \max_{k} L_S(n)}{n_1 + \min_{k} L_S(n)}$$

Expectation

R(S) is a *much* weaker invariant than $\mathcal{L}(S)$.

Fix arithmetical numerical monoids

$$S = \langle a, a+d, \dots, a+kd \rangle,$$

$$S' = \langle a', a'+d', \dots, a'+k'd' \rangle.$$

Fix arithmetical numerical monoids

$$S = \langle a, a+d, \dots, a+kd \rangle,$$

$$S' = \langle a', a'+d', \dots, a'+k'd' \rangle.$$

Question

When is R(S) = R(S')?

Fix arithmetical numerical monoids

$$S = \langle a, a+d, \dots, a+kd \rangle,$$

$$S' = \langle a', a'+d', \dots, a'+k'd' \rangle.$$

Question

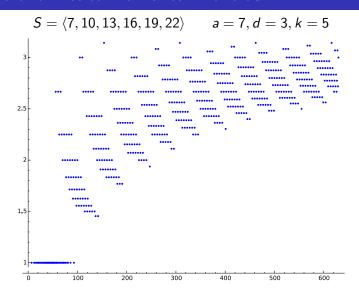
When is R(S) = R(S')?

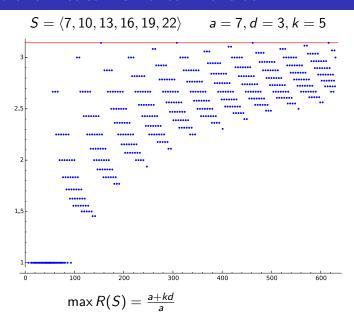
Theorem,

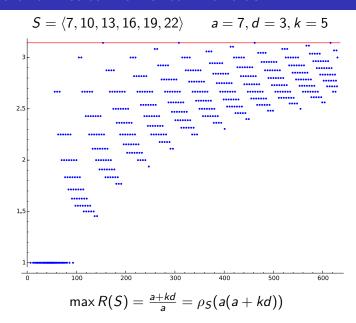
For all $n \in S$,

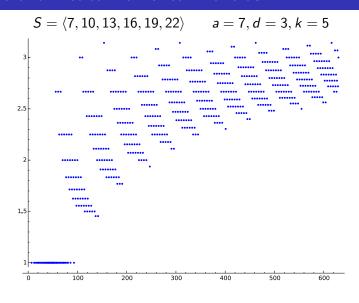
$$\max L_S(n+a) = 1 + \max L_S(n)$$

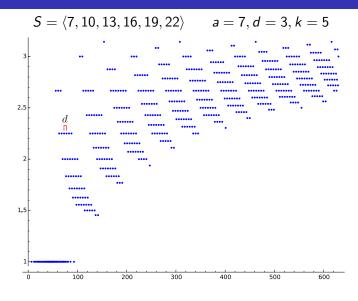
$$\min L_S(n+a+kd) = 1 + \min L_S(n)$$

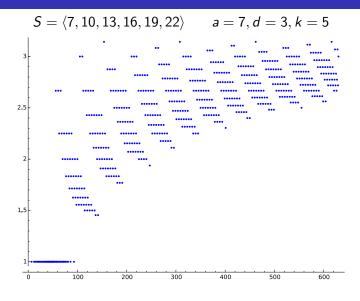


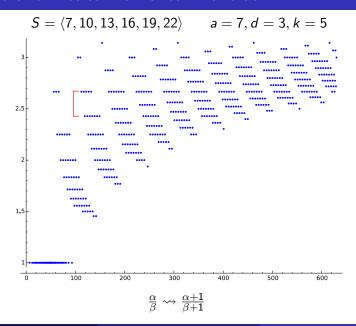


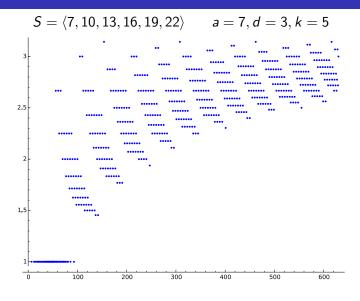


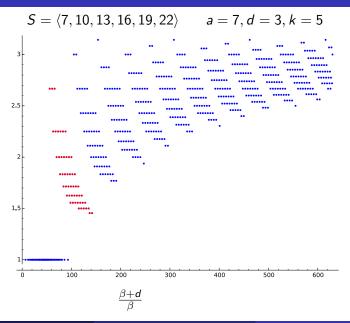


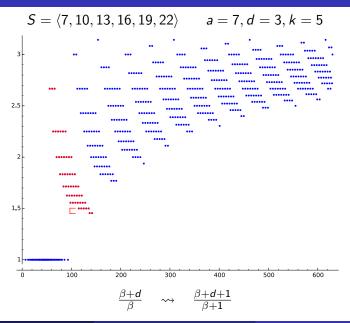












Let
$$S = \langle a, a + d, \dots, a + kd \rangle$$
.

Let
$$S = \langle a, a + d, \dots, a + kd \rangle$$
.

Theorem

If 1 < f < g are the smallest elements of R(S), then

$$d=\frac{(g-1)(f-1)}{g-f}$$

Let
$$S = \langle a, a + d, \dots, a + kd \rangle$$
.

Theorem

If 1 < f < g are the smallest elements of R(S), then

$$d = \frac{(g-1)(f-1)}{g-f}$$

Additionally,

$$\max R(S) = \frac{a + kd}{a} = \rho(a(a + kd))$$

Let
$$S = \langle a, a + d, \dots, a + kd \rangle$$
.

Theorem

If 1 < f < g are the smallest elements of R(S), then

$$d = \frac{(g-1)(f-1)}{g-f}$$

Additionally,

$$\max R(S) = \frac{a + kd}{a} = \rho(a(a + kd))$$

What's left?

Let
$$S = \langle a, a + d, \dots, a + kd \rangle$$
.

Theorem

If 1 < f < g are the smallest elements of R(S), then

$$d = \frac{(g-1)(f-1)}{g-f}$$

Additionally,

$$\max R(S) = \frac{a + kd}{a} = \rho(a(a + kd))$$

What's left?

Let
$$S = \langle a, a + d, \dots, a + kd \rangle$$
.

Theorem

If 1 < f < g are the smallest elements of R(S), then

$$d = \frac{(g-1)(f-1)}{g-f}$$

Additionally,

$$\max R(S) = \frac{a + kd}{a} = \rho(a(a + kd))$$

What's left?

$$\langle 7, 10, 13 \rangle$$

Let
$$S = \langle a, a + d, \dots, a + kd \rangle$$
.

Theorem

If 1 < f < g are the smallest elements of R(S), then

$$d = \frac{(g-1)(f-1)}{g-f}$$

Additionally,

$$\max R(S) = \frac{a + kd}{a} = \rho(a(a + kd))$$

What's left?

$$\langle 7, 10, 13 \rangle$$

 $\langle 14, 17, 20, 23, 26 \rangle$

Let
$$S = \langle a, a + d, \dots, a + kd \rangle$$
.

Theorem

If 1 < f < g are the smallest elements of R(S), then

$$d = \frac{(g-1)(f-1)}{g-f}$$

Additionally,

$$\max R(S) = \frac{a + kd}{a} = \rho(a(a + kd))$$

What's left?

$$\langle 7, 10, 13 \rangle$$
 $\langle 21, 24, 27, 30, 33, 36, 39 \rangle$ $\langle 14, 17, 20, 23, 26 \rangle$

Let
$$S = \langle a, a + d, \dots, a + kd \rangle$$
.

Theorem

If 1 < f < g are the smallest elements of R(S), then

$$d = \frac{(g-1)(f-1)}{g-f}$$

Additionally,

$$\max R(S) = \frac{a + kd}{a} = \rho(a(a + kd))$$

What's left?

$$\langle 7, 10, 13 \rangle$$
 $\langle 21, 24, 27, 30, 33, 36, 39 \rangle$ $\langle 14, 17, 20, 23, 26 \rangle$ $\langle 28, 31, 34, 37, 40, 43, 46, 49, 52 \rangle$

Let
$$S = \langle a, a + d, \dots, a + kd \rangle$$
.

Theorem

If 1 < f < g are the smallest elements of R(S), then

$$d = \frac{(g-1)(f-1)}{g-f}$$

Additionally,

$$\max R(S) = \frac{a + kd}{a} = \rho(a(a + kd))$$

What's left?

$$\langle 7, 10, 13 \rangle$$
 $\langle 21, 24, 27, 30, 33, 36, 39 \rangle$ $\langle 14, 17, 20, 23, 26 \rangle$ $\langle 28, 31, 34, 37, 40, 43, 46, 49, 52 \rangle$

Let
$$S = \langle a, a + d, \dots, a + kd \rangle$$
.

Theorem

If 1 < f < g are the smallest elements of R(S), then

$$d = \frac{(g-1)(f-1)}{g-f}$$

Additionally,

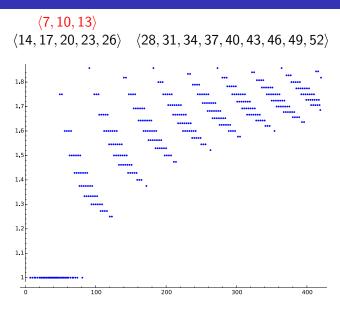
$$\max R(S) = \frac{a + kd}{a} = \rho(a(a + kd))$$

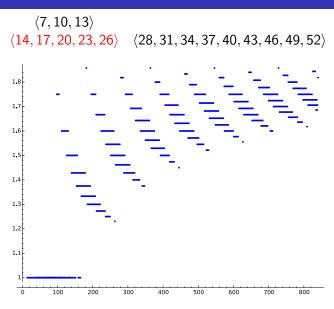
What's left?

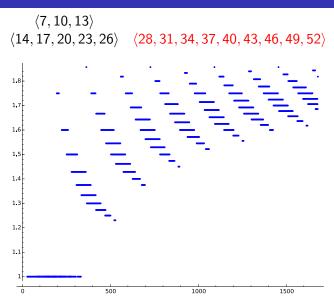
$$\langle 7, 10, 13 \rangle$$

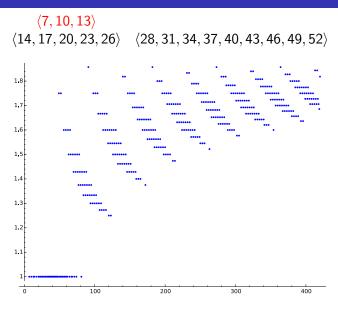
 $\langle 14, 17, 20, 23, 26 \rangle$ $\langle 28, 31, 34, 37, 40, 43, 46, 49, 52 \rangle$

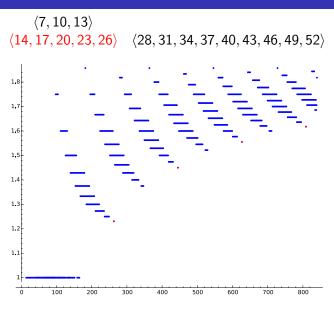
 $\langle 7, 10, 13 \rangle$ $\langle 14, 17, 20, 23, 26 \rangle$ $\langle 28, 31, 34, 37, 40, 43, 46, 49, 52 \rangle$

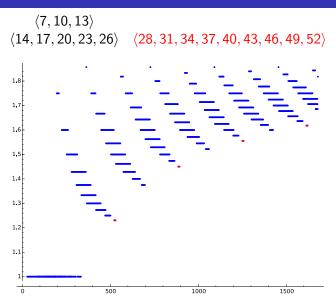


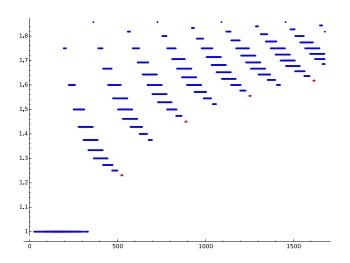




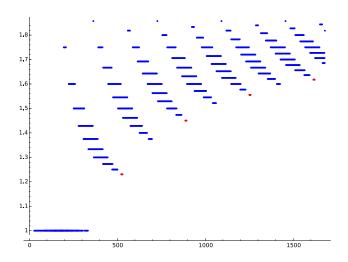








Either
$$gcd(a, a + kd) = 1$$
 or $gcd(a, a + kd) > 1$



Theorem

Two distinct arithmetical numerical monoids

$$S = \langle a, a+d, \dots, a+kd \rangle,$$

$$S' = \langle a', a'+d', \dots, a'+k'd' \rangle$$

satisfy R(S) = R(S') if and only if the all of the following hold:

Theorem

Two distinct arithmetical numerical monoids

$$S = \langle a, a+d, \dots, a+kd \rangle,$$

$$S' = \langle a', a'+d', \dots, a'+k'd' \rangle$$

satisfy R(S) = R(S') if and only if the all of the following hold:

1 d = d'

Theorem

Two distinct arithmetical numerical monoids

$$S = \langle a, a+d, \dots, a+kd \rangle,$$

$$S' = \langle a', a'+d', \dots, a'+k'd' \rangle$$

satisfy R(S) = R(S') if and only if the all of the following hold:

- 0 d = d'

Theorem

Two distinct arithmetical numerical monoids

$$S = \langle a, a+d, \dots, a+kd \rangle,$$

$$S' = \langle a', a'+d', \dots, a'+k'd' \rangle$$

satisfy R(S) = R(S') if and only if the all of the following hold:

- 0 d = d'
- **3** gcd(a, a + kd) > 1 and gcd(a', a' + k'd') > 1.

Theorem

Two distinct arithmetical numerical monoids

$$S = \langle a, a+d, \dots, a+kd \rangle,$$

$$S' = \langle a', a'+d', \dots, a'+k'd' \rangle$$

satisfy R(S) = R(S') if and only if the all of the following hold:

- 0 d = d'
- **3** gcd(a, a + kd) > 1 and gcd(a', a' + k'd') > 1.

Do these conditions look familiar?

Theorem

Two distinct arithmetical numerical monoids

$$S = \langle a, a+d, \dots, a+kd \rangle,$$

$$S' = \langle a', a'+d', \dots, a'+k'd' \rangle$$

satisfy R(S) = R(S') if and only if the all of the following hold:

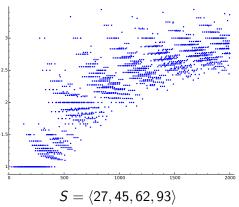
- 0 d = d'
- **3** gcd(a, a + kd) > 1 and gcd(a', a' + k'd') > 1.

Do these conditions look familiar?

Corollary

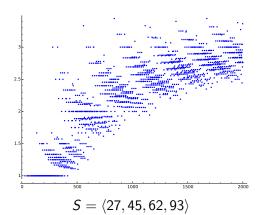
R(S) = R(S') if and only if $\mathcal{L}(S) = \mathcal{L}(S')$.

The general picture



$$S = \langle 27, 45, 62, 93 \rangle$$

The general picture



Conjecture

If S and S' are each minimally generated by 3 elements, then $\mathcal{L}(S) = \mathcal{L}(S')$ if and only if R(S) = R(S').

References

J. Amos, S. Chapman, N. Hine, J. Paixão (2007) Sets of lengths do not characterize numerical monoids. *Integers* 7 (2007) #A50.

Manuel Delgado, Pedro García-Sánchez, Jose Morais GAP Numerical Semigroups Package

http://www.gap-system.org/Packages/numericalsgps.html.

Sage

Open Source Mathematics Software

www.sagemath.org.

References

J. Amos, S. Chapman, N. Hine, J. Paixão (2007) Sets of lengths do not characterize numerical monoids. *Integers* 7 (2007) #A50.

Manuel Delgado, Pedro García-Sánchez, Jose Morais GAP Numerical Semigroups Package

http://www.gap-system.org/Packages/numericalsgps.html.

Sage

Open Source Mathematics Software

www.sagemath.org.

Thanks!

A curious example

Example

A simple computation shows that

$$S = \langle 6, 10, 13, 14 \rangle, S' = \langle 6, 11, 13, 14 \rangle$$

satisfy
$$R(S) = R(S')$$
 and $\{4,6\} \in \mathcal{L}(S) \setminus \mathcal{L}(S')$.