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Factorial domains

Definition

An integral domain R is factorial if for each non-unit r ∈ R,

1 there is a factorization r = u1 · · · uk as a product of irreducibles, and

2 this factorization is unique (up to reordering and unit multiple).
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Factorial domains

Definition

An integral domain R is atomic if for each non-unit r ∈ R,

1 there is a factorization r = u1 · · · uk as a product of irreducibles, and

2 this factorization is unique (up to reordering and unit multiple).

Example

Z is factorial: each z = p1 · · · pk for primes p1 · · · pk .

Example

If R = Z[
√
−5], then 6 ∈ R has two distinct factorizations:

6 = 2 · 3 = (1 +
√
−5)(1−

√
−5)
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2 this factorization is unique (up to reordering and unit multiple).

Example

Z is factorial: each z = p1 · · · pk for primes p1 · · · pk .

Example

If R = Z[
√
−5], then 6 ∈ R has two distinct factorizations:

6 = 2 · 3 = (1 +
√
−5)(1−

√
−5)

To prove: define a valuation a + b
√
−5 7→ a2 + 5b2.
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Factorial domains

Definition

An integral domain R is atomic if for each non-unit r ∈ R,

1 there is a factorization r = u1 · · · uk as a product of irreducibles, and

2 this factorization is unique (up to reordering and unit multiple).

Example

Z is factorial: each z = p1 · · · pk for primes p1 · · · pk .

Example

If R = Z[
√
−5], then 6 ∈ R has two distinct factorizations:

6 = 2 · 3 = (1 +
√
−5)(1−

√
−5)

To prove: define a valuation a + b
√
−5 7→ a2 + 5b2.

The point: it’s nontrivial.
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Factorial domains

Definition

An integral domain R is atomic if for each non-unit r ∈ R,

1 there is a factorization r = u1 · · · uk as a product of irreducibles, and

2 this factorization is unique (up to reordering and unit multiple).

Example

Z is factorial: each z = p1 · · · pk for primes p1 · · · pk .

Example

Let R = C[x2, x3].

1 x2 and x3 are irreducible.

2 x6 = x3 · x3 = x2 · x2 · x2.
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Factorial domains

Definition

An integral domain R is atomic if for each non-unit r ∈ R,

1 there is a factorization r = u1 · · · uk as a product of irreducibles, and

2 this factorization is unique (up to reordering and unit multiple).

Example

Z is factorial: each z = p1 · · · pk for primes p1 · · · pk .

Observation

Where’s the addition?

Factorization in (cancellative comutative) monoids:
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Factorial domains

Definition

An integral domain R is atomic if for each non-unit r ∈ R,

1 there is a factorization r = u1 · · · uk as a product of irreducibles, and

2 this factorization is unique (up to reordering and unit multiple).

Example

Z is factorial: each z = p1 · · · pk for primes p1 · · · pk .

Observation

Where’s the addition?

Factorization in (cancellative comutative) monoids:

(R,+, ·)  (R \ {0}, ·)
(C[M],+, ·)  (M, ·)
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Interesting monoids

Definition

An arithmetical congruence monoid is a multiplicative submonoid

Ma,b = {n : n ≡ a mod b} ⊂ Z>0

for a, b > 0 with a2 ≡ a mod b.

Example

The Hilbert monoid M1,4 = {1, 5, 9, 13, 17, . . .}.
Every product in M1,4 is a product in Z.

9, 21, 49 ∈ M1,4 are irreducible.

441 = 9 · 49 = 21 · 21
= (32) · (72) = (3 · 7) · (3 · 7).
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Interesting monoids

Definition

A numerical monoid S is an additive submonoid of N with |N \ S | <∞.

Example

Let S = 〈2, 3〉 = {2, 3, 4, 5, . . .} under addition. C[S ] = C[x2, x3].

x6 = x3 · x3 = x2 · x2 · x2  6 = 3 + 3 = 2 + 2 + 2.

Factorizations in S are additive!

Example

McN = 〈6, 9, 20〉 = {0, 6, 9, 12, 15, 18, 20, 21, . . .}. “McNugget Monoid”
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Factorization invariants

Definition

Fix a commutative, cancellative monoid (M, ·). For each non-unit m ∈ M,

Z(m) = {factorizations m =
∏

i ui}
denotes the set of factorizations of m. The elasticity of m is

ρ(m) =
max length in Z(m)

min length in Z(m)
.

The elasticity of M is ρ(M) = supm∈M ρ(m).

Christopher O’Neill (Texas A&M University) Invariants of non-unique factorization October 21, 2014 5 / 9



Factorization invariants

Definition

Fix a commutative, cancellative monoid (M, ·). For each non-unit m ∈ M,

Z(m) = {factorizations m =
∏

i ui}
denotes the set of factorizations of m.

The elasticity of m is

ρ(m) =
max length in Z(m)

min length in Z(m)
.

The elasticity of M is ρ(M) = supm∈M ρ(m).

Christopher O’Neill (Texas A&M University) Invariants of non-unique factorization October 21, 2014 5 / 9



Factorization invariants

Definition

Fix a commutative, cancellative monoid (M, ·). For each non-unit m ∈ M,

Z(m) = {factorizations m =
∏

i ui}
denotes the set of factorizations of m. The elasticity of m is

ρ(m) =
max length in Z(m)

min length in Z(m)
.

The elasticity of M is ρ(M) = supm∈M ρ(m).

Christopher O’Neill (Texas A&M University) Invariants of non-unique factorization October 21, 2014 5 / 9



Factorization invariants

Definition

Fix a commutative, cancellative monoid (M, ·). For each non-unit m ∈ M,

Z(m) = {factorizations m =
∏

i ui}
denotes the set of factorizations of m. The elasticity of m is

ρ(m) =
max length in Z(m)

min length in Z(m)
.

The elasticity of M is ρ(M) = supm∈M ρ(m).

Christopher O’Neill (Texas A&M University) Invariants of non-unique factorization October 21, 2014 5 / 9



Factorization invariants

Definition

Fix a commutative, cancellative monoid (M, ·). For each non-unit m ∈ M,

Z(m) = {factorizations m =
∏

i ui}
denotes the set of factorizations of m. The elasticity of m is

ρ(m) =
max length in Z(m)

min length in Z(m)
.

The elasticity of M is ρ(M) = supm∈M ρ(m).

Example (The good)

The Hilbert monoid: ρ(M1,4) = 1.

Every factorization of m ∈ M1,4 has the same length.

This is (almost) the best we could hope for.
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Factorization invariants
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i ui}
denotes the set of factorizations of m. The elasticity of m is

ρ(m) =
max length in Z(m)

min length in Z(m)
.

The elasticity of M is ρ(M) = supm∈M ρ(m).

Example (The bad)

Numerical monoids: McN = 〈6, 9, 20〉 ⊂ N. ρ(McN) = 20/6.

6 · 20 = 6 + · · ·+ 6 = 20 + · · ·+ 20, so ρ(6 · 20) = 20/6.

ρ(n) ≤ 20/6 for all n ∈ McN.
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Factorization invariants

Definition

Fix a commutative, cancellative monoid (M, ·). For each non-unit m ∈ M,

Z(m) = {factorizations m =
∏

i ui}
denotes the set of factorizations of m. The elasticity of m is

ρ(m) =
max length in Z(m)

min length in Z(m)
.

The elasticity of M is ρ(M) = supm∈M ρ(m).

Example (The ugly)

The Meyerson monoid: ρ(M4,6) = 2.

ρ(m) < 2 for all m ∈ M4,6!

Elasticity of M4,6 is not accepted.
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Factorization lengths in numerical monoids

Let S = 〈n1, . . . , nk〉 ⊂ (N,+). For n ∈ S ,

M(n) = max length in Z(n) m(n) = min length in Z(n)

Observations

Max length factorization: lots of small irreducibles

Min length factorization: lots of large irreducibles

Theorem (Barron–O–Pelayo, 2014)

Let S = 〈n1, . . . , nk〉. For n > nk(nk−1 − 1),

M(n + n1) = 1 + M(n)
m(n + nk) = 1 + m(n)

Equivalently, M(n), m(n) are eventually quasilinear:

M(n) = 1
n1
n + a0(n)

m(n) = 1
nk
n + b0(n)

for periodic functions a0(n), b0(n).
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Factorization lengths in numerical monoids

Theorem (Barron–O–Pelayo, 2014)

Let S = 〈n1, . . . , nk〉. For n > nk(nk−1 − 1),

M(n + n1) = 1 + M(n) and m(n + nk) = 1 + m(n).

S = 〈6, 9, 20〉:

n = 1000001.

m(1000001) = ?

m(181) = 11 and 181 = 2(6) + 1(9) + 8(20)

m(1000001) = 50002 and 1000001 = 2(6) + 1(9) + 49993(20)
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