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Factorial domains

Definition

An integral domain R is factorial if for each non-unit r € R,
© there is a factorization r = u; - - - uy as a product of irreducibles, and

@ this factorization is unique (up to reordering and unit multiple).
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Factorial domains

Definition

An integral domain R is factorial if for each non-unit r € R,
© there is a factorization r = u; - - - uy as a product of irreducibles, and

@ this factorization is unique (up to reordering and unit multiple).

Z is factorial: each z = p; - - - pi for primes p; - - - pk.
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Definition

An integral domain R is atomic if for each non-unit r € R,

© there is a factorization r = u; - - - uy as a product of irreducibles, and

O this factorization is it { : it mltiple).

Z is factorial: each z = p; - - - pi for primes p; - - - pk.
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Definition

An integral domain R is atomic if for each non-unit r € R,

© there is a factorization r = u; - - - uy as a product of irreducibles, and

O this factorization is it { : e mltiple).

Z is factorial: each z = p; - - - pi for primes p; - - - pk.

If R = Z[v/—5], then 6 € R has two distinct factorizations:
6=2-3=(1+v=5)(1—v=5b)
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Definition

An integral domain R is atomic if for each non-unit r € R,

© there is a factorization r = u; - - - uy as a product of irreducibles, and

O this factorization is it { : e mltiple).

Z is factorial: each z = p; - - - pi for primes p; - - - pk.

If R = Z[v/—5], then 6 € R has two distinct factorizations:
6=2-3=(1+v=5)(1—v=5b)

To prove: define a valuation a + b\/—5 — a® + 5b°.
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Definition

An integral domain R is atomic if for each non-unit r € R,

© there is a factorization r = u; - - - uy as a product of irreducibles, and

O this factorization is it { : e mltiple).

Z is factorial: each z = p; - - - pi for primes p; - - - pk.

If R = Z[v/—5], then 6 € R has two distinct factorizations:
6=2-3=(1+v=5)(1—v=5b)

To prove: define a valuation a + b\/—5 — a® + 5b°.
The point: it's involved.
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Definition

An integral domain R is atomic if for each non-unit r € R,

© there is a factorization r = u; - - - uy as a product of irreducibles, and

O this factorization is it { : e mltiple).

Z is factorial: each z = p; - - - pi for primes p; - - - pk.
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Atomic domains

Definition

An integral domain R is atomic if for each non-unit r € R,

© there is a factorization r = u; - - - uy as a product of irreducibles, and

O this factorization is it { : e mltiple).

Z is factorial: each z = p; - - - pi for primes p; - - - pk.

Let R = C[x?, x3].
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Atomic domains

Definition

An integral domain R is atomic if for each non-unit r € R,

© there is a factorization r = u; - - - uy as a product of irreducibles, and

O this factorization is it { : e mltiple).

Z is factorial: each z = p; - - - pi for primes p; - - - pk.

Let R = C[x?, x3].

QO x2 and x3 are irreducible.
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Definition

An integral domain R is atomic if for each non-unit r € R,

© there is a factorization r = u; - - - uy as a product of irreducibles, and

O this factorization is it { : e mltiple).

Z is factorial: each z = p; - - - pi for primes p; - - - pk.

Let R = C[x?, x3].
@ x2 and x3 are irreducible.

Q x5 =x3-x3=x2.x2.x2
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Definition
An integral domain R is atomic if for each non-unit r € R,

© there is a factorization r = u; - - - uy as a product of irreducibles, and

O this factorization is it { : e mltiple).

Z is factorial: each z = p; - - - pi for primes p; - - - pk.

Observation
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Atomic domains

Definition

An integral domain R is atomic if for each non-unit r € R,

© there is a factorization r = u; - - - uy as a product of irreducibles, and

O this factorization is it { : e mltiple).

Z is factorial: each z = p; - - - pi for primes p; - - - pk.

Observation
@ Where's the addition?

Christopher O'Neill (Texas A&M University)  Catenary degrees in numerical monoids January 11, 2015 2 /14



Atomic domains

Definition

An integral domain R is atomic if for each non-unit r € R,

© there is a factorization r = u; - - - uy as a product of irreducibles, and

O this factorization is it { : e mltiple).

Z is factorial: each z = p; - - - pi for primes p; - - - pk.

Observation
@ Where's the addition?

@ Factorization in (cancellative comutative) monoids:
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Definition

An integral domain R is atomic if for each non-unit r € R,

© there is a factorization r = u; - - - uy as a product of irreducibles, and

O this factorization is it { : e mltiple).

Z is factorial: each z = p; - - - pi for primes p; - - - pk.

Observation
@ Where's the addition?

@ Factorization in (cancellative comutative) monoids:

(R, +:°) ~ (R\{0},")
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Definition

An integral domain R is atomic if for each non-unit r € R,

© there is a factorization r = u; - - - uy as a product of irreducibles, and

O this factorization is it { : e mltiple).

Z is factorial: each z = p; - - - pi for primes p; - - - pk.

Observation
@ Where's the addition?

@ Factorization in (cancellative comutative) monoids:

(R, +,) ~ (R\{0},-)
(C[M]7+7') ~ (M’)
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Numerical monoids

Definition

A numerical monoid S is an additive submonoid of N with [N\ §| < co.
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Numerical monoids

Definition

A numerical monoid S is an additive submonoid of N with [N\ §| < co.

Let S =(2,3) ={2,3,4,5,...} under addition.
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Numerical monoids

Definition

A numerical monoid S is an additive submonoid of N with [N\ §| < co.

Let S = (2,3) = {2,3,4,5,...} under addition. C[S] = C[x?, x3].
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Numerical monoids

Definition

A numerical monoid S is an additive submonoid of N with [N\ §| < co.

Let S = (2,3) = {2,3,4,5,...} under addition. C[S] = C[x?, x3].

x0=x3.x3=x2.x2.x2
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Numerical monoids

Definition

A numerical monoid S is an additive submonoid of N with [N\ §| < co.

Let S = (2,3) = {2,3,4,5,...} under addition. C[S] = C[x?, x3].
xX=x3.x3=x2.x2.x> ~ 6=34+3=2+242
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Numerical monoids

Definition

A numerical monoid S is an additive submonoid of N with [N\ §| < co.

Let S = (2,3) = {2,3,4,5,...} under addition. C[S] = C[x?, x3].

X=x3.x3=x2.x2.x2 ~ 6=34+3=24+2+2.

Factorizations are additive!
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Numerical monoids

Definition

A numerical monoid S is an additive submonoid of N with [N\ §| < co.

Let S = (2,3) = {2,3,4,5,...} under addition. C[S] = C[x?, x3].
X=x3.x3=x2.x2.x2 ~ 6=3+3=2+4+2+2.

Factorizations are additive!

McN = (6,9,20) = {0,6,9,12,15,18,20,21,...}.
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Numerical monoids

Definition

A numerical monoid S is an additive submonoid of N with [N\ §| < co.

Let S = (2,3) = {2,3,4,5,...} under addition. C[S] = C[x?, x3].
X=x3.x3=x2.x2.x2 ~ 6=3+3=2+4+2+2.

Factorizations are additive!

McN = (6,9,20) = {0,6,9,12,15,18,20,21,...}. “McNugget Monoid”
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Numerical monoids

Definition

A numerical monoid S is an additive submonoid of N with [N\ §| < co.

Let S = (2,3) = {2,3,4,5,...} under addition. C[S] = C[x?, x3].
X=x3.x3=x2.x2.x2 ~ 6=3+3=2+4+2+2.

Factorizations are additive!

McN = (6,9,20) = {0,6,9,12,15,18,20,21,...}. “McNugget Monoid”
60 = 7(6)+2(9)
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Numerical monoids

Definition

A numerical monoid S is an additive submonoid of N with [N\ §| < co.

Let S = (2,3) = {2,3,4,5,...} under addition. C[S] = C[x?, x3].
X=x3.x3=x2.x2.x2 ~ 6=3+3=2+4+2+2.

Factorizations are additive!

McN = (6,9,20) = {0,6,9,12,15,18,20,21,...}. “McNugget Monoid”

60 = 7(6)+2(9)
= 3(20)
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Numerical monoids

Definition

A numerical monoid S is an additive submonoid of N with [N\ §| < co.

Let S = (2,3) = {2,3,4,5,...} under addition. C[S] = C[x?, x3].
X=x3.x3=x2.x2.x2 ~ 6=3+3=2+4+2+2.

Factorizations are additive!

McN = (6,9,20) = {0,6,9,12,15,18,20,21,...}. “McNugget Monoid”

60 = 7(6)+2(9) s (7,2,0)
= 3(20) (0,0,3)
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Factorization invariants: towards the catenary degree
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Factorization invariants: towards the catenary degree

Fix a numerical monoid S = (ny,...,nk). Forne€ S,
Zs(n) = {(a1,...,ak) ENK:n=ain + -+ + axni}

denotes the set of factorizations of n.
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Factorization invariants: towards the catenary degree

Fix a numerical monoid S = (ny,...,nk). Forne€ S,
Zs(n) = {(a1,...,ak) ENK:n=ain + -+ + axni}
denotes the set of factorizations of n. Equivalently, if
$: Nk — S

€ +H—— n;
then Zs(n) = ¢~ 1(n).
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Factorization invariants: towards the catenary degree

Fix a numerical monoid S = (ny,...,nk). Forne€ S,
Zs(n) = {(a1,...,ak) ENK:n=ain + -+ + axni}

denotes the set of factorizations of n. Equivalently, if

$: Nk — S

5; > nj
then Zs(n) = ¢~Y(n). For f,f' € Zs(n),
Ifl = A+---+£
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Factorization invariants: towards the catenary degree

Fix a numerical monoid S = (ny,...,nk). Forne€ S,
Zs(n) = {(a1,...,ak) ENK:n=ain + -+ + axni}

denotes the set of factorizations of n. Equivalently, if

$: Nk — S
5; > nj
then Zs(n) = ¢~Y(n). For f,f' € Zs(n),
Ifl = f+---+"f (lengthof f)
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Factorization invariants: towards the catenary degree

Fix a numerical monoid S = (ny,...,nk). Forne€ S,
Zs(n) = {(a1,...,ak) ENK:n=ain + -+ + axni}

denotes the set of factorizations of n. Equivalently, if

$: Nk — S
5; > nj
then Zs(n) = ¢~Y(n). For f,f' € Zs(n),
Ifl = f+---+"f (lengthof f)

ged(f, f') = (min(f,f]),..., min(f, f]))

Christopher O'Neill (Texas A&M University)  Catenary degrees in numerical monoids January 11, 2015



Factorization invariants: towards the catenary degree

Fix a numerical monoid S = (ny,...,nk). Forne€ S,
Zs(n) = {(a1,...,ak) ENK:n=ain + -+ + axni}

denotes the set of factorizations of n. Equivalently, if

$: Nk — S
5; > nj
then Zs(n) = ¢~Y(n). For f,f' € Zs(n),
Ifl = f+---+"f (lengthof f)

ged(f, f') = (min(f,f]),..., min(f, f]))
d(f,f') = max{|f —gcd(f, )|, |f —gcd(f, )|}
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Factorization invariants: towards the catenary degree

S=(4,6,7) CN,
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Factorization invariants: towards the catenary degree

$={4,67)CN, f=(3,11),f =(1,0,3) € Z5(25).
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Factorization invariants: towards the catenary degree

$={4,67)CN, f=(3,11),f =(1,0,3) € Z5(25).
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Factorization invariants: towards the catenary degree

S=(4,67) CN, f=(31,1),f =(1,0,3) € Zs(25).
e g =gcd(f,f")
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Factorization invariants: towards the catenary degree

S=(4,67) CN, f=(31,1),f =(1,0,3) € Zs(25).
e g =gcd(f,f")
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Factorization invariants: towards the catenary degree

$={4,67)CN, f=(3,11),f =(1,0,3) € Z5(25).
o g =gcd(f,f")=(1,0,1).
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Factorization invariants: towards the catenary degree

$={4,67)CN, f=(3,11),f =(1,0,3) € Z5(25).
o g =gcd(f,f")=(1,0,1).
e d(f,f")
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Factorization invariants: towards the catenary degree

S=(4,6,7)CN, f=(3,1,1),f = (1,0,3) € Z5(25).
o g =gcd(f,f")=(1,0,1).
o d(f,f") = max{|f —gl, | — g}
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Factorization invariants: towards the catenary degree

S=(4,6,7)CN, f=(3,1,1),f = (1,0,3) € Z5(25).
o g =gcd(f,f")=(1,0,1).
o d(f,f") = max{|f —gl, | — g}
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Factorization invariants: towards the catenary degree

$={4,67)CN, f=(3,11),f =(1,0,3) € Z5(25).
o g =gcd(f,f")=(1,0,1).
o d(f,f") = max{|f —gl,|f" — g|} =3.
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The catenary degree

Fix a numerical monoid S = (ny,...,ny). For n € S, define the catenary
degree c(n) as follows:
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The catenary degree

Fix a numerical monoid S = (ny,...,ny). For n € S, define the catenary
degree c(n) as follows:

@ Construct a complete graph G with vertex set Zs(n) where each edge
(f,f') has label d(f, f') (catenary graph).
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The catenary degree

Fix a numerical monoid S = (ny,...,ny). For n € S, define the catenary
degree c(n) as follows:

@ Construct a complete graph G with vertex set Zs(n) where each edge
(f, ') has label d(f, f") (catenary graph).
@ Locate the largest edge weight e in G.
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The catenary degree

Fix a numerical monoid S = (ny,...,ny). For n € S, define the catenary
degree c(n) as follows:

@ Construct a complete graph G with vertex set Zs(n) where each edge
(f, ') has label d(f, f") (catenary graph).

@ Locate the largest edge weight e in G.

© Remove all edges from G with weight e.

Christopher O'Neill (Texas A&M University)  Catenary degrees in numerical monoids January 11, 2015 6 /14



The catenary degree

Fix a numerical monoid S = (ny,...,ny). For n € S, define the catenary
degree c(n) as follows:

@ Construct a complete graph G with vertex set Zs(n) where each edge
(f, ') has label d(f, f") (catenary graph).

@ Locate the largest edge weight e in G.

© Remove all edges from G with weight e.

@ If G is disconnected, return e. Otherwise, return to step 2.
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The catenary degree

Definition
Fix a numerical monoid S = (ny,...,ny). For n € S, define the catenary
degree c(n) as follows:
@ Construct a complete graph G with vertex set Zs(n) where each edge
(f, ') has label d(f, f") (catenary graph).
@ Locate the largest edge weight e in G.
© Remove all edges from G with weight e.

@ If G is disconnected, return e. Otherwise, return to step 2.

If |Zs(n)| = 1, define c(n) = 0.
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A Big Example

S = (11,36, 39), n = 450
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A Big Example

S = (11,36, 39), n = 450

066 o7 (27,1,3)

(3,4,7) (24,3,2)

(9,0,9) 16 (18,7,0)
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A Big Example

S = (11,36, 39), n = 450

066 o7 (27,1,3)

(3,4,7) (24,3,2)

(9,0,9) 16 (18,7,0)
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A Big Example

S = (11,36, 39), n = 450

(0,6,6) (27,1,3)

(24,3,2)

(9,0,9) 16 (18,7,0)
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A Big Example

S = (11,36, 39), n = 450

(0,6,6) (27,1,3)

(24,3,2)

(9,0,9) 16 (18,7,0)
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A Big Example

S = (11,36, 39), n = 450

(0,6,6) (27,1,3)

(24,3,2)

(9,0,9) 16 (18,7,0)
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A Big Example

S = (11,36, 39), n = 450

(0,6,6) (27,1,3)

(3,4,7) 8 8 (24,3,2)

6,28 8 21,51
(6.2,8) 17 178 ( )

(9,0,9) 16 (18,7,0)
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A Big Example

S = (11,36, 39), n = 450

(3,4,7)

(0,6,6) (27,1,3)
8 8
12 12
18 18
18
6,2,8 8
( ) 17 178
4

(9,0,9) 16 (18,7,0)

(24,3,2)

(21,5,1)
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A Big Example

S = (11,36, 39), n = 450

(0,6,6) (27,1,3)

(24,3,2)

(9,0,9) 16 (18,7,0)
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A Big Example

S = (11,36, 39), n = 450

(0,6,6) (27,1,3)
p
4
(3,4,7) 8 8 (24,3,2)
4 12 12 4
18 18
18
6,2,8 8 21,5,1
(6,2,8) - 178 ( )
4
9,09 16 (187,0)
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A Big Example

S = (11,36, 39), n = 450

(0,6,6) (27.1.3)
p
4
(3,4,7) 8 8 (24,3,2)
4 12 12 4
Q y
18
62,8 8 21,5,1
(6,2,8) .- -8 (21,5,1)
4

(9,0,9) 16 (18,7,0)
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A Big Example

S = (11,36, 39), n = 450

4
(3,4,7)
4
(6,2,8)
4

(0,6,6) (27,1,3)
p L
8 8
12 12
8
17 178

(9,0,9) 16 (18,7,0)

(24,3,2)

(21,5,1)
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A Big Example

S = (11,36, 39), n = 450

4
(3,4,7)
4
(6,2,8)
4

(0,6,6) (27,1,3)
p L
8 8
12 12
8
17 178

(9,0,9) 16 (18,7,0)

(24,3,2)

(21,5,1)

Christopher O'Neill (Texas A&M University)

Catenary degrees in numerical monoids

January 11, 2015



A Big Example

S = (11,36, 39), n = 450

(0,6,6) (2751 )]
p
4 4
(3,4,7) 8 8 (24,3,2)
4 12 12 4
(6,2,8) 8 8 (21,5,1)
4 4

(9,0,9) 16 (18,7,0)
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A Big Example

S = (11,36, 39), n = 450

(0,6,6) (2751 )]
p
4 4
(3,4,7) 8 8 (24,3,2)
4 12 12 4
(6,2,8) 8 8 (21,5,1)
4 4

(9,0,9) 16 (18,7,0)
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A Big Example

S = (11,36, 39), n = 450

(27,1,3)
L

(24,3,2)
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A Big Example

S = (11,36,39), n = 450, c(n) = 16

(0,6',6) (2751 ,3)

(24,3,2)
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A Big Example, Method 2

S = (11,36, 39), n = 450
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A Big Example, Method 2

S = (11,36, 39), n = 450

(0,6,6) 27,1,3)
[ ] [ ]
3,4,7) (24,3,2)
* [ ]
6,2,8) *215,1)
[ ] [ ]
(9,0.9) (18,7,0)
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S = (11,36, 39), n = 450

(0,6,6) (27,1,3)
4 4
(3,4,7) (24,3,2)
4 4
(6,2,8) (21,5,1)
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A Big Example, Method 2

S = (11,36, 39), n = 450

(0,6,6) (2751 )]
p
4 4
(3,4,7) 8 8 (24,3,2)
4 12 12 4
(6,2,8) 8 8 (21,5,1)
4 4

(9,0,9) 16 (18,7,0)
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Betti elements

Definition

For an element n € S = (ny,..., nk), let V,, denote the subgraph of the
catenary graph in which only edges (f, f’) with gcd(f, f’) # 0 are drawn.
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Betti elements

For an element n € S = (ny,..., nk), let V,, denote the subgraph of the

catenary graph in which only edges (f, f’) with gcd(f, f’) # 0 are drawn.
We say n is a Betti element of S if V, is disconnected.

S =(10,15,17) has Betti elements 30 and 85.
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Betti elements

For an element n € S = (ny,..., nk), let V,, denote the subgraph of the

catenary graph in which only edges (f, f’) with gcd(f, f’) # 0 are drawn.
We say n is a Betti element of S if V, is disconnected.

S =(10,15,17) has Betti elements 30 and 85.
V30 . V85 . (0,0,5)
*

(3,0,0) o e (0,2,0) (1,5,0) (7,1,0)

(4,3,0)
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Maximal catenary degree in S

max{c(n) : n € S} = max{c(b) : b Betti element of S}.
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Maximal catenary degree in S

max{c(n) : n € S} = max{c(b) : b Betti element of S}.

Key concept: Cover morphisms.
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Maximal catenary degree in S

max{c(n) : n € S} = max{c(b) : b Betti element of S}.

Key concept: Cover morphisms.

o ®
o
® o ® ¢ ®
o
o ®
Zs(n) Zs(n+ n;)
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Maximal catenary degree in S

max{c(n) : n € S} = max{c(b) : b Betti element of S}.

Key concept: Cover morphisms.

o /\ o

® o
o ] O O
o
o O
Zs(n) < Zs(n+ n;)
f f+ €;
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Maximal catenary degree in S

max{c(n) : n € S} = max{c(b) : b Betti element of S}.

Key concept: Cover morphisms.

Zs(n + n,-)
f+ e

Christopher O'Neill (Texas A&M University)  Catenary degrees in numerical monoids January 11, 2015



Maximal catenary degree in S

max{c(n) : n € S} = max{c(b) : b Betti element of S}.
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Maximal catenary degree in S

max{c(n) : n € S} = max{c(b) : b Betti element of S}.

Idea for proof: Certain edges (determined by Betti elements) connect the
catenary graph of each n € §S.
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Maximal catenary degree in S

max{c(n) : n € S} = max{c(b) : b Betti element of S}.

Idea for proof: Certain edges (determined by Betti elements) connect the
catenary graph of each n € §S.

Z(n)
o o
°
° o o
° . :
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Maximal catenary degree in S

max{c(n) : n € S} = max{c(b) : b Betti element of S}.

Idea for proof: Certain edges (determined by Betti elements) connect the
catenary graph of each n € §S.

Z(by) & /\ Z(n)

AN
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Maximal catenary degree in S

max{c(n) : n € S} = max{c(b) : b Betti element of S}.

Idea for proof: Certain edges (determined by Betti elements) connect the
catenary graph of each n € §S.

Z(bl) & /\ Z(’fb)
_—

Z(by) .
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max{c(n) : n € S} = max{c(b) : b Betti element of S}.

Idea for proof: Certain edges (determined by Betti elements) connect the
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Minimal (nonzero) catenary degree in S

min{c(n) > 0: n € S} = min{c(b) : b Betti element of S}.
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Minimal (nonzero) catenary degree in S

Conjecture Theorem (O., Ponomarenko, Tate, Webb)
min{c(n) > 0: n € S} = min{c(b) : b Betti element of S}.
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B = min{c(b) : b Betti element of S}.
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Minimal (nonzero) catenary degree in S

Conjecture Theorem (O., Ponomarenko, Tate, Webb)
min{c(n) > 0: n € S} = min{c(b) : b Betti element of S}.

B = min{c(b) : b Betti element of S}.

IFF,f € Zs(n)

fe
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Minimal (nonzero) catenary degree in S

Conjecture Theorem (O., Ponomarenko, Tate, Webb)
min{c(n) > 0: n € S} = min{c(b) : b Betti element of S}.

B = min{c(b) : b Betti element of S}.

Iff,f" € Zs(n) and d(f,f’) < B,

f/
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Minimal (nonzero) catenary degree in S

Conjecture Theorem (O., Ponomarenko, Tate, Webb)
min{c(n) > 0: n € S} = min{c(b) : b Betti element of S}.

B = min{c(b) : b Betti element of S}.

If f,f' € Zs(n) and d(f, ') < B, then there exists f" € Zs(n)

f/ ® flf
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Minimal (nonzero) catenary degree in S

Conjecture Theorem (O., Ponomarenko, Tate, Webb)
min{c(n) > 0: n € S} = min{c(b) : b Betti element of S}.

B = min{c(b) : b Betti element of S}.

Iff,f" € Zs(n) and d(f, ") < B, then there exists f" € Zs(n) with

max {

LIy < 7.

S

f/ ® flf
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Minimal (nonzero) catenary degree in S

Conjecture Theorem (O., Ponomarenko, Tate, Webb)
min{c(n) > 0: n € S} = min{c(b) : b Betti element of S}.

Proof of theorem:
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Minimal (nonzero) catenary degree in S

Conjecture Theorem (O., Ponomarenko, Tate, Webb)
min{c(n) > 0: n € S} = min{c(b) : b Betti element of S}.

Proof of theorem:

e Fixnes
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Minimal (nonzero) catenary degree in S

Conjecture Theorem (O., Ponomarenko, Tate, Webb)
min{c(n) > 0: n € S} = min{c(b) : b Betti element of S}.

Proof of theorem: Catenary graph of n:

e Fixnes
®
® ®
®
®
d ®
° L4 °
®
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Minimal (nonzero) catenary degree in S

Conjecture Theorem (O., Ponomarenko, Tate, Webb)
min{c(n) > 0: n € S} = min{c(b) : b Betti element of S}.

Proof of theorem: Catenary graph of n:

o
-

e Fixnes
@ Draw edges with weight < B
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Minimal (nonzero) catenary degree in S

Conjecture Theorem (O., Ponomarenko, Tate, Webb)
min{c(n) > 0: n € S} = min{c(b) : b Betti element of S}.

Proof of theorem: Catenary graph of n:

e Fixnes
@ Draw edges with weight < B

o f € Zs(n) with |f| maximal ./‘
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Minimal (nonzero) catenary degree in S

Conjecture Theorem (O., Ponomarenko, Tate, Webb)
min{c(n) > 0: n € S} = min{c(b) : b Betti element of S}.

Proof of theorem: Catenary graph of n:
e Fixnes
@ Draw edges with weight < B

o f € Zs(n) with |f| maximal ./‘
o f' € Zs(n) with d(f,f') < B '\/f/
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Minimal (nonzero) catenary degree in S

Conjecture Theorem (O., Ponomarenko, Tate, Webb)
min{c(n) > 0: n € S} = min{c(b) : b Betti element of S}.

Proof of theorem: Catenary graph of n:
e Fixnes
@ Draw edges with weight < B
o f € Zs(n) with |f| maximal ./‘
o f' € Zs(n) with d(f,f') < B 1!
e Lemma = |f"| > |f] '\/
f ;”
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Minimal (nonzero) catenary degree in S

Conjecture Theorem (O., Ponomarenko, Tate, Webb)
min{c(n) > 0: n € S} = min{c(b) : b Betti element of S}.

Proof of theorem: Catenary graph of n:
e Fixnes
@ Draw edges with weight < B
o f € Zs(n) with |f| maximal ./‘
o f' € Zs(n) with d(f,f') < B 1!
e Lemma = |f"| > |f] '\/
e maximality of |f| = f °
" has no edges! 7
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Future directions: catenary sets
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Future directions: catenary sets
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e " L n L
50 100 150 200 250 300
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Future directions: catenary sets

14}

e " L n L
50 100 150 200 250 300

Find a (canonical) finite set on which every catenary degree is achieved.
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