Computing the catenary degree, delta set, and omega-primality in numerical monoids

Christopher O'Neill

Texas A&M University

coneill@math.tamu.edu

July 13, 2015

Computing the catenary degree, delta set, and omega-primality in numerical monoids

Christopher O'Neill

Texas A&M University

coneill@math.tamu.edu

First half: Catenary degree Joint with Vadim Ponomarenko, Reuben Tate*, and Gautam Webb*

July 13, 2015

Christopher O'Neill

Computing catenary degree, delta set, and on

July 13, 2015 1 / 28

Computing the catenary degree, delta set, and omega-primality in numerical monoids

Christopher O'Neill

Texas A&M University

coneill@math.tamu.edu

First half: Catenary degree Joint with Vadim Ponomarenko, Reuben Tate*, and Gautam Webb*

> Second half: delta sets and omega-primality Joint with Thomas Barron* and Roberto Pelayo

July 13, 2015

A numerical monoid S is an additive submonoid of \mathbb{N} with $|\mathbb{N} \setminus S| < \infty$.

A numerical monoid S is an additive submonoid of \mathbb{N} with $|\mathbb{N} \setminus S| < \infty$.

Example

 $McN = \langle 6, 9, 20 \rangle = \{0, 6, 9, 12, 15, 18, 20, 21, \ldots \}.$

A numerical monoid S is an additive submonoid of \mathbb{N} with $|\mathbb{N} \setminus S| < \infty$.

Example

 $\mathit{McN} = \langle 6, 9, 20 \rangle = \{0, 6, 9, 12, 15, 18, 20, 21, \ldots \}.$ "McNugget Monoid"

A numerical monoid S is an additive submonoid of \mathbb{N} with $|\mathbb{N} \setminus S| < \infty$.

Example

 $McN = \langle 6, 9, 20 \rangle = \{0, 6, 9, 12, 15, 18, 20, 21, \ldots \}.$ "McNugget Monoid" 60 = 7(6) + 2(9)

A numerical monoid S is an additive submonoid of \mathbb{N} with $|\mathbb{N} \setminus S| < \infty$.

Example

 $McN = \langle 6, 9, 20 \rangle = \{0, 6, 9, 12, 15, 18, 20, 21, \ldots\}.$ "McNugget Monoid" 60 = 7(6) + 2(9)= 3(20)

A numerical monoid S is an additive submonoid of \mathbb{N} with $|\mathbb{N} \setminus S| < \infty$.

Example

 $\begin{aligned} McN &= \langle 6,9,20 \rangle = \{0,6,9,12,15,18,20,21,\ldots\}. \text{ "McNugget Monoid"} \\ 60 &= 7(6) + 2(9) & \rightsquigarrow & (7,2,0) \\ &= 3(20) & \rightsquigarrow & (0,0,3) \end{aligned}$

Factorization invariants: towards the catenary degree

Fix a numerical monoid $S = \langle n_1, \ldots, n_k \rangle$. For $n \in S$,

$$\mathsf{Z}_{\mathcal{S}}(n) = \left\{ \mathbf{a} = (a_1, \dots, a_k) \in \mathbb{N}^k : n = a_1 n_1 + \dots + a_k n_k \right\}$$

denotes the set of factorizations of n.

Fix a numerical monoid $S = \langle n_1, \ldots, n_k \rangle$. For $n \in S$,

$$\mathsf{Z}_{\mathcal{S}}(n) = \left\{ \mathbf{a} = (a_1, \ldots, a_k) \in \mathbb{N}^k : n = a_1 n_1 + \cdots + a_k n_k \right\}$$

$$|\mathbf{a}| = a_1 + \cdots + a_k$$

Fix a numerical monoid $S = \langle n_1, \ldots, n_k \rangle$. For $n \in S$,

$$\mathsf{Z}_{\mathcal{S}}(n) = \left\{ \mathbf{a} = (a_1, \ldots, a_k) \in \mathbb{N}^k : n = a_1 n_1 + \cdots + a_k n_k \right\}$$

$$|\mathbf{a}| = a_1 + \cdots + a_k$$
 (length of \mathbf{a})

Fix a numerical monoid $S = \langle n_1, \ldots, n_k \rangle$. For $n \in S$,

$$\mathsf{Z}_{\mathcal{S}}(n) = \left\{ \mathbf{a} = (a_1, \dots, a_k) \in \mathbb{N}^k : n = a_1 n_1 + \dots + a_k n_k \right\}$$

$$|\mathbf{a}| = a_1 + \dots + a_k \quad (length \text{ of } \mathbf{a})$$
$$gcd(\mathbf{a}, \mathbf{a}') = (min(a_1, a_1'), \dots, min(a_k, a_k'))$$

Fix a numerical monoid $S = \langle n_1, \ldots, n_k \rangle$. For $n \in S$,

$$\mathsf{Z}_{\mathsf{S}}(n) = \left\{ \mathbf{a} = (a_1, \dots, a_k) \in \mathbb{N}^k : n = a_1 n_1 + \dots + a_k n_k \right\}$$

$$\begin{aligned} |\mathbf{a}| &= a_1 + \dots + a_k \quad (length \text{ of } \mathbf{a}) \\ \gcd(\mathbf{a}, \mathbf{a}') &= (\min(a_1, a_1'), \dots, \min(a_k, a_k')) \\ d(\mathbf{a}, \mathbf{a}') &= \max\{|\mathbf{a} - \gcd(\mathbf{a}, \mathbf{a}')|, |\mathbf{a}' - \gcd(\mathbf{a}, \mathbf{a}')|\} \end{aligned}$$

$$S=\langle 4,6,7
angle \subset \mathbb{N}$$
 ,

$$S = \langle 4, 6, 7 \rangle \subset \mathbb{N}$$
, $\mathbf{a} = (3, 1, 1), \mathbf{a}' = (1, 0, 3) \in \mathsf{Z}_{\mathcal{S}}(25)$.

$$S = \langle 4, 6, 7 \rangle \subset \mathbb{N}$$
, $\mathbf{a} = (3, 1, 1), \mathbf{a}' = (1, 0, 3) \in \mathsf{Z}_{S}(25)$.

$$S = \langle 4, 6, 7 \rangle \subset \mathbb{N}, \ \mathbf{a} = (3, 1, 1), \mathbf{a}' = (1, 0, 3) \in \mathsf{Z}_{S}(25).$$

• $\mathbf{b} = \gcd(\mathbf{a}, \mathbf{a}')$

$$S = \langle 4, 6, 7 \rangle \subset \mathbb{N}, \mathbf{a} = (3, 1, 1), \mathbf{a}' = (1, 0, 3) \in \mathsf{Z}_{S}(25).$$

•
$$\mathbf{b} = \gcd(\mathbf{a}, \mathbf{a}')$$

0

$$S = \langle 4, 6, 7 \rangle \subset \mathbb{N}, \mathbf{a} = (3, 1, 1), \mathbf{a}' = (1, 0, 3) \in \mathsf{Z}_{S}(25).$$

•
$$\mathbf{b} = \gcd(\mathbf{a}, \mathbf{a}') = (1, 0, 1).$$

$$S = \langle 4, 6, 7 \rangle \subset \mathbb{N}$$
, $\mathbf{a} = (3, 1, 1), \mathbf{a}' = (1, 0, 3) \in \mathsf{Z}_{\mathcal{S}}(25)$.

•
$$\mathbf{b} = \gcd(\mathbf{a}, \mathbf{a}') = (1, 0, 1).$$

• d(a,a')

$$S = \langle 4, 6, 7
angle \subset \mathbb{N}$$
, $\mathbf{a} = (3, 1, 1), \mathbf{a}' = (1, 0, 3) \in \mathsf{Z}_{\mathcal{S}}(25)$.

•
$$\mathbf{b} = \gcd(\mathbf{a}, \mathbf{a}') = (1, 0, 1).$$

•
$$d(\mathbf{a}, \mathbf{a}') = \max\{|\mathbf{a} - \mathbf{b}|, |\mathbf{a}' - \mathbf{b}|\}$$

$$S = \langle 4, 6, 7 \rangle \subset \mathbb{N}$$
, $\mathbf{a} = (3, 1, 1), \mathbf{a}' = (1, 0, 3) \in \mathsf{Z}_{S}(25)$.

b =
$$gcd(a, a') = (1, 0, 1)$$
.

•
$$d(\mathbf{a}, \mathbf{a}') = \max\{|\mathbf{a} - \mathbf{b}|, |\mathbf{a}' - \mathbf{b}|\}$$

$$S = \langle 4, 6, 7
angle \subset \mathbb{N}$$
, $\mathbf{a} = (3, 1, 1), \mathbf{a}' = (1, 0, 3) \in \mathsf{Z}_{\mathcal{S}}(25)$.

•
$$\mathbf{b} = \gcd(\mathbf{a}, \mathbf{a}') = (1, 0, 1).$$

•
$$d(\mathbf{a}, \mathbf{a}') = \max\{|\mathbf{a} - \mathbf{b}|, |\mathbf{a}' - \mathbf{b}|\} = 3.$$

Fix a numerical monoid $S = \langle n_1, \ldots, n_k \rangle$. For $n \in S$, define the *catenary* degree c(n) as follows:

Construct a complete graph G with vertex set Z_S(n) where each edge (a, a') has label d(a, a') (the catenary graph).

- Construct a complete graph G with vertex set Z_S(n) where each edge (a, a') has label d(a, a') (the catenary graph).
- 2 Locate the largest edge weight e in G.

- Construct a complete graph G with vertex set Z_S(n) where each edge (a, a') has label d(a, a') (the catenary graph).
- 2 Locate the largest edge weight e in G.
- **③** Remove all edges from G with weight e.

- Construct a complete graph G with vertex set Z_S(n) where each edge (a, a') has label d(a, a') (the catenary graph).
- 2 Locate the largest edge weight e in G.
- **③** Remove all edges from G with weight e.
- **4** If G is disconnected, return e. Otherwise, return to step 2.

Fix a numerical monoid $S = \langle n_1, \ldots, n_k \rangle$. For $n \in S$, define the *catenary degree* c(n) as follows:

- Construct a complete graph G with vertex set Z_S(n) where each edge (a, a') has label d(a, a') (the catenary graph).
- 2 Locate the largest edge weight e in G.
- **③** Remove all edges from G with weight e.
- If G is disconnected, return e. Otherwise, return to step 2.

If $|Z_{S}(n)| = 1$, define c(n) = 0.

$$S = \langle 11, 36, 39 \rangle, n = 450$$

$$S = \langle 11, 36, 39 \rangle, n = 450$$

$$S = \langle 11, 36, 39 \rangle, n = 450$$

$$S = \langle 11, 36, 39 \rangle, n = 450$$

$$S = \langle 11, 36, 39 \rangle, n = 450$$

$$S = \langle 11, 36, 39 \rangle, n = 450$$

$$S = \langle 11, 36, 39 \rangle, n = 450$$

Christopher O'Neill

$$S = \langle 11, 36, 39 \rangle, n = 450$$

$$S = \langle 11, 36, 39 \rangle, n = 450$$

$$S = \langle 11, 36, 39 \rangle, n = 450$$

$$S = \langle 11, 36, 39 \rangle, n = 450$$

$$S = \langle 11, 36, 39 \rangle, n = 450$$

$$S = \langle 11, 36, 39 \rangle, n = 450$$

$$S = \langle 11, 36, 39 \rangle, n = 450$$

$$S = \langle 11, 36, 39 \rangle, n = 450$$

$$S = \langle 11, 36, 39 \rangle, n = 450$$

 $S = \langle 11, 36, 39 \rangle, n = 450, c(n) = 16$

 $S = \langle 11, 36, 39 \rangle, n = 450, c(n) = 16$

For an element $n \in S = \langle n_1, \ldots, n_k \rangle$, let ∇_n denote the subgraph of the catenary graph in which only edges $(\mathbf{a}, \mathbf{a}')$ with $gcd(\mathbf{a}, \mathbf{a}') \neq 0$ are drawn.

For an element $n \in S = \langle n_1, \ldots, n_k \rangle$, let ∇_n denote the subgraph of the catenary graph in which only edges $(\mathbf{a}, \mathbf{a}')$ with $gcd(\mathbf{a}, \mathbf{a}') \neq 0$ are drawn. We say n is a *Betti element* of S if ∇_n is disconnected.

For an element $n \in S = \langle n_1, \ldots, n_k \rangle$, let ∇_n denote the subgraph of the catenary graph in which only edges $(\mathbf{a}, \mathbf{a}')$ with $gcd(\mathbf{a}, \mathbf{a}') \neq 0$ are drawn. We say n is a *Betti element* of S if ∇_n is disconnected.

Example

 $S = \langle 10, 15, 17
angle$ has Betti elements 30 and 85.

For an element $n \in S = \langle n_1, \ldots, n_k \rangle$, let ∇_n denote the subgraph of the catenary graph in which only edges $(\mathbf{a}, \mathbf{a}')$ with $gcd(\mathbf{a}, \mathbf{a}') \neq 0$ are drawn. We say n is a *Betti element* of S if ∇_n is disconnected.

Theorem

$$\max\{c(n): n \in S\} = \max\{c(b): b \in Betti(S)\}.$$

Theorem

 $\max\{c(n): n \in S\} = \max\{c(b): b \in Betti(S)\}.$

Theorem

 $\max\{c(n): n \in S\} = \max\{c(b): b \in Betti(S)\}.$

Theorem

$$\max\{c(n): n \in S\} = \max\{c(b): b \in Betti(S)\}.$$

Theorem

$$\max\{c(n): n \in S\} = \max\{c(b): b \in Betti(S)\}.$$

Theorem

$$\max\{c(n): n \in S\} = \max\{c(b): b \in Betti(S)\}.$$

Theorem

$$\max\{c(n): n \in S\} = \max\{c(b): b \in Betti(S)\}.$$

Theorem

$$\max\{c(n): n \in S\} = \max\{c(b): b \in Betti(S)\}.$$

Theorem

$$\max\{c(n): n \in S\} = \max\{c(b): b \in Betti(S)\}.$$

Theorem

 $\max\{c(n): n \in S\} = \max\{c(b): b \in Betti(S)\}.$

Theorem

 $\max\{c(n): n \in S\} = \max\{c(b): b \in Betti(S)\}.$

Theorem

$$\max\{c(n): n \in S\} = \max\{c(b): b \in Betti(S)\}.$$

Theorem

$$\max\{c(n): n \in S\} = \max\{c(b): b \in Betti(S)\}.$$

Maximal catenary degree in S

Theorem

$$\max\{c(n): n \in S\} = \max\{c(b): b \in Betti(S)\}.$$

Idea for proof: Certain edges (determined by Betti elements) connect the catenary graph of each $n \in S$.

Conjecture

 $\min\{c(n) > 0 : n \in S\} = \min\{c(b) : b \in Betti(S)\}.$

Conjecture Theorem (O., Ponomarenko, Tate, Webb)

 $\min\{c(n) > 0 : n \in S\} = \min\{c(b) : b \in Betti(S)\}.$

Conjecture Theorem (O., Ponomarenko, Tate, Webb)

 $\min\{c(n) > 0 : n \in S\} = \min\{c(b) : b \in Betti(S)\}.$

Call an edge $(\mathbf{a}, \mathbf{a}')$ weak if $d(\mathbf{a}, \mathbf{a}') < \min\{c(b) : b \in Betti(S)\}$.

Conjecture Theorem (O., Ponomarenko, Tate, Webb)

 $\min\{c(n) > 0 : n \in S\} = \min\{c(b) : b \in Betti(S)\}.$

Call an edge $(\mathbf{a}, \mathbf{a}')$ weak if $d(\mathbf{a}, \mathbf{a}') < \min\{c(b) : b \in Betti(S)\}$.

Lemma

If $\mathbf{a}, \mathbf{a}' \in \mathsf{Z}_{\mathcal{S}}(n)$

a 🌒

Conjecture Theorem (O., Ponomarenko, Tate, Webb)

 $\min\{c(n) > 0 : n \in S\} = \min\{c(b) : b \in Betti(S)\}.$

Call an edge $(\mathbf{a}, \mathbf{a}')$ weak if $d(\mathbf{a}, \mathbf{a}') < \min\{c(b) : b \in Betti(S)\}$.

Lemma

If $\mathbf{a}, \mathbf{a}' \in \mathsf{Z}_{\mathcal{S}}(n)$ and $(\mathbf{a}, \mathbf{a}')$ is weak,

Conjecture Theorem (O., Ponomarenko, Tate, Webb)

 $\min\{c(n) > 0 : n \in S\} = \min\{c(b) : b \in Betti(S)\}.$

Call an edge $(\mathbf{a}, \mathbf{a}')$ weak if $d(\mathbf{a}, \mathbf{a}') < \min\{c(b) : b \in Betti(S)\}$.

Lemma

If $\mathbf{a}, \mathbf{a}' \in Z_S(n)$ and $(\mathbf{a}, \mathbf{a}')$ is weak, then there exists $\mathbf{a}'' \in Z_S(n)$

Conjecture Theorem (O., Ponomarenko, Tate, Webb)

 $\min\{c(n) > 0 : n \in S\} = \min\{c(b) : b \in Betti(S)\}.$

Call an edge $(\mathbf{a}, \mathbf{a}')$ weak if $d(\mathbf{a}, \mathbf{a}') < \min\{c(b) : b \in Betti(S)\}$.

Lemma

If $\mathbf{a}, \mathbf{a}' \in Z_S(n)$ and $(\mathbf{a}, \mathbf{a}')$ is weak, then there exists $\mathbf{a}'' \in Z_S(n)$ with $\max \{ |\mathbf{a}|, |\mathbf{a}'| \} < |\mathbf{a}''|.$

Conjecture Theorem (O., Ponomarenko, Tate, Webb)

 $\min\{c(n) > 0 : n \in S\} = \min\{c(b) : b \in Betti(S)\}.$

Call an edge $(\mathbf{a}, \mathbf{a}')$ weak if $d(\mathbf{a}, \mathbf{a}') < \min\{c(b) : b \in Betti(S)\}$.

Conjecture Theorem (O., Ponomarenko, Tate, Webb)

 $\min\{c(n) > 0 : n \in S\} = \min\{c(b) : b \in Betti(S)\}.$

Call an edge $(\mathbf{a}, \mathbf{a}')$ weak if $d(\mathbf{a}, \mathbf{a}') < \min\{c(b) : b \in Betti(S)\}$.

Proof of theorem:

Conjecture Theorem (O., Ponomarenko, Tate, Webb)

 $\min\{c(n) > 0 : n \in S\} = \min\{c(b) : b \in Betti(S)\}.$

Call an edge $(\mathbf{a}, \mathbf{a}')$ weak if $d(\mathbf{a}, \mathbf{a}') < \min\{c(b) : b \in Betti(S)\}$.

Proof of theorem:

• Fix $n \in S$

Conjecture Theorem (O., Ponomarenko, Tate, Webb)

 $\min\{c(n) > 0 : n \in S\} = \min\{c(b) : b \in Betti(S)\}.$

Call an edge $(\mathbf{a}, \mathbf{a}')$ weak if $d(\mathbf{a}, \mathbf{a}') < \min\{c(b) : b \in Betti(S)\}$.

Proof of theorem:

Factorizations of *n*:

• Fix $n \in S$

Conjecture Theorem (O., Ponomarenko, Tate, Webb)

 $\min\{c(n) > 0 : n \in S\} = \min\{c(b) : b \in Betti(S)\}.$

Call an edge $(\mathbf{a}, \mathbf{a}')$ weak if $d(\mathbf{a}, \mathbf{a}') < \min\{c(b) : b \in Betti(S)\}$.

Proof of theorem:

- Fix $n \in S$
- Draw weak edges

Conjecture Theorem (O., Ponomarenko, Tate, Webb)

 $\min\{c(n) > 0 : n \in S\} = \min\{c(b) : b \in Betti(S)\}.$

Call an edge $(\mathbf{a}, \mathbf{a}')$ weak if $d(\mathbf{a}, \mathbf{a}') < \min\{c(b) : b \in Betti(S)\}$.

Proof of theorem:

- Fix $n \in S$
- Draw weak edges
- $\mathbf{a} \in \mathsf{Z}_{\mathcal{S}}(n)$ with $|\mathbf{a}|$ maximal

Conjecture Theorem (O., Ponomarenko, Tate, Webb)

 $\min\{c(n) > 0 : n \in S\} = \min\{c(b) : b \in Betti(S)\}.$

Call an edge $(\mathbf{a}, \mathbf{a}')$ weak if $d(\mathbf{a}, \mathbf{a}') < \min\{c(b) : b \in Betti(S)\}$.

Proof of theorem:

- Fix $n \in S$
- Draw weak edges
- $\mathbf{a} \in \mathsf{Z}_{\mathcal{S}}(n)$ with $|\mathbf{a}|$ maximal
- $\mathbf{a}' \in \mathsf{Z}_{\mathcal{S}}(\mathit{n})$ with (\mathbf{a},\mathbf{a}') weak

Conjecture Theorem (O., Ponomarenko, Tate, Webb)

 $\min\{c(n) > 0 : n \in S\} = \min\{c(b) : b \in Betti(S)\}.$

Call an edge $(\mathbf{a}, \mathbf{a}')$ weak if $d(\mathbf{a}, \mathbf{a}') < \min\{c(b) : b \in Betti(S)\}$.

Proof of theorem:

- Fix $n \in S$
- Draw weak edges
- $\mathbf{a} \in \mathsf{Z}_{\mathcal{S}}(n)$ with $|\mathbf{a}|$ maximal
- $\mathbf{a}' \in \mathsf{Z}_{\mathcal{S}}(\mathit{n})$ with (\mathbf{a},\mathbf{a}') weak
- Lemma $\Rightarrow |\mathbf{a}''| > |\mathbf{a}|$

Conjecture Theorem (O., Ponomarenko, Tate, Webb)

 $\min\{c(n) > 0 : n \in S\} = \min\{c(b) : b \in Betti(S)\}.$

Call an edge $(\mathbf{a}, \mathbf{a}')$ weak if $d(\mathbf{a}, \mathbf{a}') < \min\{c(b) : b \in Betti(S)\}$.

Proof of theorem:

- Fix $n \in S$
- Draw weak edges
- $\mathbf{a} \in \mathsf{Z}_{\mathcal{S}}(n)$ with $|\mathbf{a}|$ maximal
- $\mathbf{a}' \in \mathsf{Z}_{\mathcal{S}}(n)$ with $(\mathbf{a}, \mathbf{a}')$ weak
- Lemma $\Rightarrow |\mathbf{a}''| > |\mathbf{a}|$
- maximality of $|\mathbf{a}| \Rightarrow$ \mathbf{a}'' has no red edges!

Problem

Find a (canonical) finite set on which every catenary degree is achieved.

Christopher O'Neill

Computing catenary degree, delta set, and on

July 13, 2015 12 / 28

Fix
$$n \in S = \langle n_1, \ldots, n_k \rangle$$
.

Fix
$$n \in S = \langle n_1, \dots, n_k \rangle$$
.
 $n = a_1 n_1 + \dots + a_k n_k$ $\mathbf{a} = (a_1, \dots, a_k) \in \mathbb{N}^k$

Fix
$$n \in S = \langle n_1, \dots, n_k \rangle$$
.
 $n = a_1 n_1 + \dots + a_k n_k$ $\mathbf{a} = (a_1, \dots, a_k) \in \mathbb{N}^k$
 $Z(n) = \{\mathbf{a} \in \mathbb{N}^k : n = a_1 n_1 + \dots + a_k n_k\}$

Fix
$$n \in S = \langle n_1, \dots, n_k \rangle$$
.
 $n = a_1 n_1 + \dots + a_k n_k$ $\mathbf{a} = (a_1, \dots, a_k) \in \mathbb{N}^k$
 $Z(n) = \{\mathbf{a} \in \mathbb{N}^k : n = a_1 n_1 + \dots + a_k n_k\}$
 $L(n) = \{|\mathbf{a}| = a_1 + \dots + a_k : \mathbf{a} \in Z(n)\}$

Fix
$$n \in S = \langle n_1, \dots, n_k \rangle$$
.
 $n = a_1 n_1 + \dots + a_k n_k$ $\mathbf{a} = (a_1, \dots, a_k) \in \mathbb{N}^k$
 $Z(n) = \{\mathbf{a} \in \mathbb{N}^k : n = a_1 n_1 + \dots + a_k n_k\}$
 $L(n) = \{|\mathbf{a}| = a_1 + \dots + a_k : \mathbf{a} \in Z(n)\}$

Definition (The delta set)

For
$$L(n) = \{\ell_1 < ... < \ell_r\}$$
, define $\Delta(n) = \{\ell_i - \ell_{i-1}\}$

Fix
$$n \in S = \langle n_1, \dots, n_k \rangle$$
.
 $n = a_1 n_1 + \dots + a_k n_k$ $\mathbf{a} = (a_1, \dots, a_k) \in \mathbb{N}^k$
 $Z(n) = \{\mathbf{a} \in \mathbb{N}^k : n = a_1 n_1 + \dots + a_k n_k\}$
 $L(n) = \{|\mathbf{a}| = a_1 + \dots + a_k : \mathbf{a} \in Z(n)\}$

Definition (The delta set)

For
$$L(n) = \{\ell_1 < ... < \ell_r\}$$
, define $\Delta(n) = \{\ell_i - \ell_{i-1}\}$

Goal

Compute
$$\Delta(S) = \bigcup_{n \in S} \Delta(n)$$
.

Theorem (Chapman–Hoyer–Kaplan, 2000)

$$S = \langle n_1, \dots, n_k \rangle$$
. For $n \ge 2kn_2n_k^2$, $\Delta(n) = \Delta(n + n_1n_k)$.

Theorem (García-García-Moreno-Frías-Vigneron-Tenorio, 2014)

$S = \langle n_1, \ldots, n_k \rangle$. For $n \ge N_S$, $\Delta(n) = \Delta(n + \operatorname{lcm}(n_1, n_k))$.

Theorem (García-García-Moreno-Frías-Vigneron-Tenorio, 2014)

$S = \langle n_1, \ldots, n_k \rangle$. For $n \ge N_S$, $\Delta(n) = \Delta(n + \operatorname{lcm}(n_1n_k))$.

Theorem (García-García-Moreno-Frías-Vigneron-Tenorio, 2014)

 $S = \langle n_1, \ldots, n_k \rangle$. For $n \ge N_S$, $\Delta(n) = \Delta(n + \operatorname{lcm}(n_1n_k))$.

For $n \in S$ with $0 \le n \le N_S + \operatorname{lcm}(n_1, n_k)$,

 $S = \langle n_1, \ldots, n_k \rangle$. For $n \ge N_S$, $\Delta(n) = \Delta(n + \operatorname{lcm}(n_1 n_k))$.

For $n \in S$ with $0 \le n \le N_S + \operatorname{lcm}(n_1, n_k)$, compute:

$$\mathsf{Z}(n) = \{\mathbf{a} \in \mathbb{N}^k : n = a_1 n_1 + \dots + a_k n_k\}$$

 $S = \langle n_1, \ldots, n_k \rangle$. For $n \ge N_S$, $\Delta(n) = \Delta(n + \operatorname{lcm}(n_1 n_k))$.

For $n \in S$ with $0 \le n \le N_S + \operatorname{lcm}(n_1, n_k)$, compute:

$$Z(n) = \{\mathbf{a} \in \mathbb{N}^k : n = a_1 n_1 + \dots + a_k n_k\}$$
$$Z(n) \rightsquigarrow L(n) = \{a_1 + \dots + a_k : \mathbf{a} \in Z(n)\}$$

 $S = \langle n_1, \ldots, n_k \rangle$. For $n \ge N_S$, $\Delta(n) = \Delta(n + \operatorname{lcm}(n_1n_k))$.

For $n \in S$ with $0 \le n \le N_S + \operatorname{lcm}(n_1, n_k)$, compute:

$$Z(n) = \{ \mathbf{a} \in \mathbb{N}^k : n = a_1 n_1 + \dots + a_k n_k \}$$

$$Z(n) \rightsquigarrow \mathsf{L}(n) = \{ a_1 + \dots + a_k : \mathbf{a} \in \mathsf{Z}(n) \}$$

$$\mathsf{L}(n) = \{ \ell_1 < \dots < \ell_r \} \rightsquigarrow \Delta(n) = \{ \ell_i - \ell_{i-1} \}$$

 $S = \langle n_1, \ldots, n_k \rangle$. For $n \ge N_S$, $\Delta(n) = \Delta(n + \operatorname{lcm}(n_1n_k))$.

For $n \in S$ with $0 \le n \le N_S + \operatorname{lcm}(n_1, n_k)$, compute:

$$Z(n) = \{\mathbf{a} \in \mathbb{N}^k : n = a_1 n_1 + \dots + a_k n_k\}$$

$$Z(n) \rightsquigarrow L(n) = \{a_1 + \dots + a_k : \mathbf{a} \in Z(n)\}$$

$$L(n) = \{\ell_1 < \dots < \ell_r\} \rightsquigarrow \Delta(n) = \{\ell_i - \ell_{i-1}\}$$

Compute $\Delta(S) = \bigcup_n \Delta(n)$.

 $S = \langle n_1, \ldots, n_k \rangle$. For $n \ge N_S$, $\Delta(n) = \Delta(n + \operatorname{lcm}(n_1n_k))$.

For $n \in S$ with $0 \le n \le N_S + \operatorname{lcm}(n_1, n_k)$, compute:

Compute $\Delta(S) = \bigcup_n \Delta(n)$.
Theorem (García-García–Moreno-Frías–Vigneron-Tenorio, 2014)

 $S = \langle n_1, \ldots, n_k \rangle$. For $n \ge N_S$, $\Delta(n) = \Delta(n + \operatorname{lcm}(n_1n_k))$.

For $n \in S$ with $0 \le n \le N_S + \operatorname{lcm}(n_1, n_k)$, compute:

Compute $\Delta(S) = \bigcup_n \Delta(n)$.

$$|\mathsf{Z}(n)| \approx n^{k-1}$$

Theorem (García-García–Moreno-Frías–Vigneron-Tenorio, 2014)

 $S = \langle n_1, \ldots, n_k \rangle$. For $n \ge N_S$, $\Delta(n) = \Delta(n + \operatorname{lcm}(n_1n_k))$.

For $n \in S$ with $N_S \leq n \leq N_S + n_1$, compute:

Compute $\Delta(S) = \bigcup_n \Delta(n)$.

$$|\mathsf{Z}(n)| \approx n^{k-1}$$

Fix $n \in S = \langle n_1, \ldots, n_k \rangle$.

Fix $n \in S = \langle n_1, \ldots, n_k \rangle$. For each $i \leq k$,

Fix
$$n \in S = \langle n_1, \dots, n_k \rangle$$
. For each $i \leq k$,
 $\phi_i : Z(n - n_i) \longrightarrow Z(n)$
 $\mathbf{a} \longmapsto \mathbf{a} + \mathbf{e}_i$

Fix
$$n \in S = \langle n_1, \dots, n_k \rangle$$
. For each $i \leq k$,
 $\phi_i : Z(n - n_i) \longrightarrow Z(n)$
 $\mathbf{a} \longmapsto \mathbf{a} + \mathbf{e}_i$

Fix
$$n \in S = \langle n_1, \dots, n_k \rangle$$
. For each $i \leq k$,
 $\phi_i : Z(n - n_i) \longrightarrow Z(n)$
 $\mathbf{a} \longmapsto \mathbf{a} + \mathbf{e}_i$

Fix
$$n \in S = \langle n_1, \dots, n_k \rangle$$
. For each $i \leq k$,
 $\phi_i : Z(n - n_i) \longrightarrow Z(n)$
 $\mathbf{a} \longmapsto \mathbf{a} + \mathbf{e}_i$

Fix
$$n \in S = \langle n_1, \dots, n_k \rangle$$
. For each $i \leq k$,
 $\phi_i : Z(n - n_i) \longrightarrow Z(n)$
 $\mathbf{a} \longmapsto \mathbf{a} + \mathbf{e}_i$

Fix
$$n \in S = \langle n_1, \dots, n_k \rangle$$
. For each $i \leq k$,
 $\phi_i : Z(n - n_i) \longrightarrow Z(n)$
 $\mathbf{a} \longmapsto \mathbf{a} + \mathbf{e}_i$

Fix
$$n \in S = \langle n_1, \dots, n_k \rangle$$
. For each $i \leq k$,
 $\phi_i : Z(n - n_i) \longrightarrow Z(n)$
 $\mathbf{a} \longmapsto \mathbf{a} + \mathbf{e}_i$
 $Z(n) = \bigcup_{i \leq k} \phi_i(Z(n - n_i))$

Fix
$$n \in S = \langle n_1, \dots, n_k \rangle$$
. For each $i \leq k$,
 $\phi_i : Z(n - n_i) \longrightarrow Z(n)$
 $\mathbf{a} \longmapsto \mathbf{a} + \mathbf{e}_i$
 $Z(n) = \bigcup_{i \leq k} \phi_i(Z(n - n_i))$

Fix
$$n \in S = \langle n_1, \dots, n_k \rangle$$
. For each $i \leq k$,
 $\phi_i : Z(n - n_i) \longrightarrow Z(n)$
 $\mathbf{a} \longmapsto \mathbf{a} + \mathbf{e}_i$
 $Z(n) = \bigcup_{i \leq k} \phi_i(Z(n - n_i))$
 $\frac{n \in S = \langle 6, 9, 20 \rangle \quad Z(n) \qquad L(n)}{0 \qquad \{0\}}$

Fix
$$n \in S = \langle n_1, \dots, n_k \rangle$$
. For each $i \leq k$,
 $\phi_i : Z(n - n_i) \longrightarrow Z(n)$
 $\mathbf{a} \longmapsto \mathbf{a} + \mathbf{e}_i$
 $Z(n) = \bigcup_{i \leq k} \phi_i(Z(n - n_i))$
 $\frac{n \in S = \langle 6, 9, 20 \rangle \quad Z(n) \qquad L(n)}{0 \qquad \{0\}}$
 $6 \quad \mathbf{0} \stackrel{6}{\leadsto} \mathbf{e}_1 \qquad \{\mathbf{e}_1\} \qquad \{1\}$

Fix
$$n \in S = \langle n_1, \dots, n_k \rangle$$
. For each $i \leq k$,
 $\phi_i : Z(n - n_i) \longrightarrow Z(n)$
 $\mathbf{a} \longmapsto \mathbf{a} + \mathbf{e}_i$
 $Z(n) = \bigcup_{i \leq k} \phi_i(Z(n - n_i))$
 $\frac{n \in S = \langle 6, 9, 20 \rangle \quad Z(n) \qquad L(n)}{0 \qquad \{0\}}$
 $6 \quad \mathbf{0} \stackrel{6}{\rightsquigarrow} \mathbf{e}_1 \qquad \{\mathbf{e}_1\} \qquad \{1\}$
 $9 \quad \mathbf{0} \stackrel{9}{\rightsquigarrow} \mathbf{e}_2 \qquad \{\mathbf{e}_2\} \qquad \{1\}$

Fix $n \in S =$	$\langle n_1,\ldots,n_k\rangle.$	For each $i \leq k$. 1	
$\phi_i: Z(i)$	$n-n_i) \longrightarrow$	Z(<i>n</i>)		
	$a \mapsto$	$\mathbf{a} + \mathbf{e}_i$		
Z(<i>n</i>) =	$= \bigcup_{i \leq k} \phi_i(Z(r))$	$(n - n_i))$		
$n \in$	$S=\langle 6,9,20 angle$	Z(<i>n</i>)	L(n)	
0		{0 }	{0}	
6	$0\overset{6}{\leadsto}\mathbf{e}_{1}$	$\{\mathbf{e}_1\}$	$\{1\}$	
9	$0 \stackrel{9}{\rightsquigarrow} \mathbf{e}_2$	$\{\mathbf{e}_2\}$	$\{1\}$	
12	$\mathbf{e}_1 \stackrel{6}{\leadsto} 2\mathbf{e}_1$	$\{2\mathbf{e}_1\}$	{2}	

Fix <i>n</i> ∈	= <i>S</i> =	$\langle n_1,\ldots,n_k angle$. F	For each $i \leq k$,	
ϕ_i	: Z(/	$(n-n_i) \longrightarrow \overline{2}$	<u>Z(n)</u>	
		$a \mapsto a$	$\mathbf{a} + \mathbf{e}_i$	
Z	:(n) =	$= \bigcup_{i \leq k} \phi_i(Z(n -$	– n _i))	
	$n \in$	$S=\langle 6,9,20 angle$	Z(<i>n</i>)	L(<i>n</i>)
	0		{0 }	{0}
	6	$0\overset{6}{\leadsto}\mathbf{e}_{1}$	$\{\mathbf{e}_1\}$	$\{1\}$
	9	$0 \stackrel{9}{\rightsquigarrow} \mathbf{e}_2$	$\{\mathbf{e}_2\}$	$\{1\}$
	12	$\mathbf{e}_1 \overset{6}{\leadsto} 2\mathbf{e}_1$	$\{2\mathbf{e}_1\}$	{2}
	15	$\mathbf{e}_2 \overset{6}{\leadsto} (1, 1, 0)$	$\{(1, 1, 0)\}$	{2}

Fix $n \in S =$	$\langle n_1,\ldots,n_k angle$. F	For each $i \leq k$,	
$\phi_i: Z(I)$	$(n-n_i) \longrightarrow \overline{2}$	Z(n)	
	$a \mapsto a$	$\mathbf{a} + \mathbf{e}_i$	
Z(<i>n</i>) =	$= \bigcup_{i \leq k} \phi_i(Z(n -$	– n _i))	
$n \in$	$S=\langle 6,9,20 angle$	Z(<i>n</i>)	L(<i>n</i>)
0	_	{0 }	{0}
6	$0 \stackrel{6}{\rightsquigarrow} \mathbf{e}_1$	$\{\mathbf{e}_1\}$	$\{1\}$
9	$0\overset{9}{\leadsto}\mathbf{e}_2$	$\{\mathbf{e}_2\}$	$\{1\}$
12	$\mathbf{e}_1 \overset{6}{\leadsto} 2\mathbf{e}_1$	$\{2\mathbf{e}_1\}$	{2}
15	$\mathbf{e}_2 \overset{6}{\rightsquigarrow} (1,1,0)$	$\{(1, 1, 0)\}$	{2}
	$\mathbf{e}_1 \overset{9}{\rightsquigarrow} (1,1,0)$		

Fix $n \in$	<i>S</i> =	$\langle n_1,\ldots,n_k \rangle$. F	or each $i \leq k$,	
ϕ_i :	Z(n	$(-n_i) \longrightarrow Z$	(n)	
		$a \mapsto a$	$+ \mathbf{e}_i$	
Z(n) =	$\bigcup_{i\leq k}\phi_i(Z(n-$	(<i>n_i</i>))	
	$n \in \mathcal{A}$	$S=\langle 6,9,20 angle$	Z(<i>n</i>)	L(<i>n</i>)
_	0	<i>.</i>	{0 }	{0}
	6	$0\overset{6}{\leadsto}\mathbf{e}_{1}$	$\{\mathbf{e}_1\}$	$\{1\}$
	9	$0 \stackrel{9}{\rightsquigarrow} \mathbf{e}_2$	$\{\mathbf{e}_2\}$	$\{1\}$
	12	$\mathbf{e}_1 \overset{6}{\leadsto} 2\mathbf{e}_1$	$\{2e_1\}$	{2}
	15	$\mathbf{e}_2 \overset{6}{\rightsquigarrow} (1,1,0)$	$\{(1, 1, 0)\}$	{2}
		$\mathbf{e}_1 \overset{9}{\rightsquigarrow} (1,1,0)$		
	18	$2\mathbf{e}_1 \stackrel{6}{\rightsquigarrow} 3\mathbf{e}_1$	$\{3\boldsymbol{e}_1, 2\boldsymbol{e}_2\}$	{2,3}

Fix $n \in$	<i>S</i> =	$\langle n_1,\ldots,n_k \rangle$. F	For each $i \leq k$,	
ϕ_i	: Z(<i>ı</i>	$(n-n_i) \longrightarrow \overline{Z}$	Z(n)	
		$a \mapsto a$	$\mathbf{h} + \mathbf{e}_i$	
Z	(n) =	$= \bigcup_{i \leq k} \phi_i(Z(n -$	- n _i))	
	$n \in$	$S=\langle 6,9,20 angle$	Z(<i>n</i>)	L(<i>n</i>)
	0	_	{0 }	{0}
	6	$0\overset{6}{\leadsto}\mathbf{e}_{1}$	$\{\mathbf{e}_1\}$	$\{1\}$
	9	$0\overset{9}{\leadsto}\mathbf{e}_2$	$\{\mathbf{e}_2\}$	$\{1\}$
	12	$\mathbf{e}_1 \overset{6}{\leadsto} 2\mathbf{e}_1$	$\{2\mathbf{e}_1\}$	{2}
	15	$\mathbf{e}_2 \overset{6}{\rightsquigarrow} (1,1,0)$	$\{(1, 1, 0)\}$	{2}
		$\mathbf{e}_1 \overset{9}{\rightsquigarrow} (1,1,0)$		
	18	$2\mathbf{e}_1 \overset{6}{\leadsto} 3\mathbf{e}_1$	$\{3\boldsymbol{e}_1,2\boldsymbol{e}_2\}$	{2,3}
		$\mathbf{e}_2 \overset{9}{\rightsquigarrow} 2\mathbf{e}_2$		

Fix $n \in S$	$=\langle n_1,\ldots,n_k angle$. F	For each $i \leq k$,	
ϕ_i : Z($(n-n_i) \longrightarrow \bar{a}$	Z(n)	
	$a \mapsto a$	$\mathbf{a} + \mathbf{e}_i$	
Z(<i>n</i>)	$= \bigcup_{i \leq k} \phi_i(Z(n -$	- n _i))	
n	$\in S=\langle 6,9,20 angle$	Z(<i>n</i>)	L(<i>n</i>)
0	ć	{0 }	{0}
6	$0 \stackrel{_{0}}{\rightsquigarrow} \mathbf{e}_1$	$\{\mathbf{e}_1\}$	$\{1\}$
9	$0 \stackrel{9}{\rightsquigarrow} \mathbf{e}_2$	$\{\mathbf{e}_2\}$	$\{1\}$
12	$\mathbf{e}_1 \overset{6}{\rightsquigarrow} 2\mathbf{e}_1$	$\{2e_1\}$	{2}
15	$\mathbf{e}_2 \overset{6}{\rightsquigarrow} (1,1,0)$	$\{(1, 1, 0)\}$	{2}
	$\mathbf{e}_1 \overset{9}{\rightsquigarrow} (1,1,0)$		
18	$2\mathbf{e}_1 \stackrel{6}{\rightsquigarrow} 3\mathbf{e}_1$	$\{3e_1, 2e_2\}$	{2,3}
	$\mathbf{e}_2 \stackrel{9}{\rightsquigarrow} 2\mathbf{e}_2$		
20	$0 \overset{20}{\rightsquigarrow} \mathbf{e}_3$	$\{\mathbf{e}_3\}$	$\{1\}$

Fix <i>n</i> ∈	= <i>S</i> =	$\langle n_1,\ldots,n_k \rangle$. F	For each $i \leq k$,		
ϕ_i	: Z(<i>i</i>	$(n-n_i) \longrightarrow \overline{a}$	Z(n)		
		$a \mapsto a$	$\mathbf{a} + \mathbf{e}_i$		
Z	:(n) =	$= \bigcup_{i \leq k} \phi_i(Z(n -$	– n _i))		
	$n \in$	$S=\langle 6,9,20 angle$	Z(<i>n</i>)	L(<i>n</i>)	_
	0		{ 0 }	{0}	
	6	$0 \stackrel{6}{\leadsto} \mathbf{e}_1$	$\{\mathbf{e}_1\}$	$\{1\}$	
	9	$0\stackrel{9}{\rightsquigarrow}\mathbf{e}_2$	$\{\mathbf{e}_2\}$	$\{1\}$	
	12	$\mathbf{e}_1 \stackrel{6}{\rightsquigarrow} 2\mathbf{e}_1$	$\{2\mathbf{e}_1\}$	{2}	
	15	$\mathbf{e}_2 \overset{6}{\rightsquigarrow} (1,1,0)$	$\{(1, 1, 0)\}$	{2}	
		$\mathbf{e}_1 \overset{9}{\rightsquigarrow} (1,1,0)$			
	18	$2\mathbf{e}_1 \overset{6}{\leadsto} 3\mathbf{e}_1$	$\{3\boldsymbol{e}_1, 2\boldsymbol{e}_2\}$	{2,3}	
		$\mathbf{e}_2 \overset{9}{\rightsquigarrow} 2\mathbf{e}_2$			
	20	$0 \stackrel{20}{\rightsquigarrow} \mathbf{e}_3$	$\{\mathbf{e}_3\}$	$\{1\}$	
	:		:	:	

Fix <i>n</i>	∈ <i>S</i> =	$\langle n_1,\ldots,n_k\rangle.$	For each $i \leq k$	Κ,	
ϕ	; : Z(<i>i</i>	$(n-n_i) \longrightarrow 1$	Z(<i>n</i>)	$\psi_i: L(n-n_i)$	\rightarrow L(n)
		$a \mapsto a$	$\mathbf{a} + \mathbf{e}_i$		
	Z(n) =	$= \bigcup_{i \leq k} \phi_i(Z(n +$	– n _i))		
	$n \in$	$S=\langle 6,9,20 angle$	Z(<i>n</i>)	L(<i>n</i>)	
	0		{0 }	{0}	
	6	$0 \stackrel{6}{\rightsquigarrow} \mathbf{e}_1$	$\{\mathbf{e}_1\}$	$\{1\}$	
	9	$0 \stackrel{9}{\rightsquigarrow} \mathbf{e}_2$	$\{\mathbf{e}_2\}$	$\{1\}$	
	12	$\mathbf{e}_1 \stackrel{6}{\rightsquigarrow} 2\mathbf{e}_1$	$\{2\mathbf{e}_1\}$	{2}	
	15	$\mathbf{e}_2 \overset{6}{\rightsquigarrow} (1,1,0)$	$\{(1, 1, 0)\}$	{2}	
		$\mathbf{e}_1 \stackrel{9}{\rightsquigarrow} (1,1,0)$			
	18	$2\mathbf{e}_1 \stackrel{6}{\rightsquigarrow} 3\mathbf{e}_1$	$\{3e_1, 2e_2\}$	{2,3}	
		$\mathbf{e}_2 \stackrel{9}{\rightsquigarrow} 2\mathbf{e}_2$			
	20	$0 \stackrel{20}{\rightsquigarrow} \mathbf{e}_3$	$\{\mathbf{e}_3\}$	$\{1\}$	
	:		:	:	

Fix n e	E <i>S</i> =	$\langle n_1,\ldots,n_k\rangle.$	For each $i \leq i$	k,		
ϕ_{i}	: Z(<i>i</i>	$n - n_i) \longrightarrow$	Z(<i>n</i>)	ψ_i : L $(n - n_i)$	\longrightarrow	L(<i>n</i>)
		$\mathbf{a} \mapsto$	$\mathbf{a} + \mathbf{e}_i$	ℓ	\mapsto	$\ell + 1$
Z	<u>(</u> (n) =	$= \bigcup_{i \leq k} \phi_i(Z(n$	— n _i))			
	$n \in$	$S=\langle 6,9,20 angle$	Z(<i>n</i>)	L(<i>n</i>)		
	0		{0 }	{0}		
	6	$0\overset{6}{\leadsto}\mathbf{e}_{1}$	$\{\mathbf{e}_1\}$	$\{1\}$		
	9	$0 \stackrel{9}{\rightsquigarrow} \mathbf{e}_2$	$\{\mathbf{e}_2\}$	$\{1\}$		
	12	$\mathbf{e}_1 \overset{6}{\leadsto} 2\mathbf{e}_1$	$\{2\mathbf{e}_1\}$	{2}		
	15	$\mathbf{e}_2 \overset{6}{\rightsquigarrow} (1,1,0)$	$\{(1, 1, 0)\}$	{2}		
		$\mathbf{e}_1 \overset{9}{\rightsquigarrow} (1,1,0)$				
	18	$2\mathbf{e}_1 \stackrel{6}{\rightsquigarrow} 3\mathbf{e}_1$	$\{3\boldsymbol{e}_1, 2\boldsymbol{e}_2\}$	{2,3}		
		$\mathbf{e}_2 \stackrel{9}{\rightsquigarrow} 2\mathbf{e}_2$				
	20	$0 \stackrel{20}{\rightsquigarrow} \mathbf{e}_3$	$\{\mathbf{e}_3\}$	$\{1\}$		
	:		:	:		

Fix n e	E <i>S</i> =	$\langle n_1,\ldots,n_k\rangle.$	For each $i \leq k$	κ,	
ϕ_{i}	: Z(<i>i</i>	$n-n_i) \longrightarrow$	Z(<i>n</i>)	ψ_i : L $(n - n_i)$	\rightarrow L(n)
		$\mathbf{a} \mapsto$	$\mathbf{a} + \mathbf{e}_i$	ℓ	$\mapsto \ell + 1$
Z	<u>(</u> (n) =	$= \bigcup_{i \leq k} \phi_i(Z(n))$	$(-n_i))$	$L(n) = \bigcup_{i \leq k} \psi$	$v_i(L(n-n_i))$
	$n \in$	$S=\langle 6,9,20 angle$	Z(<i>n</i>)	L(<i>n</i>)	
	0		{0 }	{0}	
	6	$0 \stackrel{6}{\rightsquigarrow} \mathbf{e}_1$	$\{\mathbf{e}_1\}$	$\{1\}$	
	9	$0 \stackrel{9}{\rightsquigarrow} \mathbf{e}_2$	$\{\mathbf{e}_2\}$	$\{1\}$	
	12	$\mathbf{e}_1 \overset{6}{\leadsto} 2\mathbf{e}_1$	$\{2\mathbf{e}_1\}$	{2}	
	15	$\mathbf{e}_2 \overset{6}{\rightsquigarrow} (1,1,0)$	$\{(1, 1, 0)\}$	{2}	
		$\mathbf{e}_1 \overset{9}{\rightsquigarrow} (1,1,0)$			
	18	$2\mathbf{e}_1 \stackrel{6}{\rightsquigarrow} 3\mathbf{e}_1$	$\{3\boldsymbol{e}_1, 2\boldsymbol{e}_2\}$	{2,3}	
		$\mathbf{e}_2 \stackrel{9}{\rightsquigarrow} 2\mathbf{e}_2$			
	20	$0 \stackrel{20}{\rightsquigarrow} \mathbf{e}_3$	$\{\mathbf{e}_3\}$	$\{1\}$	
	:		:	:	

Fix
$$n \in S = \langle n_1, \dots, n_k \rangle$$
. For each $i \leq k$,
 $\phi_i : Z(n - n_i) \longrightarrow Z(n) \qquad \psi_i : L(n - n_i) \longrightarrow L(n)$
 $\mathbf{a} \longmapsto \mathbf{a} + \mathbf{e}_i \qquad \ell \longmapsto \ell + 1$
 $Z(n) = \bigcup_{i \leq k} \phi_i(Z(n - n_i)) \qquad L(n) = \bigcup_{i \leq k} \psi_i(L(n - n_i))$
 $\frac{n \in S = \langle 6, 9, 20 \rangle \qquad L(n)}{\{0\}}$
6
9
12
15
18
20
 \vdots

Fix $n \in S = \langle n_1, \ldots, n_k \rangle$. For each $i \leq$	k,	
$\phi_i : Z(n - n_i) \longrightarrow Z(n)$	$\psi_i: L(n-n_i)$	\rightarrow L(n)
$\mathbf{a} \mapsto \mathbf{a} + \mathbf{e}_i$	ℓ	$\mapsto \ell + 1$
$Z(n) = \bigcup_{i \leq k} \phi_i(Z(n - n_i))$	$L(n) = \bigcup_{i \leq k} \psi$	$v_i(L(n-n_i))$
$n \in \mathcal{S} = \langle 6, 9, 20 angle$	L(<i>n</i>)	
0	{0}	
6	$\{1\}$	$0 \stackrel{6}{\rightsquigarrow} 1$
9		
12		
15		
18		
20		
:		

Fix $n \in S = \langle n_1, \ldots, n_k \rangle$. For each $i \ge j$	$\leq k$,	
$\phi_i: Z(n-n_i) \longrightarrow Z(n)$	$\psi_i: L(n-n_i)$	\rightarrow L(n)
$\mathbf{a} \mapsto \mathbf{a} + \mathbf{e}_i$	ℓ	$\mapsto \ell + 1$
$Z(n) = \bigcup_{i \leq k} \phi_i(Z(n - n_i))$	$L(n) = \bigcup_{i \leq k} \psi_i$	$i(L(n-n_i))$
$\textit{n} \in \textit{S} = \langle 6, 9, 20 angle$	L(<i>n</i>)	
0	{0}	
6	$\{1\}$	$0 \stackrel{6}{\rightsquigarrow} 1$
9	$\{1\}$	$0 \stackrel{9}{\rightsquigarrow} 1$
12		
15		
18		
20		
:		

Fix $n \in S = \langle n_1, \ldots, n_k \rangle$. For each $i \leq i$	<i>k</i> ,	
$\phi_i: Z(n-n_i) \longrightarrow Z(n)$ $\mathbf{a} \longmapsto \mathbf{a} + \mathbf{e}_i$	$\psi_i: L(n-n_i) \ \ell$	$ \begin{array}{cc} \longrightarrow & L(n) \\ \longmapsto & \ell+1 \end{array} $
$Z(n) = \bigcup_{i \leq k} \phi_i(Z(n-n_i))$	$L(n) = \bigcup_{i \leq k} \psi$	$v_i(L(n-n_i))$
$\textit{n}\in\textit{S}=\langle 6,9,20 angle$	L(<i>n</i>)	
0	{0}	
6	$\{1\}$	$0 \stackrel{6}{\rightsquigarrow} 1$
9	$\{1\}$	$0 \stackrel{9}{\rightsquigarrow} 1$
12	{2}	$1 \stackrel{6}{\rightsquigarrow} 2$
15		
18		
20		

Fix $n \in S = \langle n_1, \dots, n_k \rangle$. For each $i \leq k$	κ,	
$\phi_i : Z(n - n_i) \longrightarrow Z(n)$	$\psi_i: L(n-n_i)$	\rightarrow L(n)
$\mathbf{a} \mapsto \mathbf{a} + \mathbf{e}_i$	ℓ	$\mapsto \ell + 1$
$Z(n) = \bigcup_{i \leq k} \phi_i(Z(n - n_i))$	$L(n) = \bigcup_{i \leq k} \psi$	$v_i(L(n-n_i))$
$n\in \mathcal{S}=\langle 6,9,20 angle$	L(<i>n</i>)	
0	{0}	
6	$\{1\}$	$0 \stackrel{6}{\rightsquigarrow} 1$
9	$\{1\}$	$0 \stackrel{9}{\rightsquigarrow} 1$
12	{2}	$1 \stackrel{6}{\rightsquigarrow} 2$
15	{2}	$1 \stackrel{6}{\rightsquigarrow} 2$
18		

Fix $n \in S = \langle n_1, \dots, n_k \rangle$. For each $i \leq k$	ζ,	
$\phi_i : Z(n - n_i) \longrightarrow Z(n)$	ψ_i : L($n - n_i$)	\rightarrow L(n)
$\mathbf{a} \mapsto \mathbf{a} + \mathbf{e}_i$	ℓ	$\mapsto \ell + 1$
$Z(n) = \bigcup_{i \leq k} \phi_i(Z(n - n_i))$	$L(n) = \bigcup_{i \leq k} \psi$	$v_i(L(n-n_i))$
$n\in S=\langle 6,9,20 angle$	L(<i>n</i>)	
0	{0}	
6	$\{1\}$	$0 \stackrel{6}{\rightsquigarrow} 1$
9	$\{1\}$	$0 \stackrel{9}{\rightsquigarrow} 1$
12	{2}	$1 \stackrel{6}{\rightsquigarrow} 2$
15	{2}	$1\stackrel{6}{\rightsquigarrow}2$
		$1 \stackrel{9}{\rightsquigarrow} 2$
18		

Fix $n \in S = \langle n_1, \dots, n_k \rangle$. For each $i \leq k$	Κ,	
$\phi_i: Z(n-n_i) \longrightarrow Z(n)$	ψ_i : L($n - n_i$)	\rightarrow L(n)
$\mathbf{a} \mapsto \mathbf{a} + \mathbf{e}_i$	ℓ	$\mapsto \ell + 1$
$Z(n) = \bigcup_{i \leq k} \phi_i(Z(n - n_i))$	$L(n) = \bigcup_{i \leq k} \psi_i$	$(L(n - n_i))$
$n\in S=\langle 6,9,20 angle$	L(<i>n</i>)	
0	{0}	
6	$\{1\}$	$0 \stackrel{6}{\rightsquigarrow} 1$
9	$\{1\}$	$0 \stackrel{9}{\rightsquigarrow} 1$
12	{2}	$1 \stackrel{6}{\leadsto} 2$
15	{2}	$1 \stackrel{6}{\rightsquigarrow} 2$
		$1 \stackrel{9}{\rightsquigarrow} 2$
18	{2,3}	$2 \stackrel{6}{\rightsquigarrow} 3$

Fix $n \in S = \langle n_1, \ldots, n_k \rangle$. For each $i \leq n_1 \leq n_2 \leq n_1 \leq n_2$	$\leq k$,	
$\phi_i: Z(n-n_i) \longrightarrow Z(n)$	$\psi_i: L(n-n_i)$	\longrightarrow L(n)
$\mathbf{a} \mapsto \mathbf{a} + \mathbf{e}_i$	ℓ	$\mapsto \ell + 1$
$Z(n) = \bigcup_{i \leq k} \phi_i(Z(n - n_i))$	$L(n) = \bigcup_{i \leq k} \psi_i$	$(L(n-n_i))$
$\textit{n} \in \textit{S} = \langle 6, 9, 20 angle$	L(<i>n</i>)	
0	{0}	
6	$\{1\}$	$0 \stackrel{6}{\rightsquigarrow} 1$
9	$\{1\}$	$0 \stackrel{9}{\rightsquigarrow} 1$
12	{2}	$1 \stackrel{6}{\rightsquigarrow} 2$
15	{2}	$1 \stackrel{6}{\rightsquigarrow} 2$
		$1 \stackrel{9}{\rightsquigarrow} 2$
18	{2,3}	$2 \stackrel{6}{\rightsquigarrow} 3$
-	(-,-)	$1 \xrightarrow{9}{\sim} 2$

Fix $n \in S = \langle n_1, \dots, n_k \rangle$. For each $i \leq k$	ζ,	
$\phi_i: Z(n-n_i) \longrightarrow Z(n)$	$\psi_i: L(n-n_i)$	\rightarrow L(n)
$\mathbf{a} \mapsto \mathbf{a} + \mathbf{e}_i$	ℓ	$\mapsto \ell + 1$
$Z(n) = \bigcup_{i \leq k} \phi_i(Z(n - n_i))$	$L(n) = \bigcup_{i \leq k} \psi_i$	$_i(L(n-n_i))$
$n\in \mathcal{S}=\langle 6,9,20 angle$	L(<i>n</i>)	
0	{0}	
6	$\{1\}$	$0 \stackrel{6}{\rightsquigarrow} 1$
9	$\{1\}$	$0 \stackrel{9}{\rightsquigarrow} 1$
12	{2}	$1 \stackrel{6}{\rightsquigarrow} 2$
15	{2}	$1 \stackrel{6}{\rightsquigarrow} 2$
		$1 \stackrel{9}{\rightsquigarrow} 2$
18	{2,3}	$2 \stackrel{6}{\rightsquigarrow} 3$
		$1 \stackrel{9}{\rightsquigarrow} 2$
20	{1}	$0\stackrel{20}{\leadsto}1$

Fix $n \in S = \langle n_1, \ldots, n_k \rangle$. For each $i \leq k$	ζ,	
$\phi_i: Z(n-n_i) \longrightarrow Z(n)$	$\psi_i: L(n-n_i)$	\rightarrow L(n)
$\mathbf{a} \mapsto \mathbf{a} + \mathbf{e}_i$	ℓ	$\mapsto \ell + 1$
$Z(n) = \bigcup_{i \leq k} \phi_i(Z(n - n_i))$	$L(n) = \bigcup_{i \leq k} \psi_i$	$i(L(n-n_i))$
$n \in S = \langle 6, 9, 20 angle$	L(<i>n</i>)	
0	{0}	
6	$\{1\}$	$0 \stackrel{6}{\rightsquigarrow} 1$
9	$\{1\}$	$0 \stackrel{9}{\rightsquigarrow} 1$
12	{2}	$1 \stackrel{6}{\rightsquigarrow} 2$
15	{2}	$1 \stackrel{6}{\rightsquigarrow} 2$
		$1 \stackrel{9}{\rightsquigarrow} 2$
18	{2,3}	$2 \stackrel{6}{\rightsquigarrow} 3$
		$1 \stackrel{9}{\rightsquigarrow} 2$
20	$\{1\}$	$0 \stackrel{20}{\leadsto} 1$
:	:	:

.

Computing the delta set dynamically

Theorem (García-García-Moreno-Frías-Vigneron-Tenorio, 2014)

 $S = \langle n_1, \ldots, n_k \rangle$. For $n \ge N_S$, $\Delta(n) = \Delta(n + \operatorname{lcm}(n_1, n_k))$.
Theorem (García-García–Moreno-Frías–Vigneron-Tenorio, 2014)

$$S = \langle n_1, \ldots, n_k \rangle$$
. For $n \ge N_S$, $\Delta(n) = \Delta(n + \operatorname{lcm}(n_1, n_k))$.

For $n \in S$ with $0 \le n \le N_S + \operatorname{lcm}(n_1, n_k)$, compute:

$$Z(n) = \{ \mathbf{a} \in \mathbb{N}^k : n = a_1 n_1 + \dots + a_k n_k \}$$
$$Z(n) \rightsquigarrow L(n)$$
$$L(n) \rightsquigarrow \Delta(n)$$

Compute $\Delta(S) = \bigcup_n \Delta(n)$.

Theorem (García-García–Moreno-Frías–Vigneron-Tenorio, 2014)

$$S = \langle n_1, \dots, n_k \rangle$$
. For $n \ge N_S$, $\Delta(n) = \Delta(n + \operatorname{lcm}(n_1, n_k))$.

For $n \in S$ with $0 \le n \le N_S + \operatorname{lcm}(n_1, n_k)$, compute:

$$Z(n) = \{ \mathbf{a} \in \mathbb{N}^k : n = a_1 n_1 + \dots + a_k n_k \}$$
$$L(n - *) \rightsquigarrow L(n)$$
$$L(n) \rightsquigarrow \Delta(n)$$

Compute $\Delta(S) = \bigcup_n \Delta(n)$.

Theorem (García-García–Moreno-Frías–Vigneron-Tenorio, 2014)

$$S = \langle n_1, \ldots, n_k \rangle$$
. For $n \ge N_S$, $\Delta(n) = \Delta(n + \operatorname{lcm}(n_1, n_k))$.

For $n \in S$ with $0 \le n \le N_S + \operatorname{lcm}(n_1, n_k)$, compute:

$$\frac{Z(n) = \{\mathbf{a} \in \mathbb{N}^k : n = a_1 n_1 + \dots + a_k n_k\}}{L(n - *) \rightsquigarrow L(n)} \\ L(n) \rightsquigarrow \Delta(n)$$

Compute $\Delta(S) = \bigcup_n \Delta(n)$.

This is significantly faster!

Theorem (García-García–Moreno-Frías–Vigneron-Tenorio, 2014)

$$S = \langle n_1, \dots, n_k \rangle$$
. For $n \ge N_S$, $\Delta(n) = \Delta(n + \operatorname{lcm}(n_1, n_k))$.

For $n \in S$ with $0 \le n \le N_S + \operatorname{lcm}(n_1, n_k)$, compute:

Compute $\Delta(S) = \bigcup_n \Delta(n)$.

This is significantly faster!

 $|\mathsf{Z}(n)| \approx n^{k-1}$

Theorem (García-García–Moreno-Frías–Vigneron-Tenorio, 2014)

$$S = \langle n_1, \dots, n_k \rangle$$
. For $n \ge N_S$, $\Delta(n) = \Delta(n + \operatorname{lcm}(n_1, n_k))$.

For $n \in S$ with $0 \le n \le N_S + \operatorname{lcm}(n_1, n_k)$, compute:

$$\frac{Z(n) = \{\mathbf{a} \in \mathbb{N}^k : n = a_1 n_1 + \dots + a_k n_k\}}{L(n - *) \rightsquigarrow L(n)} \\
L(n) \rightsquigarrow \Delta(n)$$

Compute $\Delta(S) = \bigcup_n \Delta(n)$.

This is significantly faster!

$$\begin{array}{ll} |\mathsf{Z}(n)| &\approx n^{k-1} \\ |\mathsf{L}(n)| &\approx n \end{array}$$

Runtime comparison

S	Ns	$\Delta(S)$	Existing	Dynamic
$\langle 7, 15, 17, 18, 20 \rangle$	1935	$\{1, 2, 3\}$	1m 28s	146ms
$\langle 11, 53, 73, 87 angle$	14381	$\{2, 4, 6, 8, 10, 22\}$	} 0m 49s	2.5s
$\langle 31,73,77,87,91 angle$	31364	$\{2, 4, 6\}$	400m 12s	4.2s
$\langle 100, 121, 142, 163, 284 \rangle$	24850	{21}		0m 3.6s
$\langle 1001, 1211, 1421, 1631, 2841 \rangle$	2063141	{10, 20, 30}		1m 56s

S	Ns	$\Delta(S)$	Existing	Dynamic
$\langle 7, 15, 17, 18, 20 \rangle$	1935	$\{1, 2, 3\}$	1m 28s	146ms
$\langle 11, 53, 73, 87 angle$	14381	$\{2, 4, 6, 8, 10, 22\}$	} 0m 49s	2.5s
$\langle 31,73,77,87,91 \rangle$	31364	{2,4,6}	400m 12s	4.2s
$\langle 100, 121, 142, 163, 284 \rangle$	24850	{21}		0m 3.6s
$\langle 1001, 1211, 1421, 1631, 2841 \rangle$	2063141	{10, 20, 30}		1m 56s

GAP Numerical Semigroups Package, available at

http://www.gap-system.org/Packages/numericalsgps.html.

ω -primality

Definition (ω -primality)

Fix a (multiplicatively written) monoid (M, \cdot) . For $x \in M$, $\omega(x)$ is the smallest positive integer m such that whenever $x \mid \prod_{i=1}^{r} u_i$ for r > m, there exists a subset $T \subset \{1, \ldots, r\}$ with $|T| \leq m$ such that $x \mid \prod_{i \in T} u_i$.

Fact

 $\omega(x) = 1$ if and only if x is prime (i.e. $x \mid ab$ implies $x \mid a$ or $x \mid b$).

ω -primality

Definition (ω -primality)

Fix a (multiplicatively written) monoid (M, \cdot) . For $x \in M$, $\omega(x)$ is the smallest positive integer m such that whenever $x \mid \prod_{i=1}^{r} u_i$ for r > m, there exists a subset $T \subset \{1, \ldots, r\}$ with $|T| \leq m$ such that $x \mid \prod_{i \in T} u_i$.

Fact

 $\omega(x) = 1$ if and only if x is prime (i.e. $x \mid ab$ implies $x \mid a$ or $x \mid b$).

Fact

M is factorial if and only if every irreducible element $u \in M$ is prime. Moreover, $\omega(p_1 \cdots p_r) = r$ for any primes $p_1, \ldots, p_r \in M$.

ω -primality

Definition (ω -primality)

Fix a numerical monoid S and $n \in S$. $\omega_S(n)$ is the minimal m such that whenever $(\sum_{i=1}^r x_i) - n \in S$ for r > m, there exists $T \subset \{1, \ldots, r\}$ with $|T| \le m$ and $(\sum_{i \in T} x_i) - n \in S$.

Definition (ω -primality)

Fix a numerical monoid S and $n \in S$. $\omega_S(n)$ is the minimal m such that whenever $(\sum_{i=1}^r x_i) - n \in S$ for r > m, there exists $T \subset \{1, \ldots, r\}$ with $|T| \le m$ and $(\sum_{i \in T} x_i) - n \in S$.

Definition

A bullet for
$$n \in S$$
 is a tuple $\mathbf{b} = (b_1, \dots, b_k) \in \mathbb{N}^k$ such that

(i)
$$b_1n_1 + \cdots + b_kn_k - n \in S$$
, and

(ii)
$$b_1n_1 + \cdots + (b_i - 1)n_i + \cdots + b_kn_k - n \notin S$$
 for each $b_i > 0$.

The set of bullets of n is denoted bul(n).

Definition (ω -primality)

Fix a numerical monoid S and $n \in S$. $\omega_S(n)$ is the minimal m such that whenever $(\sum_{i=1}^r x_i) - n \in S$ for r > m, there exists $T \subset \{1, \ldots, r\}$ with $|T| \le m$ and $(\sum_{i \in T} x_i) - n \in S$.

Definition

A bullet for
$$n \in S$$
 is a tuple $\mathbf{b} = (b_1, \dots, b_k) \in \mathbb{N}^k$ such that

(i)
$$b_1n_1 + \cdots + b_kn_k - n \in S$$
, and

(ii)
$$b_1 n_1 + \cdots + (b_i - 1)n_i + \cdots + b_k n_k - n \notin S$$
 for each $b_i > 0$.

The set of bullets of n is denoted bul(n).

Proposition

$$\omega_{\mathcal{S}}(n) = \max\{|\mathbf{b}| : \mathbf{b} \in \mathsf{bul}(n)\}.$$

Theorem ((O.–Pelayo, 2013), (García-García et.al., 2013))

 $\omega_{S}(n) = \frac{1}{n_{1}}n + a_{0}(n)$ for $n \gg 0$, where $a_{0}(n)$ periodic with period n_{1} .

Quasilinearity for ω -primality

Theorem ((O.–Pelayo, 2013), (García-García et.al., 2013))

 $\omega_{S}(n) = \frac{1}{n_{1}}n + a_{0}(n)$ for $n \gg 0$, where $a_{0}(n)$ periodic with period n_{1} .

Example

 $S = \langle 6, 9, 20 \rangle = \{0, 6, 9, 12, 15, 18, 20, 21, \ldots \}.$

Example

$$S = \langle 6, 9, 20 \rangle = \{0, 6, 9, 12, 15, 18, 20, 21, \ldots\}.$$

bul(20) = $\{(4, 4, 0), (7, 2, 0), (10, 0, 0), (1, 6, 0), (0, 8, 0), (0, 0, 1)\}$

Example

$$S = \langle 6, 9, 20 \rangle = \{0, 6, 9, 12, 15, 18, 20, 21, \ldots\}.$$

bul(20) = {(4, 4, 0), (7, 2, 0), (10, 0, 0), (1, 6, 0), (0, 8, 0), (0, 0, 1)}
 $8 \cdot 9 - 20 = 52 \in S$

Example

$$S = \langle 6, 9, 20 \rangle = \{0, 6, 9, 12, 15, 18, 20, 21, \ldots\}.$$

bul(20) = $\{(4, 4, 0), (7, 2, 0), (10, 0, 0), (1, 6, 0), (0, 8, 0), (0, 0, 1)\}$
 $8 \cdot 9 - 20 = 52 \in S$
 $7 \cdot 9 - 20 = 43 \notin S$

Example

$$S = \langle 6, 9, 20 \rangle = \{0, 6, 9, 12, 15, 18, 20, 21, \ldots\}.$$

$$bul(20) = \{(4, 4, 0), (7, 2, 0), (10, 0, 0), (1, 6, 0), (0, 8, 0), (0, 0, 1)\}$$

$$8 \cdot 9 - 20 = 52 \in S$$

$$7 \cdot 9 - 20 = 43 \notin S \Rightarrow (0, 8, 0) \in bul(20)$$

Example

$$S = \langle 6, 9, 20 \rangle = \{0, 6, 9, 12, 15, 18, 20, 21, \ldots\}.$$
bul(20) = {(4, 4, 0), (7, 2, 0), (10, 0, 0), (1, 6, 0), (0, 8, 0), (0, 0, 1)}

$$8 \cdot 9 - 20 = 52 \in S$$

$$7 \cdot 9 - 20 = 43 \notin S$$

$$1 \cdot 6 + 6 \cdot 9 - 20 = 40 \in S$$

$$(0, 8, 0) \in \text{bul}(20)$$

Example

$$S = \langle 6, 9, 20 \rangle = \{0, 6, 9, 12, 15, 18, 20, 21, \ldots\}.$$
bul(20) = {(4, 4, 0), (7, 2, 0), (10, 0, 0), (1, 6, 0), (0, 8, 0), (0, 0, 1)}

$$8 \cdot 9 - 20 = 52 \in S$$

$$7 \cdot 9 - 20 = 43 \notin S \Rightarrow (0, 8, 0) \in \text{bul}(20)$$

$$1 \cdot 6 + 6 \cdot 9 - 20 = 40 \in S$$

$$6 \cdot 9 - 20 = 34 \notin S$$

Example

$$S = \langle 6, 9, 20 \rangle = \{0, 6, 9, 12, 15, 18, 20, 21, \ldots\}.$$
bul(20) = {(4, 4, 0), (7, 2, 0), (10, 0, 0), (1, 6, 0), (0, 8, 0), (0, 0, 1)}

$$8 \cdot 9 - 20 = 52 \in S$$

$$7 \cdot 9 - 20 = 43 \notin S$$

$$1 \cdot 6 + 6 \cdot 9 - 20 = 40 \in S$$

$$6 \cdot 9 - 20 = 34 \notin S$$

$$1 \cdot 6 + 5 \cdot 9 - 20 = 31 \notin S$$

Example

$$S = \langle 6, 9, 20 \rangle = \{0, 6, 9, 12, 15, 18, 20, 21, \ldots\}.$$
bul(20) = {(4, 4, 0), (7, 2, 0), (10, 0, 0), (1, 6, 0), (0, 8, 0), (0, 0, 1)}

$$8 \cdot 9 - 20 = 52 \in S$$

$$7 \cdot 9 - 20 = 43 \notin S \Rightarrow (0, 8, 0) \in \text{bul}(20)$$

$$1 \cdot 6 + 6 \cdot 9 - 20 = 40 \in S$$

$$6 \cdot 9 - 20 = 34 \notin S \Rightarrow (1, 6, 0) \in \text{bul}(20)$$

$$1 \cdot 6 + 5 \cdot 9 - 20 = 31 \notin S$$

Example

$$S = \langle 6, 9, 20 \rangle = \{0, 6, 9, 12, 15, 18, 20, 21, \ldots\}.$$
bul(20) = {(4, 4, 0), (7, 2, 0), (10, 0, 0), (1, 6, 0), (0, 8, 0), (0, 0, 1)}

$$8 \cdot 9 - 20 = 52 \in S$$

$$7 \cdot 9 - 20 = 43 \notin S \Rightarrow (0, 8, 0) \in \text{bul}(20)$$

$$1 \cdot 6 + 6 \cdot 9 - 20 = 40 \in S$$

$$6 \cdot 9 - 20 = 34 \notin S \Rightarrow (1, 6, 0) \in \text{bul}(20)$$

$$1 \cdot 6 + 5 \cdot 9 - 20 = 31 \notin S$$

Moral of (the remainder of) this talk: bullets behave like factorizations!

Recall: for
$$n \in S = \langle n_1, \dots n_k \rangle$$
, $\mathsf{Z}(n) = \{ \mathbf{a} \in \mathbb{N}^k : \sum_{i=1}^k a_i n_i = n \}.$

Recall: for $n \in S = \langle n_1, \dots, n_k \rangle$, $Z(n) = \{ \mathbf{a} \in \mathbb{N}^k : \sum_{i=1}^k a_i n_i = n \}$. For each $i \leq k$,

Recall: for $n \in S = \langle n_1, \dots n_k \rangle$, $Z(n) = \{ \mathbf{a} \in \mathbb{N}^k : \sum_{i=1}^k a_i n_i = n \}$. For each $i \leq k$, $\phi_i : Z(n - n_i) \longrightarrow Z(n)$ $\mathbf{a} \longmapsto \mathbf{a} + \mathbf{e}_i$.

Recall: for
$$n \in S = \langle n_1, \dots n_k \rangle$$
, $Z(n) = \{ \mathbf{a} \in \mathbb{N}^k : \sum_{i=1}^k a_i n_i = n \}$.
For each $i \leq k$,
 $\phi_i : Z(n - n_i) \longrightarrow Z(n)$
 $\mathbf{a} \longmapsto \mathbf{a} + \mathbf{e}_i$.

In particular,

$$\mathsf{Z}(n) = \bigcup_{i \leq k} \phi_i(\mathsf{Z}(n-n_i))$$

Recall: for
$$n \in S = \langle n_1, \dots n_k \rangle$$
, $Z(n) = \{ \mathbf{a} \in \mathbb{N}^k : \sum_{i=1}^k a_i n_i = n \}$.
For each $i \leq k$,
 $\phi_i : Z(n - n_i) \longrightarrow Z(n)$
 $\mathbf{a} \longmapsto \mathbf{a} + \mathbf{e}_i$.

In particular,

$$\mathsf{Z}(n) = \bigcup_{i \leq k} \phi_i(\mathsf{Z}(n-n_i))$$

Definition/Proposition (Cover morphisms)

Fix $n \in S$ and $i \leq k$. The *i*-th cover morphism for n is the map $\psi_i : bul(n - n_i) \longrightarrow bul(n)$

Recall: for
$$n \in S = \langle n_1, \dots n_k \rangle$$
, $Z(n) = \{ \mathbf{a} \in \mathbb{N}^k : \sum_{i=1}^k a_i n_i = n \}$.
For each $i \leq k$,
 $\phi_i : Z(n - n_i) \longrightarrow Z(n)$
 $\mathbf{a} \longmapsto \mathbf{a} + \mathbf{e}_i$.

In particular,

$$\mathsf{Z}(n) = \bigcup_{i \leq k} \phi_i(\mathsf{Z}(n-n_i))$$

Definition/Proposition (Cover morphisms)

Fix $n \in S$ and $i \leq k$. The *i*-th cover morphism for n is the map

$$\psi_i: \mathsf{bul}(n-n_i) \longrightarrow \mathsf{bul}(n)$$

given by

$$\mathbf{b} \longmapsto \begin{cases} \mathbf{b} + \mathbf{e}_i & \sum_{j=1}^k b_j n_j - n - n_i \notin S \\ \mathbf{b} & \sum_{j=1}^k b_j n_j - n - n_i \in S \end{cases}$$

Recall: for
$$n \in S = \langle n_1, \dots n_k \rangle$$
, $Z(n) = \{ \mathbf{a} \in \mathbb{N}^k : \sum_{i=1}^k a_i n_i = n \}$.
For each $i \leq k$,
 $\phi_i : Z(n - n_i) \longrightarrow Z(n)$
 $\mathbf{a} \longmapsto \mathbf{a} + \mathbf{e}_i$.

In particular,

$$\mathsf{Z}(n) = \bigcup_{i \leq k} \phi_i(\mathsf{Z}(n-n_i))$$

Definition/Proposition (Cover morphisms)

Fix $n \in S$ and $i \leq k$. The *i*-th cover morphism for n is the map

$$\psi_i: \mathsf{bul}(n-n_i) \longrightarrow \mathsf{bul}(n)$$

given by

$$\mathbf{b} \longmapsto \begin{cases} \mathbf{b} + \mathbf{e}_i & \sum_{j=1}^k b_j n_j - n - n_i \notin S \\ \mathbf{b} & \sum_{j=1}^k b_j n_j - n - n_i \in S \end{cases}$$

Moreover, bul(n) = $\bigcup_{i \le k} \psi_i(\text{bul}(n - n_i))$.**

Toward a dynamic algorithm... the base case

Definition (ω -primality in numerical monoids)

Fix a numerical monoid S and $n \in S$.

Definition (ω -primality in numerical monoids)

Fix a numerical monoid S and $n \in S$. $\omega_S(n)$ is the minimal m such that whenever $(\sum_{i=1}^r x_i) - n \in S$ for r > m, there exists $T \subset \{1, \ldots, r\}$ with $|T| \le m$ and $(\sum_{i \in T} x_i) - n \in S$.

Definition (ω -primality in numerical monoids)

Fix a numerical monoid S and $n \in S$. $\omega_S(n)$ is the minimal m such that whenever $(\sum_{i=1}^r x_i) - n \in S$ for r > m, there exists $T \subset \{1, \ldots, r\}$ with $|T| \le m$ and $(\sum_{i \in T} x_i) - n \in S$.
Definition (ω -primality in numerical monoids)

Fix a numerical monoid S and $n \in \mathbb{Z} = q(S)$. $\omega_S(n)$ is the minimal m such that whenever $(\sum_{i=1}^r x_i) - n \in S$ for r > m, there exists $T \subset \{1, \ldots, r\}$ with $|T| \le m$ and $(\sum_{i \in T} x_i) - n \in S$.

Toward a dynamic algorithm... the base case

Definition (ω -primality in numerical monoids)

Fix a numerical monoid S and $n \in \mathbb{Z} = q(S)$. $\omega_S(n)$ is the minimal m such that whenever $(\sum_{i=1}^r x_i) - n \in S$ for r > m, there exists $T \subset \{1, \ldots, r\}$ with $|T| \le m$ and $(\sum_{i \in T} x_i) - n \in S$.

Remark

All properties of ω extend from *S* to \mathbb{Z} .

Definition (ω -primality in numerical monoids)

Fix a numerical monoid S and $n \in \mathbb{Z} = q(S)$. $\omega_S(n)$ is the minimal m such that whenever $(\sum_{i=1}^r x_i) - n \in S$ for r > m, there exists $T \subset \{1, \ldots, r\}$ with $|T| \le m$ and $(\sum_{i \in T} x_i) - n \in S$.

Remark

All properties of ω extend from S to \mathbb{Z} .

Proposition

For $n \in \mathbb{Z}$, the following are equivalent: (i) $\omega(n) = 0$, (ii) $bul(n) = \{\mathbf{0}\}$, (iii) $-n \in S$.

A dynamic algorithm!

ω -primality for $n \in S$:

A dynamic algorithm!

ω -primality for $n \in \mathbb{Z}$:

$$S = \langle 6, 9, 20 \rangle = \{0, 6, 9, 12, 15, 18, 20, 21, \ldots \}.$$

$S = \langle 6, 9, 20 \rangle = \{0, 6, 9, 12, 15, 18, 20, 21, \ldots \}.$

 $n \in \mathbb{Z}$ $\omega(n)$ bul(n) $n \in \mathbb{Z}$ $\omega(n)$ bul(n)

$$S = \langle 6, 9, 20 \rangle = \{0, 6, 9, 12, 15, 18, 20, 21, \ldots \}.$$

$$\frac{n \in \mathbb{Z} \quad \omega(n) \quad \text{bul}(n)}{\leq -44 \quad 0 \quad \{\mathbf{0}\}} \quad \frac{n \in \mathbb{Z} \quad \omega(n) \quad \text{bul}(n)}{|\mathbf{0}||_{\mathbf{0}}}$$

$$S = \langle 6, 9, 20 \rangle = \{0, 6, 9, 12, 15, 18, 20, 21, \ldots \}.$$

$$\frac{n \in \mathbb{Z} \quad \omega(n) \quad \text{bul}(n)}{\leq -44 \quad 0 \qquad \{0\}} \qquad \frac{n \in \mathbb{Z} \quad \omega(n) \quad \text{bul}(n)}{\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}}$$

$n \in \mathbb{Z}$	$\omega(n)$	bul(<i>n</i>)	$n \in \mathbb{Z}$	$\omega(n)$	bul(n)	
≤ -44	0	{0 }				
-43	1	$\{\mathbf{e}_1,\mathbf{e}_2,\mathbf{e}_3\}$				
-42	0	{0 }				

$n \in \mathbb{Z}$	$\omega(n)$	bul(<i>n</i>)	$n \in \mathbb{Z}$	$\omega(n)$	bul(n)
≤ -44	0	{0 }			
-43	1	$\{\boldsymbol{e}_1, \boldsymbol{e}_2, \boldsymbol{e}_3\}$			
-42	0	{0 }			
÷	÷	÷			
-38	0	{ 0 }			

$n \in \mathbb{Z}$	$\omega(n)$	bul(<i>n</i>)	$n \in \mathbb{Z}$	$\omega(n)$	bul(n)
≤ -44	0	{0 }			
-43	1	$\{\boldsymbol{e}_1, \boldsymbol{e}_2, \boldsymbol{e}_3\}$			
-42	0	{0}			
÷	÷	:			
-38	0	{0 }			
-37	2	$\{2\boldsymbol{e}_1,\boldsymbol{e}_2,\boldsymbol{e}_3\}$			

$n \in \mathbb{Z}$	$\omega(n)$	bul(<i>n</i>)	$n \in \mathbb{Z}$	$\omega(n)$	bul(<i>n</i>)
≤ -44	0	{0 }			
-43	1	$\{\boldsymbol{e}_1, \boldsymbol{e}_2, \boldsymbol{e}_3\}$			
-42	0	{0 }			
:	÷	÷			
-38	0	{0 }			
-37	2	$\{2e_1, e_2, e_3\}$			
-36	0	{0 }			
-35	0	{0 }			

$n \in \mathbb{Z}$	$\omega(n)$	bul(<i>n</i>)	$n \in \mathbb{Z}$	$\omega(n)$	bul(n)
≤ -44	0	{0 }			
-43	1	$\{\boldsymbol{e}_1, \boldsymbol{e}_2, \boldsymbol{e}_3\}$			
-42	0	{ 0 }			
:	÷				
-38	0	{ 0 }			
-37	2	$\{2\boldsymbol{e}_1,\boldsymbol{e}_2,\boldsymbol{e}_3\}$			
-36	0	{0 }			
-35	0	{ 0 }			
-34	2	$\{\boldsymbol{e}_1, 2\boldsymbol{e}_2, \boldsymbol{e}_3\}$			

$n \in \mathbb{Z}$	$\omega(n)$	bul(<i>n</i>)	$n \in \mathbb{Z}$	$\omega(n)$	bul(n)
≤ -44	0	{0 }			
-43	1	$\{\boldsymbol{e}_1, \boldsymbol{e}_2, \boldsymbol{e}_3\}$			
-42	0	{0 }			
	:	-			
-38	0	{0 }			
-37	2	$\{2\boldsymbol{e}_1,\boldsymbol{e}_2,\boldsymbol{e}_3\}$			
-36	0	{0 }			
-35	0	{0 }			
-34	2	$\{\boldsymbol{e}_1, 2\boldsymbol{e}_2, \boldsymbol{e}_3\}$			
-33	0	{0 }			
-32	0	{0 }			

$n \in \mathbb{Z}$	$\omega(n)$	bul(<i>n</i>)	$n \in \mathbb{Z}$	$\omega(n)$	bul(n)
≤ -44	0	{0 }			
-43	1	$\{\boldsymbol{e}_1, \boldsymbol{e}_2, \boldsymbol{e}_3\}$			
-42	0	{ 0 }			
÷	÷	:			
-38	0	{ 0 }			
-37	2	$\{2\boldsymbol{e}_1,\boldsymbol{e}_2,\boldsymbol{e}_3\}$			
-36	0	{ 0 }			
-35	0	{0 }			
-34	2	$\{\boldsymbol{e}_1, 2\boldsymbol{e}_2, \boldsymbol{e}_3\}$			
-33	0	{ 0 }			
-32	0	{0 }			
-31	3	$\{3\boldsymbol{e}_1,\boldsymbol{e}_2,\boldsymbol{e}_3\}$			

-

$n \in \mathbb{Z}$	$\omega(n)$	bul(n)	$n \in \mathbb{Z}$	$\omega(n)$	bul(n)
≤ -44	0	{0 }			
-43	1	$\{\boldsymbol{e}_1, \boldsymbol{e}_2, \boldsymbol{e}_3\}$			
-42	0	{0 }			
÷	÷	:			
-38	0	{0 }			
-37	2	$\{2\boldsymbol{e}_1,\boldsymbol{e}_2,\boldsymbol{e}_3\}$			
-36	0	{0 }			
-35	0	{0}			
-34	2	$\{e_1, 2e_2, e_3\}$			
-33	0	{0 }			
-32	0	{0}			
-31	3	$\{3e_1, e_2, e_3\}$			
÷	÷				

 $S = \langle 6, 9, 20 \rangle = \{0, 6, 9, 12, 15, 18, 20, 21, \ldots \}.$

$n \in \mathbb{Z}$	$\omega(n)$	bul(<i>n</i>)	$n \in \mathbb{Z}$	$\omega(n)$	bul(<i>n</i>)
≤ -44	0	{0 }	6	3	$\{3\mathbf{e}_3, 2\mathbf{e}_2, \ldots\}$
-43	1	$\{\boldsymbol{e}_1, \boldsymbol{e}_2, \boldsymbol{e}_3\}$			
-42	0	{0 }			
÷	:	÷			
-38	0	{0 }			
-37	2	$\{2\boldsymbol{e}_1,\boldsymbol{e}_2,\boldsymbol{e}_3\}$			
-36	0	{0 }			
-35	0	{0 }			
-34	2	$\{\boldsymbol{e}_1, 2\boldsymbol{e}_2, \boldsymbol{e}_3\}$			
-33	0	{0 }			
-32	0	{0 }			
-31	3	$\{3\boldsymbol{e}_1,\boldsymbol{e}_2,\boldsymbol{e}_3\}$			
•	•				

.

.

.

-

$n \in \mathbb{Z}$	$\omega(n)$	bul(<i>n</i>)	$n \in \mathbb{Z}$	$\omega(n)$	bul(<i>n</i>)
≤ -44	0	{0 }	6	3	$\{3\mathbf{e}_3, 2\mathbf{e}_2, \ldots\}$
-43	1	$\{\boldsymbol{e}_1, \boldsymbol{e}_2, \boldsymbol{e}_3\}$	7	6	$\{6\mathbf{e}_1, (3, 1, 0), \ldots\}$
-42	0	{ 0 }			
:	÷	:			
-38	0	{ 0 }			
-37	2	$\{2e_1, e_2, e_3\}$			
-36	0	{0 }			
-35	0	{ 0 }			
-34	2	$\{\boldsymbol{e}_1, 2\boldsymbol{e}_2, \boldsymbol{e}_3\}$			
-33	0	{ 0 }			
-32	0	{ 0 }			
-31	3	$\{3\boldsymbol{e}_1,\boldsymbol{e}_2,\boldsymbol{e}_3\}$			
÷	÷	:			

$n \in \mathbb{Z}$	$\omega(n)$	bul(<i>n</i>)	$n\in\mathbb{Z}$	$\omega(n)$	bul(<i>n</i>)
≤ -44	0	{0 }	6	3	$\{3e_3, 2e_2, \ldots\}$
-43	1	$\{\boldsymbol{e}_1, \boldsymbol{e}_2, \boldsymbol{e}_3\}$	7	6	$\{6\mathbf{e}_1, (3, 1, 0), \ldots\}$
-42	0	{0 }	8	8	$\{8\mathbf{e}_1, (5, 2, 0), \ldots\}$
:	÷	:			
-38	0	{0 }			
-37	2	$\{2\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$			
-36	0	{0 }			
-35	0	{0 }			
-34	2	$\{\boldsymbol{e}_1, 2\boldsymbol{e}_2, \boldsymbol{e}_3\}$			
-33	0	{0 }			
-32	0	{0 }			
-31	3	$\{3e_1, e_2, e_3\}$			
÷	÷				

$n \in \mathbb{Z}$	$\omega(n)$	bul(<i>n</i>)	$n \in \mathbb{Z}$	$\omega(n)$	bul(<i>n</i>)
≤ -44	0	{0 }	6	3	$\{3\boldsymbol{e}_3, 2\boldsymbol{e}_2, \ldots\}$
-43	1	$\{\boldsymbol{e}_1, \boldsymbol{e}_2, \boldsymbol{e}_3\}$	7	6	$\{6\mathbf{e}_1, (3, 1, 0), \ldots\}$
-42	0	{0 }	8	8	$\{8\mathbf{e}_1, (5, 2, 0), \ldots\}$
÷	÷	:	9	3	$\{3\boldsymbol{e}_1,3\boldsymbol{e}_3,\ldots\}$
-38	0	{0 }	10	5	$\{5e_1, (2, 2, 0), \ldots\}$
-37	2	$\{2\boldsymbol{e}_1,\boldsymbol{e}_2,\boldsymbol{e}_3\}$	11	10	$\{10\mathbf{e}_1, (4, 3, 0), \ldots\}$
-36	0	{0 }	12	3	$\{3\boldsymbol{e}_3, 2\boldsymbol{e}_1, \ldots\}$
-35	0	{0 }	13	7	$\{7\mathbf{e}_1, (1, 3, 0), \ldots\}$
-34	2	$\{\boldsymbol{e}_1, 2\boldsymbol{e}_2, \boldsymbol{e}_3\}$	14	9	$\{9\mathbf{e}_1, (6, 2, 0), \ldots\}$
-33	0	{0 }	15	4	$\{4\mathbf{e}_1, (6, 2, 0), \ldots\}$
-32	0	{0 }	÷	÷	:
-31	3	$\{3\boldsymbol{e}_1,\boldsymbol{e}_2,\boldsymbol{e}_3\}$			
÷	÷	÷			

$n \in \mathbb{Z}$	$\omega(n)$	bul(<i>n</i>)	$n \in \mathbb{Z}$	$\omega(n)$	bul(<i>n</i>)
≤ -44	0	{0 }	6	3	$\{3\mathbf{e}_3, 2\mathbf{e}_2, \ldots\}$
-43	1	$\{\boldsymbol{e}_1, \boldsymbol{e}_2, \boldsymbol{e}_3\}$	7	6	$\{6\mathbf{e}_1, (3, 1, 0), \ldots\}$
-42	0	{0 }	8	8	$\{8e_1, (5, 2, 0), \ldots\}$
÷	÷	:	9	3	$\{3\boldsymbol{e}_1,3\boldsymbol{e}_3,\ldots\}$
-38	0	{0 }	10	5	$\{5\mathbf{e}_1, (2, 2, 0), \ldots\}$
-37	2	$\{2\boldsymbol{e}_1,\boldsymbol{e}_2,\boldsymbol{e}_3\}$	11	10	$\{10\mathbf{e}_1, (4, 3, 0), \ldots\}$
-36	0	{0 }	12	3	$\{3\boldsymbol{e}_3, 2\boldsymbol{e}_1, \ldots\}$
-35	0	{0 }	13	7	$\{7\mathbf{e}_1, (1, 3, 0), \ldots\}$
-34	2	$\{\boldsymbol{e}_1, 2\boldsymbol{e}_2, \boldsymbol{e}_3\}$	14	9	$\{9\mathbf{e}_1, (6, 2, 0), \ldots\}$
-33	0	{0 }	15	4	$\{4\mathbf{e}_1, (6, 2, 0), \ldots\}$
-32	0	{0 }	:	÷	:
-31	3	$\{3\boldsymbol{e}_1,\boldsymbol{e}_2,\boldsymbol{e}_3\}$	149	33	$\{33e_1,\ldots\}$
÷	÷	:			

$n \in \mathbb{Z}$	$\omega(n)$	bul(<i>n</i>)	$n \in \mathbb{Z}$	$\omega(n)$	bul(<i>n</i>)
≤ -44	0	{0 }	6	3	$\{3\boldsymbol{e}_3, 2\boldsymbol{e}_2, \ldots\}$
-43	1	$\{\boldsymbol{e}_1, \boldsymbol{e}_2, \boldsymbol{e}_3\}$	7	6	$\{6\mathbf{e}_1, (3, 1, 0), \ldots\}$
-42	0	{0 }	8	8	$\{8\mathbf{e}_1, (5, 2, 0), \ldots\}$
:	÷		9	3	$\{3\textbf{e}_1, 3\textbf{e}_3, \ldots\}$
-38	0	{0 }	10	5	$\{5\mathbf{e}_1, (2, 2, 0), \ldots\}$
-37	2	$\{2\boldsymbol{e}_1,\boldsymbol{e}_2,\boldsymbol{e}_3\}$	11	10	$\{10e_1, (4, 3, 0), \ldots\}$
-36	0	{0 }	12	3	$\{3\boldsymbol{e}_3, 2\boldsymbol{e}_1, \ldots\}$
-35	0	{0 }	13	7	$\{7e_1, (1, 3, 0), \ldots\}$
-34	2	$\{\boldsymbol{e}_1, 2\boldsymbol{e}_2, \boldsymbol{e}_3\}$	14	9	$\{9\mathbf{e}_1, (6, 2, 0), \ldots\}$
-33	0	{0 }	15	4	$\{4\mathbf{e}_1, (6, 2, 0), \ldots\}$
-32	0	{0 }	:	÷	:
-31	3	$\{3\boldsymbol{e}_1,\boldsymbol{e}_2,\boldsymbol{e}_3\}$	149	33	$\{33e_1,\ldots\}$
÷	÷	÷	150	25	$\{25e_1,\ldots\}$

$n \in \mathbb{Z}$	$\omega(n)$	bul(n)	$n \in \mathbb{Z}$	$\omega(n)$	bul(n)
			6	3	$\{3\boldsymbol{e}_3,2\boldsymbol{e}_2,\ldots\}$
			9	3	$\{3\boldsymbol{e}_1,3\boldsymbol{e}_3,\ldots\}$
			12	3	$\{3\boldsymbol{e}_3,2\boldsymbol{e}_1,\ldots\}$
			15	4	$\{4\bm{e}_1,(6,2,0),\ldots\}$
			:	÷	
			149	33	$\{33\mathbf{e}_1,\ldots\}$
			150	25	$\{25\mathbf{e}_1,\ldots\}$

Runtime comparison

Runtime comparison

S	$n \in S$	$\omega_{S}(n)$	Existing	Dynamic
$\langle 6,9,20 \rangle$	1000	170	1m 1.3s	бms
$\langle 11, 13, 15 angle$	1000	97	0m 10.7s	5ms
$\langle 11, 13, 15 angle$	3000	279	14m 34.7s	15ms
$\langle 11, 13, 15 angle$	10000	915		42ms
$\langle 15,27,32,35 angle$	1000	69	3m 54.7s	9ms
$\langle 100, 121, 142, 163, 284 angle$	25715	308		0m 27s
$\langle 1001, 1211, 1421, 1631, 2841 \rangle$	357362	405		57m 27s

GAP Numerical Semigroups Package, available at

http://www.gap-system.org/Packages/numericalsgps.html.

Fact

Dynamic algorithms rock.

Fact

Dynamic algorithms rock.

Problem

What about catenary degree?

Fact

Dynamic algorithms rock.

Problem

What about catenary degree?

Cover morphisms:

Computing catenary degree, delta set, and on

References

C. O'Neill, R. Pelayo (2014)

How do you measure primality?

American Mathematical Monthly, 122 (2014), no. 2, 121–137.

J. García-García, M. Moreno-Frías, A. Vigneron-Tenorio (2014) Computation of delta sets of numerical monoids. preprint.

T. Barron, C. O'Neill, R. Pelayo (2015)

On the computation of delta sets and $\omega\mbox{-}{\rm primality}$ in numerical monoids. $\mbox{preprint}.$

M. Delgado, P. García-Sánchez, J. Morais

GAP Numerical Semigroups Package

http://www.gap-system.org/Packages/numericalsgps.html.

References

C. O'Neill, R. Pelayo (2014)

How do you measure primality?

American Mathematical Monthly, 122 (2014), no. 2, 121–137.

J. García-García, M. Moreno-Frías, A. Vigneron-Tenorio (2014) Computation of delta sets of numerical monoids. preprint.

T. Barron, C. O'Neill, R. Pelayo (2015)

On the computation of delta sets and $\omega\mbox{-}{\rm primality}$ in numerical monoids. $\mbox{preprint}.$

M. Delgado, P. García-Sánchez, J. Morais

GAP Numerical Semigroups Package

http://www.gap-system.org/Packages/numericalsgps.html.

Thanks!