Computing the delta set and ω -primality in numerical monoids

Christopher O'Neill

Texas A&M University

coneill@math.tamu.edu

Joint with Thomas Barron and Roberto Pelayo

June 13, 2015

Definition (Numerical monoid)

Definition (Numerical monoid)

A numerical monoid S is an additive submonoid of \mathbb{N} with $|\mathbb{N} \setminus S| < \infty$.

Fix $n \in S = \langle n_1, \ldots, n_k \rangle$.

Definition (Numerical monoid)

Fix
$$n \in S = \langle n_1, \ldots, n_k \rangle$$
.

$$n = a_1 n_1 + \cdots + a_k n_k$$
 $\mathbf{a} = (a_1, \ldots, a_k) \in \mathbb{N}^k$

Definition (Numerical monoid)

Fix
$$n \in S = \langle n_1, \ldots, n_k \rangle$$
.

$$n = a_1 n_1 + \dots + a_k n_k$$
 $\mathbf{a} = (a_1, \dots, a_k) \in \mathbb{N}^k$
 $Z(n) = \{\mathbf{a} \in \mathbb{N}^k : n = a_1 n_1 + \dots + a_k n_k\}$

Definition (Numerical monoid)

Fix
$$n \in S = \langle n_1, \ldots, n_k \rangle$$
.

$$n = a_1 n_1 + \dots + a_k n_k \qquad \mathbf{a} = (a_1, \dots, a_k) \in \mathbb{N}^k$$
$$Z(n) = \{\mathbf{a} \in \mathbb{N}^k : n = a_1 n_1 + \dots + a_k n_k\}$$
$$L(n) = \{|\mathbf{a}| = a_1 + \dots + a_k : \mathbf{a} \in Z(n)\}$$

Definition (Numerical monoid)

A numerical monoid S is an additive submonoid of \mathbb{N} with $|\mathbb{N} \setminus S| < \infty$.

Fix
$$n \in S = \langle n_1, \dots, n_k \rangle$$
.
 $n = a_1 n_1 + \dots + a_k n_k$ $\mathbf{a} = (a_1, \dots, a_k) \in \mathbb{N}^k$
 $Z(n) = \{\mathbf{a} \in \mathbb{N}^k : n = a_1 n_1 + \dots + a_k n_k\}$
 $L(n) = \{|\mathbf{a}| = a_1 + \dots + a_k : \mathbf{a} \in Z(n)\}$

Definition (The delta set)

For
$$L(n) = \{\ell_1 < ... < \ell_r\}$$
, define $\Delta(n) = \{\ell_i - \ell_{i-1}\}$

Definition (Numerical monoid)

A numerical monoid S is an additive submonoid of \mathbb{N} with $|\mathbb{N} \setminus S| < \infty$.

Fix
$$n \in S = \langle n_1, \ldots, n_k \rangle$$
.

$$n = a_1 n_1 + \dots + a_k n_k$$
 $\mathbf{a} = (a_1, \dots, a_k) \in \mathbb{N}^k$

$$L(n) = \{ \mathbf{a} \in \mathbb{N}^{n} : n = a_{1}n_{1} + \dots + a_{k}n_{k} \}$$
$$L(n) = \{ |\mathbf{a}| = a_{1} + \dots + a_{k} : \mathbf{a} \in Z(n) \}$$

Definition (The delta set)

For
$$L(n) = \{\ell_1 < ... < \ell_r\}$$
, define $\Delta(n) = \{\ell_i - \ell_{i-1}\}$

Goal

Compute
$$\Delta(S) = \bigcup_{n \in S} \Delta(n)$$
.

Christopher O'Neill (Texas A&M University)Computing the delta set and ω -primality in n

June 13, 2015 2 / 13

Theorem (Chapman–Hoyer–Kaplan, 2000)

$$S = \langle n_1, \dots, n_k \rangle$$
. For $n \ge 2kn_2n_k^2$, $\Delta(n) = \Delta(n + n_1n_k)$.

Theorem (García-García-Moreno-Frías-Vigneron-Tenorio, 2014)

$S = \langle n_1, \ldots, n_k \rangle$. For $n \ge N_S$, $\Delta(n) = \Delta(n + \operatorname{lcm}(n_1, n_k))$.

Theorem (García-García-Moreno-Frías-Vigneron-Tenorio, 2014)

$S = \langle n_1, \ldots, n_k \rangle$. For $n \ge N_S$, $\Delta(n) = \Delta(n + \operatorname{lcm}(n_1n_k))$.

Theorem (García-García–Moreno-Frías–Vigneron-Tenorio, 2014)

 $S = \langle n_1, \ldots, n_k \rangle$. For $n \ge N_S$, $\Delta(n) = \Delta(n + \operatorname{lcm}(n_1n_k))$.

For $n \in S$ with $0 \le n \le N_S + \operatorname{lcm}(n_1, n_k)$,

Theorem (García-García–Moreno-Frías–Vigneron-Tenorio, 2014)

 $S = \langle n_1, \ldots, n_k \rangle$. For $n \ge N_S$, $\Delta(n) = \Delta(n + \operatorname{lcm}(n_1n_k))$.

For $n \in S$ with $0 \le n \le N_S + \operatorname{lcm}(n_1, n_k)$, compute:

$$\mathsf{Z}(n) = \{\mathbf{a} \in \mathbb{N}^k : n = a_1 n_1 + \dots + a_k n_k\}$$

 $S = \langle n_1, \ldots, n_k \rangle$. For $n \ge N_S$, $\Delta(n) = \Delta(n + \operatorname{lcm}(n_1 n_k))$.

For $n \in S$ with $0 \le n \le N_S + \operatorname{lcm}(n_1, n_k)$, compute:

$$Z(n) = \{\mathbf{a} \in \mathbb{N}^k : n = a_1 n_1 + \dots + a_k n_k\}$$
$$Z(n) \rightsquigarrow L(n) = \{a_1 + \dots + a_k : \mathbf{a} \in Z(n)\}$$

 $S = \langle n_1, \ldots, n_k \rangle$. For $n \ge N_S$, $\Delta(n) = \Delta(n + \operatorname{lcm}(n_1n_k))$.

For $n \in S$ with $0 \le n \le N_S + \operatorname{lcm}(n_1, n_k)$, compute:

$$Z(n) = \{ \mathbf{a} \in \mathbb{N}^k : n = a_1 n_1 + \dots + a_k n_k \}$$

$$Z(n) \rightsquigarrow L(n) = \{ a_1 + \dots + a_k : \mathbf{a} \in Z(n) \}$$

$$L(n) = \{ \ell_1 < \dots < \ell_r \} \rightsquigarrow \Delta(n) = \{ \ell_i - \ell_{i-1} \}$$

 $S = \langle n_1, \ldots, n_k \rangle$. For $n \ge N_S$, $\Delta(n) = \Delta(n + \operatorname{lcm}(n_1n_k))$.

For $n \in S$ with $0 \le n \le N_S + \operatorname{lcm}(n_1, n_k)$, compute:

$$Z(n) = \{ \mathbf{a} \in \mathbb{N}^k : n = a_1 n_1 + \dots + a_k n_k \}$$

$$Z(n) \rightsquigarrow L(n) = \{ a_1 + \dots + a_k : \mathbf{a} \in Z(n) \}$$

$$L(n) = \{ \ell_1 < \dots < \ell_r \} \rightsquigarrow \Delta(n) = \{ \ell_i - \ell_{i-1} \}$$

Compute $\Delta(S) = \bigcup_n \Delta(n)$.

 $S = \langle n_1, \ldots, n_k \rangle$. For $n \ge N_S$, $\Delta(n) = \Delta(n + \operatorname{lcm}(n_1n_k))$.

For $n \in S$ with $0 \le n \le N_S + \operatorname{lcm}(n_1, n_k)$, compute:

Compute $\Delta(S) = \bigcup_n \Delta(n)$.

 $S = \langle n_1, \ldots, n_k \rangle$. For $n \ge N_S$, $\Delta(n) = \Delta(n + \operatorname{lcm}(n_1 n_k))$.

For $n \in S$ with $0 \le n \le N_S + \operatorname{lcm}(n_1, n_k)$, compute:

Compute $\Delta(S) = \bigcup_n \Delta(n)$.

 $|\mathsf{Z}(n)| \approx n^{k-1}$

 $S = \langle n_1, \ldots, n_k \rangle$. For $n \ge N_S$, $\Delta(n) = \Delta(n + \operatorname{lcm}(n_1 n_k))$.

For $n \in S$ with $N_S \leq n \leq N_S + n_1$, compute:

Compute $\Delta(S) = \bigcup_n \Delta(n)$.

$$|\mathsf{Z}(n)| \approx n^{k-1}$$

Fix $n \in S = \langle n_1, \ldots, n_k \rangle$.

Fix $n \in S = \langle n_1, \ldots, n_k \rangle$. For each $i \leq k$,

Fix
$$n \in S = \langle n_1, \dots, n_k \rangle$$
. For each $i \leq k$,
 $\phi_i : Z(n - n_i) \longrightarrow Z(n)$
 $\mathbf{a} \longmapsto \mathbf{a} + \mathbf{e}_i$

Fix
$$n \in S = \langle n_1, \dots, n_k \rangle$$
. For each $i \leq k$,
 $\phi_i : Z(n - n_i) \longrightarrow Z(n)$
 $\mathbf{a} \longmapsto \mathbf{a} + \mathbf{e}_i$

Fix
$$n \in S = \langle n_1, \dots, n_k \rangle$$
. For each $i \leq k$,
 $\phi_i : Z(n - n_i) \longrightarrow Z(n)$
 $\mathbf{a} \longmapsto \mathbf{a} + \mathbf{e}_i$

Fix
$$n \in S = \langle n_1, \dots, n_k \rangle$$
. For each $i \leq k$,
 $\phi_i : Z(n - n_i) \longrightarrow Z(n)$
 $\mathbf{a} \longmapsto \mathbf{a} + \mathbf{e}_i$

Fix
$$n \in S = \langle n_1, \dots, n_k \rangle$$
. For each $i \leq k$,
 $\phi_i : Z(n - n_i) \longrightarrow Z(n)$
 $\mathbf{a} \longmapsto \mathbf{a} + \mathbf{e}_i$

Fix
$$n \in S = \langle n_1, \dots, n_k \rangle$$
. For each $i \leq k$,
 $\phi_i : Z(n - n_i) \longrightarrow Z(n)$
 $\mathbf{a} \longmapsto \mathbf{a} + \mathbf{e}_i$

Fix
$$n \in S = \langle n_1, \dots, n_k \rangle$$
. For each $i \leq k$,
 $\phi_i : Z(n - n_i) \longrightarrow Z(n)$
 $\mathbf{a} \longmapsto \mathbf{a} + \mathbf{e}_i$
 $Z(n) = \bigcup_{i \leq k} \phi_i(Z(n - n_i))$

Fix
$$n \in S = \langle n_1, \dots, n_k \rangle$$
. For each $i \leq k$,
 $\phi_i : Z(n - n_i) \longrightarrow Z(n)$
 $\mathbf{a} \longmapsto \mathbf{a} + \mathbf{e}_i$
 $Z(n) = \bigcup_{i \leq k} \phi_i(Z(n - n_i))$

Fix
$$n \in S = \langle n_1, \dots, n_k \rangle$$
. For each $i \leq k$,
 $\phi_i : Z(n - n_i) \longrightarrow Z(n)$
 $\mathbf{a} \longmapsto \mathbf{a} + \mathbf{e}_i$
 $Z(n) = \bigcup_{i \leq k} \phi_i(Z(n - n_i))$
 $\frac{n \in S = \langle 6, 9, 20 \rangle \quad Z(n) \qquad L(n)}{0 \qquad \{0\}}$

Fix
$$n \in S = \langle n_1, \dots, n_k \rangle$$
. For each $i \leq k$,
 $\phi_i : Z(n - n_i) \longrightarrow Z(n)$
 $\mathbf{a} \longmapsto \mathbf{a} + \mathbf{e}_i$
 $Z(n) = \bigcup_{i \leq k} \phi_i(Z(n - n_i))$
 $\frac{n \in S = \langle 6, 9, 20 \rangle \quad Z(n) \qquad L(n)}{0 \qquad \{0\}}$
 $6 \quad \mathbf{0} \stackrel{6}{\leadsto} \mathbf{e}_1 \qquad \{\mathbf{e}_1\} \qquad \{1\}$

Fix
$$n \in S = \langle n_1, \dots, n_k \rangle$$
. For each $i \leq k$,
 $\phi_i : Z(n - n_i) \longrightarrow Z(n)$
 $\mathbf{a} \longmapsto \mathbf{a} + \mathbf{e}_i$
 $Z(n) = \bigcup_{i \leq k} \phi_i(Z(n - n_i))$
 $\frac{n \in S = \langle 6, 9, 20 \rangle \quad Z(n) \qquad L(n)}{0 \qquad \{0\}}$
 $6 \quad \mathbf{0} \stackrel{6}{\longrightarrow} \mathbf{e}_1 \qquad \{\mathbf{e}_1\} \qquad \{1\}$
 $9 \quad \mathbf{0} \stackrel{9}{\longrightarrow} \mathbf{e}_2 \qquad \{\mathbf{e}_2\} \qquad \{1\}$

Fix $n \in$	<i>S</i> =	$\langle n_1,\ldots,n_k\rangle.$	For each $i \leq k$,			
ϕ_i :	Z(n	$(n-n_i) \longrightarrow$	Z(<i>n</i>)			
		$a \mapsto$	$\mathbf{a} + \mathbf{e}_i$			
Z($Z(n) = \bigcup_{i \leq k} \phi_i(Z(n - n_i))$					
	$n \in$	$S=\langle 6,9,20 angle$	Z(<i>n</i>)	L(<i>n</i>)		
-	0		{0 }	{0}		
	6	$0\overset{6}{\leadsto}\mathbf{e}_{1}$	$\{\mathbf{e}_1\}$	$\{1\}$		
	9	$0 \stackrel{9}{\rightsquigarrow} \mathbf{e}_2$	$\{\mathbf{e}_2\}$	$\{1\}$		
	12	$\mathbf{e}_1 \overset{6}{\leadsto} 2\mathbf{e}_1$	$\{2\mathbf{e}_1\}$	{2}		

Fix <i>n</i> ∈	= <i>S</i> =	$\langle n_1,\ldots,n_k \rangle$. F	For each $i \leq k$,				
ϕ_i	: Z(1	$(n - n_i) \longrightarrow \overline{2}$	Z(n)				
		$a \mapsto a$	$\mathbf{a} + \mathbf{e}_i$				
Z	$Z(n) = \bigcup_{i \leq k} \phi_i(Z(n - n_i))$						
	$n \in$	$S=\langle 6,9,20 angle$	Z(<i>n</i>)	L(<i>n</i>)			
	0		{0 }	{0}			
	6	$0\overset{6}{\leadsto}\mathbf{e}_{1}$	$\{\mathbf{e}_1\}$	$\{1\}$			
	9	$0\overset{9}{\rightsquigarrow}\mathbf{e}_2$	$\{\mathbf{e}_2\}$	$\{1\}$			
	12	$\mathbf{e}_1 \stackrel{6}{\rightsquigarrow} 2\mathbf{e}_1$	$\{2\mathbf{e}_1\}$	{2}			
	15	$\mathbf{e}_2 \overset{6}{\rightsquigarrow} (1,1,0)$	$\{(1, 1, 0)\}$	{2}			

Fix $n \in S =$	$=\langle n_1,\ldots,n_k angle$. I	For each $i \leq k$,			
$\phi_i: Z(I)$	$(n-n_i) \longrightarrow Z$	Z(n)			
	$a \mapsto a$	$\mathbf{a} + \mathbf{e}_i$			
$Z(n) = \bigcup_{i \leq k} \phi_i(Z(n - n_i))$					
$n \in$	$S=\langle 6,9,20 angle$	Z(<i>n</i>)	L(<i>n</i>)		
0	_	{0 }	{0}		
6	$0\overset{6}{\leadsto}\mathbf{e}_{1}$	$\{\mathbf{e}_1\}$	$\{1\}$		
9	$0 \stackrel{9}{\rightsquigarrow} \mathbf{e}_2$	$\{\mathbf{e}_2\}$	$\{1\}$		
12	$\mathbf{e}_1 \overset{6}{\leadsto} 2\mathbf{e}_1$	$\{2\mathbf{e}_1\}$	{2}		
15	$\mathbf{e}_2 \overset{6}{\rightsquigarrow} (1,1,0)$	$\{(1, 1, 0)\}$	{2}		
	$\mathbf{e}_1 \overset{9}{\rightsquigarrow} (1,1,0)$				

Fix $n \in S = \langle n_1, \ldots, n_k \rangle$. For each $i \leq k$,						
ϕ_i :	$\phi_i : Z(n - n_i) \longrightarrow Z(n)$					
	$\mathbf{a} \mapsto \mathbf{a} + \mathbf{e}_i$					
$Z(n) = \bigcup_{i \le k} \phi_i(Z(n - n_i))$						
	$n \in \mathcal{A}$	$S=\langle 6,9,20 angle$	Z(<i>n</i>)	L(<i>n</i>)		
_	0		{0 }	{0}		
	6	$0\overset{6}{\leadsto}\mathbf{e}_{1}$	$\{\mathbf{e}_1\}$	$\{1\}$		
	9	$0 \stackrel{9}{\rightsquigarrow} \mathbf{e}_2$	$\{\mathbf{e}_2\}$	$\{1\}$		
	12	$\mathbf{e}_1 \overset{6}{\leadsto} 2\mathbf{e}_1$	$\{2e_1\}$	{2}		
	15	$\mathbf{e}_2 \overset{6}{\leadsto} (1,1,0)$	$\{(1, 1, 0)\}$	{2}		
		$\mathbf{e}_1 \overset{9}{\rightsquigarrow} (1,1,0)$				
	18	$2\mathbf{e}_1 \overset{6}{\rightsquigarrow} 3\mathbf{e}_1$	$\{3\boldsymbol{e}_1, 2\boldsymbol{e}_2\}$	{2,3}		
Fix $n \in$	<i>S</i> =	$\langle n_1,\ldots,n_k \rangle$. F	For each $i \leq k$,			
-------------	------------	--	---	---------------		
ϕ_i	: Z(/	$(n-n_i) \longrightarrow \bar{z}$	Z(n)			
		$a \mapsto a$	$\mathbf{h} + \mathbf{e}_i$			
Z	(n) =	$= \bigcup_{i \leq k} \phi_i(Z(n -$	- n _i))			
	$n \in$	$S=\langle 6,9,20 angle$	Z(<i>n</i>)	L(<i>n</i>)		
	0		{0 }	{0}		
	6	$0\overset{6}{\leadsto}\mathbf{e}_{1}$	$\{\mathbf{e}_1\}$	$\{1\}$		
	9	$0 \stackrel{9}{\rightsquigarrow} \mathbf{e}_2$	$\{\mathbf{e}_2\}$	$\{1\}$		
	12	$\mathbf{e}_1 \overset{6}{\leadsto} 2\mathbf{e}_1$	$\{2\mathbf{e}_1\}$	{2}		
	15	$\mathbf{e}_2 \overset{6}{\rightsquigarrow} (1,1,0)$	$\{(1, 1, 0)\}$	{2}		
		$\mathbf{e}_1 \overset{9}{\rightsquigarrow} (1,1,0)$				
	18	$2\mathbf{e}_1 \stackrel{6}{\rightsquigarrow} 3\mathbf{e}_1$	$\{3\boldsymbol{e}_1,2\boldsymbol{e}_2\}$	{2,3}		
		$\mathbf{e}_2 \overset{9}{\rightsquigarrow} 2\mathbf{e}_2$				

Fix $n \in S$	$=\langle n_1,\ldots,n_k angle$. F	For each $i \leq k$,	
ϕ_i : Z($(n-n_i) \longrightarrow \overline{2}$	Z(n)	
	$a \mapsto a$	$\mathbf{a} + \mathbf{e}_i$	
Z(<i>n</i>)	$= \bigcup_{i \leq k} \phi_i(Z(n -$	$- n_i))$	
n	$\in S=\langle 6,9,20 angle$	Z(<i>n</i>)	L(<i>n</i>)
0	ć	{0 }	{0}
6	$0\overset{6}{\leadsto}\mathbf{e}_{1}$	$\{\mathbf{e}_1\}$	$\{1\}$
9	$0 \stackrel{9}{\rightsquigarrow} \mathbf{e}_2$	$\{\mathbf{e}_2\}$	$\{1\}$
12	$\mathbf{e}_1 \overset{6}{\leadsto} 2\mathbf{e}_1$	$\{2e_1\}$	{2}
15	$\mathbf{e}_2 \overset{6}{\rightsquigarrow} (1,1,0)$	$\{(1, 1, 0)\}$	{2}
	$\mathbf{e}_1 \overset{9}{\rightsquigarrow} (1,1,0)$		
18	$2\mathbf{e}_1 \stackrel{6}{\rightsquigarrow} 3\mathbf{e}_1$	$\{3e_1, 2e_2\}$	{2,3}
	$\mathbf{e}_2 \stackrel{9}{\rightsquigarrow} 2\mathbf{e}_2$		
20	$0 \stackrel{20}{\rightsquigarrow} \mathbf{e}_3$	$\{\mathbf{e}_3\}$	{1}

Fix $n \in$	<i>S</i> =	$\langle n_1,\ldots,n_k \rangle$. F	For each $i \leq k$,	
ϕ_i	: Z(<i>r</i>	$(n - n_i) \longrightarrow \bar{z}$	<u>Z(n)</u>	
		$a \mapsto a$	$\mathbf{a} + \mathbf{e}_i$	
Z	(n) =	$= \bigcup_{i \leq k} \phi_i(Z(n -$	$- n_i))$	
	$n \in$	${\cal S}=\langle 6,9,20 angle$	Z(<i>n</i>)	L(<i>n</i>)
	0		{0 }	{0}
	6	$0\overset{6}{\leadsto}\mathbf{e}_{1}$	$\{\mathbf{e}_1\}$	$\{1\}$
	9	$0 \stackrel{9}{\rightsquigarrow} \mathbf{e}_2$	$\{\mathbf{e}_2\}$	$\{1\}$
	12	$\mathbf{e}_1 \overset{6}{\leadsto} 2\mathbf{e}_1$	$\{2e_1\}$	{2}
	15	$\mathbf{e}_2 \overset{6}{\rightsquigarrow} (1,1,0)$	$\{(1, 1, 0)\}$	{2}
		$\mathbf{e}_1 \stackrel{9}{\rightsquigarrow} (1,1,0)$		
	18	$2\mathbf{e}_1 \stackrel{6}{\rightsquigarrow} 3\mathbf{e}_1$	$\{3\boldsymbol{e}_1,2\boldsymbol{e}_2\}$	{2,3}
		$\mathbf{e}_2 \stackrel{9}{\rightsquigarrow} 2\mathbf{e}_2$		
	20	$0 \stackrel{20}{\leadsto} \mathbf{e}_3$	$\{\mathbf{e}_3\}$	$\{1\}$

Fix n	$n \in S =$	$\langle n_1,\ldots,n_k\rangle.$	For each $i \leq k$	ζ,	
($\phi_i: Z(r$	$n-n_i) \longrightarrow$	Z(<i>n</i>)	ψ_i : L $(n - n_i)$	\rightarrow L(n)
		$a \mapsto$	$\mathbf{a} + \mathbf{e}_i$		
	Z(<i>n</i>) =	$= \bigcup_{i \leq k} \phi_i(Z(n))$	— n _i))		
	$n \in$	$S=\langle 6,9,20 angle$	Z(<i>n</i>)	L(<i>n</i>)	
	0	_	{0 }	{0}	
	6	$0 \stackrel{6}{\rightsquigarrow} \mathbf{e}_1$	$\{\mathbf{e}_1\}$	$\{1\}$	
	9	$0 \stackrel{9}{\rightsquigarrow} \mathbf{e}_2$	$\{\mathbf{e}_2\}$	$\{1\}$	
	12	$\mathbf{e}_1 \overset{6}{\leadsto} 2\mathbf{e}_1$	$\{2\mathbf{e}_1\}$	{2}	
	15	$\mathbf{e}_2 \overset{6}{\leadsto} (1,1,0)$	$\{(1, 1, 0)\}$	{2}	
		$\mathbf{e}_1 \stackrel{9}{\rightsquigarrow} (1,1,0)$			
	18	$2\mathbf{e}_1 \stackrel{6}{\rightsquigarrow} 3\mathbf{e}_1$	$\{3\boldsymbol{e}_1, 2\boldsymbol{e}_2\}$	{2,3}	
		$\mathbf{e}_2 \stackrel{9}{\rightsquigarrow} 2\mathbf{e}_2$			
	20	$0 \stackrel{20}{\leadsto} \mathbf{e}_3$	$\{e_3\}$	$\{1\}$	

Fix n	$\in S =$	$\langle n_1,\ldots,n_k\rangle.$	For each $i \leq i$	k,		
q	b _i : Z(r	$n-n_i) \longrightarrow$	Z(<i>n</i>)	$\psi_i: L(n-n_i)$	\longrightarrow	L(<i>n</i>)
		$a \mapsto$	$\mathbf{a} + \mathbf{e}_i$	ℓ	\mapsto	$\ell + 1$
	Z(<i>n</i>) =	$= \bigcup_{i \leq k} \phi_i(Z(n))$	$(-n_i))$			
	$n \in$	$S=\langle 6,9,20 angle$	Z(<i>n</i>)	L(<i>n</i>)		
	0	_	{0 }	{0}		
	6	$0 \stackrel{6}{\rightsquigarrow} \mathbf{e}_1$	$\{\mathbf{e}_1\}$	$\{1\}$		
	9	$0 \stackrel{9}{\rightsquigarrow} \mathbf{e}_2$	$\{\mathbf{e}_2\}$	$\{1\}$		
	12	$\mathbf{e}_1 \overset{6}{\leadsto} 2\mathbf{e}_1$	$\{2e_1\}$	{2}		
	15	$\mathbf{e}_2 \overset{6}{\rightsquigarrow} (1,1,0)$	$\{(1, 1, 0)\}$	{2}		
		$\mathbf{e}_1 \overset{9}{\rightsquigarrow} (1,1,0)$				
	18	$2\mathbf{e}_1 \overset{6}{\rightsquigarrow} 3\mathbf{e}_1$	$\{3\boldsymbol{e}_1, 2\boldsymbol{e}_2\}$	{2,3}		
		$\mathbf{e}_2 \stackrel{9}{\rightsquigarrow} 2\mathbf{e}_2$				
	20	$0\stackrel{20}{\leadsto}\mathbf{e}_3$	$\{\mathbf{e}_3\}$	$\{1\}$		

Fix	$n \in S =$	$\langle n_1,\ldots,n_k\rangle.$	For each $i \leq i$	k,	
	ϕ_i : Z(r	$n - n_i) \longrightarrow$	Z(<i>n</i>)	ψ_i : L $(n - n_i)$	\rightarrow L(n)
		$a \mapsto$	$\mathbf{a} + \mathbf{e}_i$	ℓ	$\mapsto \ell + 1$
	Z(n) =	$= \bigcup_{i \leq k} \phi_i(Z(n))$	$(-n_i))$	$L(n) = \bigcup_{i \leq k} \psi$	$v_i(L(n-n_i))$
	$n \in$	$S=\langle 6,9,20 angle$	Z(<i>n</i>)	L(<i>n</i>)	
	0		{0 }	{0}	
	6	$0 \stackrel{6}{\leadsto} \mathbf{e}_1$	$\{\mathbf{e}_1\}$	$\{1\}$	
	9	$0 \stackrel{9}{\rightsquigarrow} \mathbf{e}_2$	$\{\mathbf{e}_2\}$	$\{1\}$	
	12	$\mathbf{e}_1 \overset{6}{\leadsto} 2\mathbf{e}_1$	$\{2\mathbf{e}_1\}$	{2}	
	15	$\mathbf{e}_2 \overset{6}{\rightsquigarrow} (1,1,0)$	$\{(1, 1, 0)\}$	{2}	
		$\mathbf{e}_1 \overset{9}{\rightsquigarrow} (1,1,0)$			
	18	$2\mathbf{e}_1 \stackrel{6}{\rightsquigarrow} 3\mathbf{e}_1$	$\{3\boldsymbol{e}_1, 2\boldsymbol{e}_2\}$	{2,3}	
		$\mathbf{e}_2 \stackrel{9}{\rightsquigarrow} 2\mathbf{e}_2$			
	20	$0\overset{20}{\leadsto}\mathbf{e}_3$	$\{\mathbf{e}_3\}$	$\{1\}$	

Fix $n \in S = \langle n_1, \ldots, n_k \rangle$. For each $i \leq$	<i>k</i> ,	
$\phi_i: Z(n-n_i) \longrightarrow Z(n)$	ψ_i : L($n - n_i$)	\rightarrow L(n)
$\mathbf{a} \mapsto \mathbf{a} + \mathbf{e}_i$	ℓ	$\mapsto \ell + 1$
$Z(n) = \bigcup_{i \leq k} \phi_i(Z(n-n_i))$	$L(n) = \bigcup_{i \leq k} \psi$	$v_i(L(n-n_i))$
$n\in \mathcal{S}=\langle 6,9,20 angle$	L(<i>n</i>)	
0	{0}	
6	$\{1\}$	$0 \stackrel{6}{\rightsquigarrow} 1$
9		
12		
15		
18		
20		

Fix $n \in S = \langle n_1, \ldots, n_k \rangle$. For each $i \leq k$	ζ,	
$\phi_i: Z(n-n_i) \longrightarrow Z(n)$	ψ_i : L($n - n_i$)	\rightarrow L(n)
$\mathbf{a} \mapsto \mathbf{a} + \mathbf{e}_i$	ℓ	$\mapsto \ell + 1$
$Z(n) = \bigcup_{i \leq k} \phi_i(Z(n - n_i))$	$L(n) = \bigcup_{i \leq k} \psi$	$\psi_i(L(n-n_i))$
$\textit{n} \in \textit{S} = \langle 6, 9, 20 angle$	L(<i>n</i>)	
0	{0}	
6	$\{1\}$	$0 \stackrel{6}{\rightsquigarrow} 1$
9	$\{1\}$	$0 \stackrel{9}{\rightsquigarrow} 1$
12		
15		
18		

Fix $n \in S = \langle n_1, \ldots, n_k \rangle$. For each $i \leq i$	k,	
$\phi_i: Z(n-n_i) \longrightarrow Z(n)$	ψ_i : L($n - n_i$)	\longrightarrow L(n)
$\mathbf{a} \longmapsto \mathbf{a} + \mathbf{e}_i$	ℓ	$\mapsto \ell + 1$
$Z(n) = \bigcup_{i \leq k} \phi_i(Z(n - n_i))$	$L(n) = \bigcup_{i \leq k} \psi$	$v_i(L(n-n_i))$
$n\in \mathcal{S}=\langle 6,9,20 angle$	L(<i>n</i>)	
0	{0}	
6	$\{1\}$	$0 \stackrel{6}{\rightsquigarrow} 1$
9	$\{1\}$	$0 \stackrel{9}{\rightsquigarrow} 1$
12	{2}	$1 \stackrel{6}{\rightsquigarrow} 2$
15		

18

Fix $n \in S = \langle n_1, $	$\ldots, n_k \rangle$. For each $i \leq$	$\leq k$,	
ϕ_i : Z($n - n_i$	$i) \longrightarrow Z(n)$	ψ_i : L $(n - n_i)$	\rightarrow L(n)
	$\mathbf{a} \mapsto \mathbf{a} + \mathbf{e}_i$	ℓ	$\mapsto \ell + 1$
$Z(n) = \bigcup_{i \leq i}$	$\leq k \phi_i(Z(n-n_i))$	$L(n) = \bigcup_{i \leq k} \psi_i$	$(L(n - n_i))$
$n \in S = 0$	$\langle 6,9,20 angle$	L(<i>n</i>)	
0		{0}	
6		$\{1\}$	$0 \stackrel{6}{\rightsquigarrow} 1$
9		$\{1\}$	$0 \stackrel{9}{\rightsquigarrow} 1$
12		{2}	$1 \stackrel{6}{\rightsquigarrow} 2$
15		{2}	$1 \stackrel{6}{\rightsquigarrow} 2$

18

Fix $n \in S = \langle n_1, \ldots, n_k \rangle$. For each $i \leq i$	k,	
$\phi_i: Z(n-n_i) \longrightarrow Z(n)$	$\psi_i: L(n - n_i)$	\rightarrow L(n)
$\mathbf{a} \longmapsto \mathbf{a} + \mathbf{e}_i$	ℓ	$\mapsto \ell + 1$
$Z(n) = \bigcup_{i \leq k} \phi_i(Z(n - n_i))$	$L(n) = \bigcup_{i \leq k} \psi$	$_i(L(n-n_i))$
$n\in S=\langle 6,9,20 angle$	L(<i>n</i>)	
0	{0}	
6	$\{1\}$	$0 \stackrel{6}{\rightsquigarrow} 1$
9	$\{1\}$	$0 \stackrel{9}{\rightsquigarrow} 1$
12	{2}	$1 \stackrel{6}{\rightsquigarrow} 2$
15	{2}	$1 \stackrel{6}{\rightsquigarrow} 2$
		$1 \stackrel{9}{\rightsquigarrow} 2$

18

Fix $n \in S = \langle n_1, \dots, n_k \rangle$. For each $i \leq i$	<u> </u>	
$\phi_i: Z(n-n_i) \longrightarrow Z(n)$	$\psi_i: L(n-n_i)$	\rightarrow L(n)
$\mathbf{a} \mapsto \mathbf{a} + \mathbf{e}_i$	ℓ	$\mapsto \ell + 1$
$Z(n) = \bigcup_{i \leq k} \phi_i(Z(n - n_i))$	$L(n) = \bigcup_{i \leq k} \psi_i$	$(L(n-n_i))$
$\textit{n} \in \textit{S} = \langle 6, 9, 20 angle$	L(<i>n</i>)	
0	{0}	
6	$\{1\}$	$0 \stackrel{6}{\rightsquigarrow} 1$
9	$\{1\}$	$0 \stackrel{9}{\rightsquigarrow} 1$
12	{2}	$1 \stackrel{6}{\rightsquigarrow} 2$
15	{2}	$1 \stackrel{6}{\rightsquigarrow} 2$
		$1 \stackrel{9}{\rightsquigarrow} 2$
18	{2,3}	$2 \stackrel{6}{\rightsquigarrow} 3$

Fix $n \in S = \langle n_1, \ldots, n_k \rangle$. For each $i \leq k$	κ,	
$\phi_i : Z(n - n_i) \longrightarrow Z(n)$	$\psi_i : L(n - n_i)$	\rightarrow L(n)
$\mathbf{a} \mapsto \mathbf{a} + \mathbf{e}_i$	ℓ	$\mapsto \ell + 1$
$Z(n) = \bigcup_{i \leq k} \phi_i(Z(n - n_i))$	$L(n) = \bigcup_{i \leq k} \psi_i$	$(L(n-n_i))$
$\textit{n}\in\textit{S}=\langle 6,9,20 angle$	L(<i>n</i>)	
0	{0}	
6	$\{1\}$	$0 \stackrel{6}{\rightsquigarrow} 1$
9	$\{1\}$	$0 \stackrel{9}{\rightsquigarrow} 1$
12	{2}	$1 \stackrel{6}{\rightsquigarrow} 2$
15	{2}	$1 \stackrel{6}{\rightsquigarrow} 2$
		$1 \stackrel{9}{\rightsquigarrow} 2$
18	{2,3}	$2 \stackrel{6}{\rightsquigarrow} 3$
		$1 \stackrel{9}{\rightsquigarrow} 2$

Fix $n \in S = \langle n_1, \dots, n_k \rangle$. For each $i \leq k$	Κ,	
$\phi_i: Z(n-n_i) \longrightarrow Z(n)$	$\psi_i: L(n-n_i)_{\ell}$	\rightarrow L(n)
$\mathbf{a} \longrightarrow \mathbf{a} + \mathbf{e}_{\mathbf{i}}$		$\sim \ell + 1$
$Z(n) = \bigcup_{i \leq k} \phi_i (Z(n - n_i))$	$L(n) = \bigcup_{i \leq k} \psi_i$	$(L(n - n_i))$
$\textit{n} \in \textit{S} = \langle 6, 9, 20 angle$	L(<i>n</i>)	
0	{0}	6
6	$\{1\}$	$0 \stackrel{0}{\rightsquigarrow} 1$
9	$\{1\}$	$0 \stackrel{g}{\rightsquigarrow} 1$
12	{2}	$1 \stackrel{6}{\rightsquigarrow} 2$
15	{2}	$1 \stackrel{6}{\leadsto} 2$
		$1 \stackrel{9}{\rightsquigarrow} 2$
18	{2,3}	$2 \stackrel{6}{\rightsquigarrow} 3$
		$1 \stackrel{9}{\rightsquigarrow} 2$
20	$\{1\}$	$0 \stackrel{20}{\rightsquigarrow} 1$
	. ,	

Fix $n \in S = \langle n_1, \ldots, n_k \rangle$. For each $i \leq k$	۲,	
$\phi_i: Z(n-n_i) \longrightarrow Z(n)$	ψ_i : L($n - n_i$)	\rightarrow L(n)
$\mathbf{a} \mapsto \mathbf{a} + \mathbf{e}_i$	ℓ	$\mapsto \ell + 1$
$Z(n) = \bigcup_{i \leq k} \phi_i(Z(n - n_i))$	$L(n) = \bigcup_{i \leq k} \psi_i$	$(L(n-n_i))$
$n\in S=\langle 6,9,20 angle$	L(<i>n</i>)	
0	{0}	
6	$\{1\}$	$0 \stackrel{6}{\rightsquigarrow} 1$
9	$\{1\}$	$0 \stackrel{9}{\rightsquigarrow} 1$
12	{2}	$1 \stackrel{6}{\rightsquigarrow} 2$
15	{2}	$1 \stackrel{6}{\rightsquigarrow} 2$
		$1 \stackrel{9}{\rightsquigarrow} 2$
18	{2,3}	$2 \stackrel{6}{\rightsquigarrow} 3$
		$1 \stackrel{9}{\rightsquigarrow} 2$
20	$\{1\}$	$0 \stackrel{20}{\rightsquigarrow} 1$

Christopher O'Neill (Texas A&M University)Computing the delta set and ω -primality in n

Theorem (García-García-Moreno-Frías-Vigneron-Tenorio, 2014)

 $S = \langle n_1, \ldots, n_k \rangle$. For $n \ge N_S$, $\Delta(n) = \Delta(n + \operatorname{lcm}(n_1, n_k))$.

Theorem (García-García–Moreno-Frías–Vigneron-Tenorio, 2014)

$$S = \langle n_1, \ldots, n_k \rangle$$
. For $n \ge N_S$, $\Delta(n) = \Delta(n + \operatorname{lcm}(n_1, n_k))$.

For $n \in S$ with $0 \le n \le N_S + \operatorname{lcm}(n_1, n_k)$, compute:

$$Z(n) = \{ \mathbf{a} \in \mathbb{N}^k : n = a_1 n_1 + \dots + a_k n_k \}$$
$$Z(n) \rightsquigarrow L(n)$$
$$L(n) \rightsquigarrow \Delta(n)$$

Compute $\Delta(S) = \bigcup_n \Delta(n)$.

Theorem (García-García–Moreno-Frías–Vigneron-Tenorio, 2014)

$$S = \langle n_1, \ldots, n_k \rangle$$
. For $n \ge N_S$, $\Delta(n) = \Delta(n + \operatorname{lcm}(n_1, n_k))$.

For $n \in S$ with $0 \le n \le N_S + \operatorname{lcm}(n_1, n_k)$, compute:

$$\frac{Z(n) = \{ \mathbf{a} \in \mathbb{N}^k : n = a_1 n_1 + \dots + a_k n_k \}}{L(n - *) \rightsquigarrow L(n)} \\ L(n) \rightsquigarrow \Delta(n)$$

Compute $\Delta(S) = \bigcup_n \Delta(n)$.

Theorem (García-García–Moreno-Frías–Vigneron-Tenorio, 2014)

$$S = \langle n_1, \ldots, n_k \rangle$$
. For $n \ge N_S$, $\Delta(n) = \Delta(n + \operatorname{lcm}(n_1, n_k))$.

For $n \in S$ with $0 \le n \le N_S + \operatorname{lcm}(n_1, n_k)$, compute:

$$\frac{Z(n) = \{ \mathbf{a} \in \mathbb{N}^k : n = a_1 n_1 + \dots + a_k n_k \}}{L(n - *) \rightsquigarrow L(n)} \\ L(n) \rightsquigarrow \Delta(n)$$

Compute $\Delta(S) = \bigcup_n \Delta(n)$.

This is significantly faster!

Theorem (García-García–Moreno-Frías–Vigneron-Tenorio, 2014)

$$S = \langle n_1, \dots, n_k \rangle$$
. For $n \ge N_S$, $\Delta(n) = \Delta(n + \operatorname{lcm}(n_1, n_k))$.

For $n \in S$ with $0 \le n \le N_S + \operatorname{lcm}(n_1, n_k)$, compute:

$$\frac{\mathsf{Z}(n) = \{\mathbf{a} \in \mathbb{N}^k : n = a_1 n_1 + \dots + a_k n_k\}}{\mathsf{L}(n - *) \rightsquigarrow \mathsf{L}(n)} \\
\qquad \qquad \mathsf{L}(n) \rightsquigarrow \Delta(n)$$

Compute $\Delta(S) = \bigcup_n \Delta(n)$.

This is significantly faster!

 $|\mathsf{Z}(n)| \approx n^{k-1}$

Theorem (García-García–Moreno-Frías–Vigneron-Tenorio, 2014)

$$S = \langle n_1, \dots, n_k \rangle$$
. For $n \ge N_S$, $\Delta(n) = \Delta(n + \operatorname{lcm}(n_1, n_k))$.

For $n \in S$ with $0 \le n \le N_S + \operatorname{lcm}(n_1, n_k)$, compute:

$$\frac{Z(n) = \{\mathbf{a} \in \mathbb{N}^k : n = a_1 n_1 + \dots + a_k n_k\}}{L(n - *) \rightsquigarrow L(n)} \\
L(n) \rightsquigarrow \Delta(n)$$

Compute $\Delta(S) = \bigcup_n \Delta(n)$.

This is significantly faster!

$$\begin{array}{ll} |\mathsf{Z}(n)| &\approx n^{k-1} \\ |\mathsf{L}(n)| &\approx n \end{array}$$

Runtime comparison

5	Ns	$\Delta(S)$	Existing	Dynamic
$\langle 7, 15, 17, 18, 20 \rangle$	1935	{1,2,3}	1m 28s	146ms
$\langle 11, 53, 73, 87 angle$	14381	$\{2, 4, 6, 8, 10, 22$	} 0m 49s	2.5s
$\langle 31,73,77,87,91 angle$	31364	$\{2, 4, 6\}$	400m 12s	4.2s
$\langle 100, 121, 142, 163, 284 angle$	24850	{21}		0m 3.6s
<pre>(1001, 1211, 1421, 1631, 2841)</pre>	2063141	{10, 20, 30}		1m 56s

S	Ns	$\Delta(S)$	Existing	Dynamic
$\langle 7, 15, 17, 18, 20 \rangle$	1935	$\{1, 2, 3\}$	1m 28s	146ms
$\langle 11, 53, 73, 87 angle$	14381	$\{2, 4, 6, 8, 10, 22\}$	} 0m 49s	2.5s
$\langle 31,73,77,87,91 \rangle$	31364	{2,4,6}	400m 12s	4.2s
$\langle 100, 121, 142, 163, 284 \rangle$	24850	{21}		0m 3.6s
$\langle 1001, 1211, 1421, 1631, 2841 \rangle$	2063141	{10, 20, 30}		1m 56s

GAP Numerical Semigroups Package, available at

http://www.gap-system.org/Packages/numericalsgps.html.

As usual, $n \in S = \langle n_1, \ldots, n_k \rangle$.

As usual, $n \in S = \langle n_1, \ldots, n_k \rangle$.

Definition (ω -primality)

 $\omega_S(n)$ is the minimal *m* such that whenever $(\sum_{i=1}^r x_i) - n \in S$ for r > m, there exists $T \subset \{1, \ldots, r\}$ with $|T| \le m$ and $(\sum_{i \in T} x_i) - n \in S$.

As usual, $n \in S = \langle n_1, \ldots, n_k \rangle$.

Definition (ω -primality)

 $\omega_S(n)$ is the minimal *m* such that whenever $(\sum_{i=1}^r x_i) - n \in S$ for r > m, there exists $T \subset \{1, \ldots, r\}$ with $|T| \le m$ and $(\sum_{i \in T} x_i) - n \in S$.

Definition

A bullet for $n \in S$ is a tuple $\mathbf{b} = (b_1, \dots, b_k) \in \mathbb{N}^k$ such that

(i)
$$b_1n_1 + \cdots + b_kn_k - n \in S$$
, and

(ii)
$$b_1n_1 + \cdots + (b_i - 1)n_i + \cdots + b_kn_k - n \notin S$$
 for each $b_i > 0$.

The set of bullets of n is denoted bul(n).

As usual, $n \in S = \langle n_1, \ldots, n_k \rangle$.

Definition (ω -primality)

 $\omega_S(n)$ is the minimal *m* such that whenever $(\sum_{i=1}^r x_i) - n \in S$ for r > m, there exists $T \subset \{1, \ldots, r\}$ with $|T| \le m$ and $(\sum_{i \in T} x_i) - n \in S$.

Definition

A *bullet* for
$$n \in S$$
 is a tuple $\mathbf{b} = (b_1, \dots, b_k) \in \mathbb{N}^k$ such that

(i)
$$b_1 n_1 + \cdots + b_k n_k - n \in S$$
, and

(ii)
$$b_1n_1 + \cdots + (b_i - 1)n_i + \cdots + b_kn_k - n \notin S$$
 for each $b_i > 0$.

The set of bullets of n is denoted bul(n).

Proposition

$$\omega_{\mathcal{S}}(n) = \max\{|\mathbf{b}| : \mathbf{b} \in \mathsf{bul}(n)\}.$$

Algorithm: Compute bul(*n*), then compute $\omega(n) = \max\{|\mathbf{b}| : \mathbf{b} \in bul(n)\}$.

Algorithm: Compute bul(*n*), then compute $\omega(n) = \max\{|\mathbf{b}| : \mathbf{b} \in bul(n)\}$.

Example

 $S = \langle 6, 9, 20 \rangle = \{0, 6, 9, 12, 15, 18, 20, 21, \ldots \}.$

Algorithm: Compute bul(*n*), then compute $\omega(n) = \max\{|\mathbf{b}| : \mathbf{b} \in bul(n)\}$.

Example

 $S = \langle 6, 9, 20 \rangle = \{0, 6, 9, 12, 15, 18, 20, 21, \ldots \}.$ "McNugget Monoid"

Algorithm: Compute bul(*n*), then compute $\omega(n) = \max\{|\mathbf{b}| : \mathbf{b} \in bul(n)\}$.

Example

 $S = \langle 6, 9, 20 \rangle = \{0, 6, 9, 12, 15, 18, 20, 21, \ldots\}.$ "McNugget Monoid" bul(60) = $\{(4, 4, 0), (7, 2, 0), (10, 0, 0), (1, 6, 0), (0, 8, 0), (0, 0, 3)\}$

Algorithm: Compute bul(*n*), then compute $\omega(n) = \max\{|\mathbf{b}| : \mathbf{b} \in bul(n)\}$.

Example

$$\begin{split} S &= \langle 6,9,20 \rangle = \{0,6,9,12,15,18,20,21,\ldots\}. \text{ "McNugget Monoid"} \\ & \mathsf{bul}(60) = \{(4,4,0),(7,2,0),(10,0,0),(1,6,0),(0,8,0),(0,0,3)\} \\ & 8 \cdot 9 - 60 = 12 \in S \end{split}$$

Algorithm: Compute bul(*n*), then compute $\omega(n) = \max\{|\mathbf{b}| : \mathbf{b} \in bul(n)\}$.

Example

 $S = \langle 6, 9, 20 \rangle = \{0, 6, 9, 12, 15, 18, 20, 21, \ldots\}.$ "McNugget Monoid" bul(60) = $\{(4, 4, 0), (7, 2, 0), (10, 0, 0), (1, 6, 0), (0, 8, 0), (0, 0, 3)\}$ $8 \cdot 9 - 60 = 12 \in S$ $7 \cdot 9 - 60 = 3 \notin S$

Algorithm: Compute bul(*n*), then compute $\omega(n) = \max\{|\mathbf{b}| : \mathbf{b} \in bul(n)\}$.

Example

 $S = \langle 6, 9, 20 \rangle = \{0, 6, 9, 12, 15, 18, 20, 21, \ldots\}.$ "McNugget Monoid" bul(60) = $\{(4, 4, 0), (7, 2, 0), (10, 0, 0), (1, 6, 0), (0, 8, 0), (0, 0, 3)\}$ $8 \cdot 9 - 60 = 12 \in S$ $7 \cdot 9 - 60 = 3 \notin S \Rightarrow (0, 8, 0) \in \text{bul}(60)$
Algorithm: Compute bul(*n*), then compute $\omega(n) = \max\{|\mathbf{b}| : \mathbf{b} \in bul(n)\}$.

Example

 $S = \langle 6, 9, 20 \rangle = \{0, 6, 9, 12, 15, 18, 20, 21, \ldots\}.$ "McNugget Monoid" bul(60) = $\{(4, 4, 0), (7, 2, 0), (10, 0, 0), (1, 6, 0), (0, 8, 0), (0, 0, 3)\}$ $8 \cdot 9 - 60 = 12 \in S$ $7 \cdot 9 - 60 = 3 \notin S \Rightarrow (0, 8, 0) \in \text{bul(60)}$ $1 \cdot 6 + 6 \cdot 9 - 60 = 0 \in S$

Algorithm: Compute bul(*n*), then compute $\omega(n) = \max\{|\mathbf{b}| : \mathbf{b} \in bul(n)\}$.

Example

 $S = \langle 6, 9, 20 \rangle = \{0, 6, 9, 12, 15, 18, 20, 21, \ldots\}.$ "McNugget Monoid" bul(60) = $\{(4, 4, 0), (7, 2, 0), (10, 0, 0), (1, 6, 0), (0, 8, 0), (0, 0, 3)\}$ $8 \cdot 9 - 60 = 12 \in S$ $7 \cdot 9 - 60 = 3 \notin S \Rightarrow (0, 8, 0) \in \text{bul}(60)$ $1 \cdot 6 + 6 \cdot 9 - 60 = 0 \in S$ $6 \cdot 9 - 60 = -6 \notin S$

Algorithm: Compute bul(*n*), then compute $\omega(n) = \max\{|\mathbf{b}| : \mathbf{b} \in bul(n)\}$.

Example

 $S = \langle 6, 9, 20 \rangle = \{0, 6, 9, 12, 15, 18, 20, 21, \ldots\}.$ "McNugget Monoid" bul(60) = $\{(4, 4, 0), (7, 2, 0), (10, 0, 0), (1, 6, 0), (0, 8, 0), (0, 0, 3)\}$ $8 \cdot 9 - 60 = 12 \in S$ $7 \cdot 9 - 60 = 3 \notin S \Rightarrow (0, 8, 0) \in bul(60)$ $1 \cdot 6 + 6 \cdot 9 - 60 = 0 \in S$ $6 \cdot 9 - 60 = -6 \notin S$ $1 \cdot 6 + 5 \cdot 9 - 60 = -9 \notin S$

Algorithm: Compute bul(*n*), then compute $\omega(n) = \max\{|\mathbf{b}| : \mathbf{b} \in bul(n)\}$.

Example

 $S = \langle 6, 9, 20 \rangle = \{0, 6, 9, 12, 15, 18, 20, 21, \ldots\}.$ "McNugget Monoid" bul(60) = $\{(4, 4, 0), (7, 2, 0), (10, 0, 0), (1, 6, 0), (0, 8, 0), (0, 0, 3)\}$ $8 \cdot 9 - 60 = 12 \in S$ $7 \cdot 9 - 60 = 3 \notin S \qquad \Rightarrow \quad (0, 8, 0) \in \text{bul}(60)$ $1 \cdot 6 + 6 \cdot 9 - 60 = 0 \in S$ $6 \cdot 9 - 60 = -6 \notin S \qquad \Rightarrow \quad (1, 6, 0) \in \text{bul}(60)$ $1 \cdot 6 + 5 \cdot 9 - 60 = -9 \notin S$

Algorithm: Compute bul(n), then compute $\omega(n) = \max\{|\mathbf{b}| : \mathbf{b} \in bul(n)\}$.

$S = \langle 6, 9, 20 \rangle = \{0, 6, 9, 12, 15, 18, 20, 21, \ldots\}.$ "McNugget Monoid"										
$bul(60) = \{(4,4,0), (7,2,0), (10,0,0), (1,6,0), (0,8,0), (0,0,3)\}$										
$egin{array}{lll} 8\cdot 9-60&=12\in S\ 7\cdot 9-60&=3 otin S \end{array} \Rightarrow (0,8,0)\in {\sf bul}(60) \end{array}$										
$egin{array}{lll} 1\cdot 6+6\cdot 9-60&=0\in S\ 6\cdot 9-60&=-6 otin S\ 1\cdot 6+5\cdot 9-60&=-9 otin S \end{array} imes (1,6,0)\in {\sf bul}(60)$										
$n \in S$	$n\in S$ $\omega(n)$ mbul $n\in S$ $\omega(n)$ mbul $n\in S$ $\omega(n)$ mbul									
6	3	3 e ₃	15	4	4 e ₁	21	5	5 e 1		
9	3	3 e ₃	18	3	3 e 1	24	4	$4\mathbf{e}_1$		
12	3	3 e ₃	20	10	$10\mathbf{e}_1$	26	11	$11\mathbf{e}_1$		

Algorithm: Compute bul(*n*), then compute $\omega(n) = \max\{|\mathbf{b}| : \mathbf{b} \in bul(n)\}$.

Example

$S = \langle 6, 9, 20 \rangle = \{0, 6, 9, 12, 15, 18, 20, 21, \ldots\}.$ "McNugget Monoid"									
$bul(60) = \{(4,4,0), (7,2,0), (10,0,0), (1,6,0), (0,8,0), (0,0,3)\}$									
$egin{array}{lll} 8\cdot 9-60&=12\in S\ 7\cdot 9-60&=3 otin S \end{array} \Rightarrow \ (0,8,0)\in {\sf bul}(60) \end{array}$									
$egin{array}{lll} 1\cdot 6+6\cdot 9-60&=0\in S\ 6\cdot 9-60&=-6 otin S\ 1\cdot 6+5\cdot 9-60&=-9 otin S \end{array} imes (1,6,0)\in {\sf bul}(60)$									
$n\in S$ $\omega(n)$ mbul $n\in S$ $\omega(n)$ mbul $n\in S$ $\omega(n)$ mbul									
6 3	3 e ₃	15	4	4 e ₁	21	5	5 e ₁		
9 3	3 e ₃	18	3	3 e 1	24	4	$4\mathbf{e}_1$		
12 3	3 e ₃	20	10	$10\mathbf{e}_1$	26	11	$11e_{1}$		

Moral of this talk: bullets behave like factorizations!

Christopher O'Neill (Texas A&M University)Computing the delta set and ω -primality in n

Recall: for
$$n \in S = \langle n_1, \dots n_k \rangle$$
, $\mathsf{Z}(n) = \{ \mathbf{a} \in \mathbb{N}^k : \sum_{i=1}^k a_i n_i = n \}.$

Recall: for $n \in S = \langle n_1, \dots, n_k \rangle$, $Z(n) = \{ \mathbf{a} \in \mathbb{N}^k : \sum_{i=1}^k a_i n_i = n \}$. For each $i \leq k$,

Recall: for $n \in S = \langle n_1, \dots n_k \rangle$, $Z(n) = \{ \mathbf{a} \in \mathbb{N}^k : \sum_{i=1}^k a_i n_i = n \}$. For each $i \leq k$, $\phi_i : Z(n - n_i) \longrightarrow Z(n)$ $\mathbf{a} \longmapsto \mathbf{a} + \mathbf{e}_i$.

Recall: for
$$n \in S = \langle n_1, \dots n_k \rangle$$
, $Z(n) = \{ \mathbf{a} \in \mathbb{N}^k : \sum_{i=1}^k a_i n_i = n \}$.
For each $i \leq k$,
 $\phi_i : Z(n - n_i) \longrightarrow Z(n)$
 $\mathbf{a} \longmapsto \mathbf{a} + \mathbf{e}_i$.

In particular,

$$\mathsf{Z}(n) = \bigcup_{i \leq k} \phi_i(\mathsf{Z}(n-n_i))$$

Recall: for
$$n \in S = \langle n_1, \dots n_k \rangle$$
, $Z(n) = \{ \mathbf{a} \in \mathbb{N}^k : \sum_{i=1}^k a_i n_i = n \}$.
For each $i \leq k$,
 $\phi_i : Z(n - n_i) \longrightarrow Z(n)$
 $\mathbf{a} \longmapsto \mathbf{a} + \mathbf{e}_i$.

In particular,

$$\mathsf{Z}(n) = \bigcup_{i \leq k} \phi_i(\mathsf{Z}(n-n_i))$$

Definition/Proposition (Cover morphisms)

Fix $n \in S$ and $i \leq k$. The *i*-th cover morphism for n is the map $\psi_i : \operatorname{bul}(n - n_i) \longrightarrow \operatorname{bul}(n)$

Recall: for
$$n \in S = \langle n_1, \dots n_k \rangle$$
, $Z(n) = \{ \mathbf{a} \in \mathbb{N}^k : \sum_{i=1}^k a_i n_i = n \}$.
For each $i \leq k$,
 $\phi_i : Z(n - n_i) \longrightarrow Z(n)$
 $\mathbf{a} \longmapsto \mathbf{a} + \mathbf{e}_i$.

In particular,

$$\mathsf{Z}(n) = \bigcup_{i \leq k} \phi_i(\mathsf{Z}(n-n_i))$$

Definition/Proposition (Cover morphisms)

Fix $n \in S$ and $i \leq k$. The *i*-th cover morphism for n is the map

$$\psi_i: \mathsf{bul}(n-n_i) \longrightarrow \mathsf{bul}(n)$$

given by

$$\mathbf{b} \longmapsto \begin{cases} \mathbf{b} + \mathbf{e}_i & \sum_{j=1}^k b_j n_j - n - n_i \notin S \\ \mathbf{b} & \sum_{j=1}^k b_j n_j - n - n_i \in S \end{cases}$$

Recall: for
$$n \in S = \langle n_1, \dots n_k \rangle$$
, $Z(n) = \{ \mathbf{a} \in \mathbb{N}^k : \sum_{i=1}^k a_i n_i = n \}$.
For each $i \leq k$,
 $\phi_i : Z(n - n_i) \longrightarrow Z(n)$
 $\mathbf{a} \longmapsto \mathbf{a} + \mathbf{e}_i$.

In particular,

$$\mathsf{Z}(n) = \bigcup_{i \leq k} \phi_i(\mathsf{Z}(n-n_i))$$

Definition/Proposition (Cover morphisms)

Fix $n \in S$ and $i \leq k$. The *i*-th cover morphism for n is the map

$$\psi_i: \mathsf{bul}(n-n_i) \longrightarrow \mathsf{bul}(n)$$

given by

$$\mathbf{b} \longmapsto \begin{cases} \mathbf{b} + \mathbf{e}_i & \sum_{j=1}^k b_j n_j - n - n_i \notin S \\ \mathbf{b} & \sum_{j=1}^k b_j n_j - n - n_i \in S \end{cases}$$

Moreover, bul(n) = $\bigcup_{i \le k} \psi_i(\text{bul}(n - n_i)).**$

Toward a dynamic algorithm...the base case

Definition (ω -primality in numerical monoids)

Fix a numerical monoid S and $n \in S$.

Fix a numerical monoid S and $n \in S$. $\omega_S(n)$ is the minimal m such that whenever $(\sum_{i=1}^r x_i) - n \in S$ for r > m, there exists $T \subset \{1, \ldots, r\}$ with $|T| \le m$ and $(\sum_{i \in T} x_i) - n \in S$.

Fix a numerical monoid S and $n \in S$. $\omega_S(n)$ is the minimal m such that whenever $(\sum_{i=1}^r x_i) - n \in S$ for r > m, there exists $T \subset \{1, \ldots, r\}$ with $|T| \le m$ and $(\sum_{i \in T} x_i) - n \in S$.

Fix a numerical monoid S and $n \in \mathbb{Z} = q(S)$. $\omega_S(n)$ is the minimal m such that whenever $(\sum_{i=1}^r x_i) - n \in S$ for r > m, there exists $T \subset \{1, \ldots, r\}$ with $|T| \le m$ and $(\sum_{i \in T} x_i) - n \in S$.

Toward a dynamic algorithm... the base case

Definition (ω -primality in numerical monoids)

Fix a numerical monoid S and $n \in \mathbb{Z} = q(S)$. $\omega_S(n)$ is the minimal m such that whenever $(\sum_{i=1}^r x_i) - n \in S$ for r > m, there exists $T \subset \{1, \ldots, r\}$ with $|T| \le m$ and $(\sum_{i \in T} x_i) - n \in S$.

Remark

All properties of ω extend from *S* to \mathbb{Z} .

Fix a numerical monoid S and $n \in \mathbb{Z} = q(S)$. $\omega_S(n)$ is the minimal m such that whenever $(\sum_{i=1}^r x_i) - n \in S$ for r > m, there exists $T \subset \{1, \ldots, r\}$ with $|T| \le m$ and $(\sum_{i \in T} x_i) - n \in S$.

Remark

All properties of ω extend from S to \mathbb{Z} .

Proposition

For $n \in \mathbb{Z}$, the following are equivalent: (i) $\omega(n) = 0$, (ii) $bul(n) = \{\mathbf{0}\}$, (iii) $-n \in S$.

Example

 $S = \langle 6, 9, 20 \rangle = \{0, 6, 9, 12, 15, 18, 20, 21, \ldots \}.$

Example

 $S = \langle 6, 9, 20 \rangle = \{0, 6, 9, 12, 15, 18, 20, 21, \ldots \}.$ $\underline{n \in \mathbb{Z} \quad \omega(n) \quad \operatorname{bul}(n)} \quad n \in \mathbb{Z} \quad \omega(n) \quad \operatorname{bul}(n)$

Example

 $S = \langle 6, 9, 20 \rangle = \{0, 6, 9, 12, 15, 18, 20, 21, \ldots\}.$ $\underbrace{n \in \mathbb{Z} \quad \omega(n) \quad \mathsf{bul}(n)}_{\leq -44 \quad 0 \quad \{\mathbf{0}\}} \underbrace{n \in \mathbb{Z} \quad \omega(n) \quad \mathsf{bul}(n)}_{n \in \mathbb{Z} \quad \omega(n) \quad \mathsf{bul}(n)}$

Example

 $S = \langle 6, 9, 20 \rangle = \{0, 6, 9, 12, 15, 18, 20, 21, \ldots \}.$ $\frac{n \in \mathbb{Z} \quad \omega(n) \quad \text{bul}(n)}{\leq -44 \quad 0 \quad \{0\}} \qquad \underline{n \in \mathbb{Z} \quad \omega(n) \quad \text{bul}(n)}$ $-43 \quad 1 \quad \{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$

$$S = \langle 6, 9, 20 \rangle = \{0, 6, 9, 12, 15, 18, 20, 21, \ldots \}.$$

$$\underbrace{\begin{array}{cccc}
 n \in \mathbb{Z} & \omega(n) & \text{bul}(n) \\
 \leq -44 & 0 & \{0\} \\
 -43 & 1 & \{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\} \\
 -42 & 0 & \{\mathbf{0}\}
\end{array}} \underbrace{\begin{array}{ccccc}
 n \in \mathbb{Z} & \omega(n) & \text{bul}(n) \\
 n \in \mathbb{Z} & \omega(n) & \text{bul}(n) \\$$

Example

 $S = \langle 6, 9, 20 \rangle = \{0, 6, 9, 12, 15, 18, 20, 21, \ldots \}.$ $n \in \mathbb{Z}$ $\omega(n)$ bul(n) $n \in \mathbb{Z}$ $\omega(n)$ bul(n) $\leq -44 \quad 0 \quad \{\mathbf{0}\}$ -43 1 { e_1, e_2, e_3 } -42 0 {**0**} ÷ 0 -38{**0**} 2 $\{2\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$ -370 {**0**} -36-350 **{0**}

Christopher O'Neill (Texas A&M University)Computing the delta set and ω -primality in n

Example

 $S = \langle 6, 9, 20 \rangle = \{0, 6, 9, 12, 15, 18, 20, 21, \ldots \}.$ $n \in \mathbb{Z}$ $\omega(n)$ bul(n) $n \in \mathbb{Z}$ $\omega(n)$ bul(n) $\leq -44 \quad 0 \quad \{\mathbf{0}\}$ -43 1 { e_1, e_2, e_3 } -42 0 {**0**} ÷ ÷ -380 {**0**} 2 $\{2\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$ -37-360 {**0**} 0 -35{**0**} -342 $\{\mathbf{e}_1, 2\mathbf{e}_2, \mathbf{e}_3\}$

Example

 $S = \langle 6, 9, 20 \rangle = \{0, 6, 9, 12, 15, 18, 20, 21, \ldots \}.$ $n \in \mathbb{Z}$ $\omega(n)$ bul(n) $n \in \mathbb{Z}$ $\omega(n)$ bul(n) $\leq -44 \quad 0 \quad \{\mathbf{0}\}$ -43 1 { e_1, e_2, e_3 } -42 0 {**0**} ÷ -380 {**0**} 2 {2 e_1, e_2, e_3 } -37-360 **{0**} -350 **{0**} 2 $\{\mathbf{e}_1, 2\mathbf{e}_2, \mathbf{e}_3\}$ -34-330 **{0**} -32**{0**} 0

Example

 $S = \langle 6, 9, 20 \rangle = \{0, 6, 9, 12, 15, 18, 20, 21, \ldots \}.$ $n \in \mathbb{Z}$ $\omega(n)$ bul(n) $n \in \mathbb{Z}$ $\omega(n)$ bul(n) $\leq -44 \quad 0 \quad \{\mathbf{0}\}$ -43 1 { e_1, e_2, e_3 } -42 0 {**0**} ÷ -380 {**0**} 2 $\{2\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$ -37-360 **{0**} -350 **{0**} 2 -34 $\{\mathbf{e}_1, 2\mathbf{e}_2, \mathbf{e}_3\}$ -330 **{0**} -320 **{0**} 3 -31 $\{3e_1, e_2, e_3\}$

Example

 $S = \langle 6, 9, 20 \rangle = \{0, 6, 9, 12, 15, 18, 20, 21, \ldots \}.$ $n \in \mathbb{Z}$ $\omega(n)$ bul(n) $n \in \mathbb{Z}$ $\omega(n)$ bul(n) $\leq -44 \quad 0 \quad \{\mathbf{0}\}$ -43 1 { e_1, e_2, e_3 } -42 0 {**0**} ÷ -380 **{0**} 2 {2 e_1, e_2, e_3 } -37-360 **{0**} -350 **{0**} 2 -34 $\{\mathbf{e}_1, 2\mathbf{e}_2, \mathbf{e}_3\}$ -330 **{0**} -320 **{0**} -31 3 $\{3e_1, e_2, e_3\}$

$$S = \langle 6, 9, 20 \rangle = \{0, 6, 9, 12, 15, 18, 20, 21, \ldots \}.$$

$$\underbrace{n \in \mathbb{Z} \quad \omega(n) \quad bul(n)}_{\leq -44 \quad 0} \quad \{0\} \qquad \underbrace{n \in \mathbb{Z} \quad \omega(n) \quad bul(n)}_{1 \quad 5 \quad \{5\mathbf{e}_{1}, (2, 1, 0), \ldots\}}$$

$$-43 \quad 1 \quad \{\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\}$$

$$-42 \quad 0 \quad \{0\}$$

$$\vdots \quad \vdots \quad \vdots$$

$$-38 \quad 0 \quad \{0\}$$

$$-37 \quad 2 \quad \{2\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\}$$

$$-36 \quad 0 \quad \{0\}$$

$$-35 \quad 0 \quad \{0\}$$

$$-34 \quad 2 \quad \{\mathbf{e}_{1}, 2\mathbf{e}_{2}, \mathbf{e}_{3}\}$$

$$-33 \quad 0 \quad \{0\}$$

$$-32 \quad 0 \quad \{0\}$$

$$-31 \quad 3 \quad \{3\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\}$$

$$\vdots \quad \vdots \quad \vdots$$

$S = \langle 6, 9, 20 \rangle = \{0, 6, 9, 12, 15, 18, 20, 21, \ldots \}.$								
$n \in \mathbb{Z}$	$\omega(n)$	bul(n)	$n \in \mathbb{Z}$	$\omega(n)$	bul(<i>n</i>)			
≤ -44	0	{0 }	1	5	$\{5\mathbf{e}_1, (2, 1, 0), \ldots\}$			
-43	1	$\{\mathbf{e}_1,\mathbf{e}_2,\mathbf{e}_3\}$	2	7	$\{7e_1, 6e_2, \ldots\}$			
-42	0	{0 }			(_/ _/)			
÷	÷	:						
-38	0	{0 }						
-37	2	$\{2\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$						
-36	0	{0 }						
-35	0	{0 }						
-34	2	$\{e_1, 2e_2, e_3\}$						
-33	0	{0 }						
-32	0	{0 }						
-31	3	$\{3\boldsymbol{e}_1,\boldsymbol{e}_2,\boldsymbol{e}_3\}$						
÷	÷	÷						

$S = \langle 6, 9, 20 \rangle = \{0, 6, 9, 12, 15, 18, 20, 21, \ldots \}.$								
$n \in \mathbb{Z}$	$\omega(n)$	bul(n)	$n \in \mathbb{Z}$	$\omega(n)$	bul(n)			
≤ -44	0	{0 }	1	5	$\{5\mathbf{e}_1, (2, 1, 0), \ldots\}$			
-43	1	$\{\mathbf{e}_1,\mathbf{e}_2,\mathbf{e}_3\}$	2	7	$\{7\mathbf{e}_1, 6\mathbf{e}_2, \ldots\}$			
-42	0	{0 }	3	3	$\{3e_3, 2e_2, \ldots\}$			
:	÷	:	4	4	$\{4\mathbf{e}_1, 4\mathbf{e}_2, \ldots\}$			
-38	0	{0 }	5	9	$\{9\mathbf{e}_1, (6, 1, 0), \ldots\}$			
-37	2	$\{2\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$	6	3	$\{3\mathbf{e}_3, 2\mathbf{e}_2, \ldots\}$			
-36	0	{0 }	7	6	$\{6\mathbf{e}_1, (3, 1, 0), \ldots\}$			
-35	0	{ 0 }	8	8	$\{8\mathbf{e}_1, (5, 2, 0), \dots, \}$			
-34	2	$\{\mathbf{e}_1, 2\mathbf{e}_2, \mathbf{e}_3\}$	9	3	$\{3\boldsymbol{e}_1,3\boldsymbol{e}_3,\ldots\}$			
-33	0	{0 }	:	÷	÷			
-32	0	{0 }						
-31	3	$\{3e_1, e_2, e_3\}$						
÷	÷	÷						

$S = \langle 6, 9, 20 \rangle = \{0, 6, 9, 12, 15, 18, 20, 21, \ldots \}.$								
$n \in \mathbb{Z}$	$\omega(n)$	bul(n)	$n\in\mathbb{Z}$	$\omega(n)$	bul(n)			
≤ -44	0	{0 }	1	5	$\{5\mathbf{e}_1, (2, 1, 0), \ldots\}$			
-43	1	$\{\mathbf{e}_1,\mathbf{e}_2,\mathbf{e}_3\}$	2	7	$\{7\mathbf{e}_1, 6\mathbf{e}_2, \ldots\}$			
-42	0	{0 }	3	3	$\{3e_3, 2e_2, \ldots\}$			
:	÷	:	4	4	$\{4e_1, 4e_2, \ldots\}$			
-38	0	{0 }	5	9	$\{9\mathbf{e}_1, (6, 1, 0), \ldots\}$			
-37	2	$\{2\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$	6	3	$\{3\mathbf{e}_3, 2\mathbf{e}_2, \ldots\}$			
-36	0	{0 }	7	6	$\{6\mathbf{e}_1, (3, 1, 0), \ldots\}$			
-35	0	{ 0 }	8	8	$\{8\mathbf{e}_1, (5, 2, 0), \dots, \}$			
-34	2	$\{\mathbf{e}_1, 2\mathbf{e}_2, \mathbf{e}_3\}$	9	3	$\{3\boldsymbol{e}_1,3\boldsymbol{e}_3,\ldots\}$			
-33	0	{0 }	÷	÷	· ·			
-32	0	{0}	148	28	$\{28\mathbf{e}_1,\ldots\}$			
-31	3	$\{3\boldsymbol{e}_1,\boldsymbol{e}_2,\boldsymbol{e}_3\}$			<u> </u>			
÷	÷	÷						

$S = \langle 6, 9, 20 \rangle = \{0, 6, 9, 12, 15, 18, 20, 21, \ldots \}.$							
$n \in \mathbb{Z}$	$\omega(n)$	bul(n)	$n \in \mathbb{Z}$	$\omega(n)$	bul(n)		
≤ -44	0	{0 }	1	5	$\{5\mathbf{e}_1, (2, 1, 0), \ldots\}$		
-43	1	$\{\mathbf{e}_1,\mathbf{e}_2,\mathbf{e}_3\}$	2	7	$\{7\mathbf{e}_1, 6\mathbf{e}_2, \ldots\}$		
-42	0	{0 }	3	3	$\{3e_3, 2e_2, \ldots\}$		
÷	÷	÷	4	4	$\{4\boldsymbol{e}_1,4\boldsymbol{e}_2,\ldots\}$		
-38	0	{0 }	5	9	$\{9\mathbf{e}_1, (6, 1, 0), \ldots\}$		
-37	2	$\{2\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$	6	3	$\{3\mathbf{e}_3, 2\mathbf{e}_2, \ldots\}$		
-36	0	{0 }	7	6	$\{6\mathbf{e}_1, (3, 1, 0), \ldots\}$		
-35	0	{0}	8	8	$\{8\mathbf{e}_1, (5, 2, 0), \dots, \}$		
-34	2	$\{e_1, 2e_2, e_3\}$	9	3	$\{3\boldsymbol{e}_1,3\boldsymbol{e}_3,\ldots\}$		
-33	0	{0 }	÷	÷	:		
-32	0	{0 }	148	28	$\{28\mathbf{e}_1,\ldots\}$		
-31	3	$\{3\boldsymbol{e}_1,\boldsymbol{e}_2,\boldsymbol{e}_3\}$	149	33	$\{33e_1,\ldots\}$		
:	÷	÷					
A dynamic algorithm!

Example

$S = \langle 6, 9, 20 \rangle = \{0, 6, 9, 12, 15, 18, 20, 21, \ldots \}.$									
$n \in \mathbb{Z}$	$\omega(n)$	bul(n)	$n \in \mathbb{Z}$	$\omega(n)$	bul(n)				
≤ -44	0	{0 }	1	5	$\{5\mathbf{e}_1, (2, 1, 0), \ldots\}$				
-43	1	$\{\boldsymbol{e}_1, \boldsymbol{e}_2, \boldsymbol{e}_3\}$	2	7	$\{7\mathbf{e}_1, 6\mathbf{e}_2, \ldots\}$				
-42	0	{0 }	3	3	$\{3e_3, 2e_2, \ldots\}$				
:	÷	÷	4	4	$\{4\mathbf{e}_1, 4\mathbf{e}_2, \ldots\}$				
-38	0	{0 }	5	9	$\{9\mathbf{e}_1, (6, 1, 0), \ldots\}$				
-37	2	$\{2\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$	6	3	$\{3\mathbf{e}_3, 2\mathbf{e}_2, \ldots\}$				
-36	0	{0 }	7	6	$\{6\mathbf{e}_1, (3, 1, 0), \ldots\}$				
-35	0	{ 0 }	8	8	$\{8\mathbf{e}_1, (5, 2, 0), \dots, \}$				
-34	2	$\{\mathbf{e}_1, 2\mathbf{e}_2, \mathbf{e}_3\}$	9	3	$\{3\mathbf{e}_1, 3\mathbf{e}_3, \ldots\}$				
-33	0	{0 }	÷	÷	÷				
-32	0	{0}	148	28	$\{28e_1,\ldots\}$				
-31	3	$\{3\boldsymbol{e}_1,\boldsymbol{e}_2,\boldsymbol{e}_3\}$	149	33	$\{33e_1,\ldots\}$				
÷	÷	÷	150	25	$\{25\mathbf{e}_1,\ldots\}$				

A dynamic algorithm!

Example

 $S = \langle 6, 9, 20 \rangle = \{0, 6, 9, 12, 15, 18, 20, 21, \ldots \}.$ $\underline{n \in \mathbb{Z} \quad \omega(n) \quad \mathsf{bul}(n)} \qquad n \in \mathbb{Z} \quad \omega(n) \quad \mathsf{bul}(n)$

6	3	$\{3\mathbf{e}_3, 2\mathbf{e}_2, \ldots\}$
9 :	3 :	$\begin{array}{l} \{3\textbf{e}_1,3\textbf{e}_3,\ldots\}\\\vdots\end{array}$
148	28	$\{28e_1, \ldots\}$
149	33	$\{33e_1,\ldots\}$
150	25	$\{25\mathbf{e}_1,\ldots\}$

Christopher O'Neill (Texas A&M University)Computing the delta set and ω -primality in n

Runtime comparison

Runtime comparison

S	$n \in S$	$\omega_{S}(n)$	Existing	Dynamic
$\langle 6,9,20 \rangle$	1000	170	1m 1.3s	бms
$\langle 11, 13, 15 angle$	1000	97	0m 10.7s	5ms
$\langle 11, 13, 15 angle$	3000	279	14m 34.7s	15ms
$\langle 11, 13, 15 angle$	10000	915		42ms
$\langle 15, 27, 32, 35 angle$	1000	69	3m 54.7s	9ms
$\langle 100, 121, 142, 163, 284 \rangle$	25715	308		0m 27s
$\langle 1001, 1211, 1421, 1631, 2841 \rangle$	357362	405		57m 27s

GAP Numerical Semigroups Package, available at

http://www.gap-system.org/Packages/numericalsgps.html.

References

C. O'Neill, R. Pelayo (2014)

How do you measure primality?

American Mathematical Monthly, 122 (2014), no. 2, 121-137.

J. García-García, M. Moreno-Frías, A. Vigneron-Tenorio (2014) Computation of delta sets of numerical monoids. preprint.

T. Barron, C. O'Neill, R. Pelayo (2015)

On the computation of delta sets and $\omega\mbox{-}{\rm primality}$ in numerical monoids. $\mbox{preprint}.$

M. Delgado, P. García-Sánchez, J. Morais

GAP Numerical Semigroups Package

http://www.gap-system.org/Packages/numericalsgps.html.

References

C. O'Neill, R. Pelayo (2014)

How do you measure primality?

American Mathematical Monthly, 122 (2014), no. 2, 121–137.

J. García-García, M. Moreno-Frías, A. Vigneron-Tenorio (2014) Computation of delta sets of numerical monoids. preprint.

T. Barron, C. O'Neill, R. Pelayo (2015)

On the computation of delta sets and $\omega\mbox{-}{\rm primality}$ in numerical monoids. $\mbox{preprint}.$

M. Delgado, P. García-Sánchez, J. Morais

GAP Numerical Semigroups Package

http://www.gap-system.org/Packages/numericalsgps.html.

Thanks!