Invariants of non-unique factorization

Christopher O'Neill

Texas A&M University

coneill@math.tamu.edu

Joint with Roberto Pelayo

October 21, 2014

Definition

An integral domain R is *factorial* if for each non-unit $r \in R$,

- there is a *factorization* $r = u_1 \cdots u_k$ as a product of irreducibles, and
- 2 this factorization is unique (up to reordering and unit multiple).

Definition

An integral domain R is *factorial* if for each non-unit $r \in R$,

- **(**) there is a *factorization* $r = u_1 \cdots u_k$ as a product of irreducibles, and
- 2 this factorization is unique (up to reordering and unit multiple).

Example

 \mathbb{Z} is factorial: each $z = p_1 \cdots p_k$ for primes $p_1 \cdots p_k$.

Definition

An integral domain R is *atomic* if for each non-unit $r \in R$,

- **()** there is a *factorization* $r = u_1 \cdots u_k$ as a product of irreducibles, and
- 2 this factorization is unique (up to reordering and unit multiple).

Example

 \mathbb{Z} is factorial: each $z = p_1 \cdots p_k$ for primes $p_1 \cdots p_k$.

Definition

An integral domain R is *atomic* if for each non-unit $r \in R$,

- **()** there is a *factorization* $r = u_1 \cdots u_k$ as a product of irreducibles, and
- **2** this factorization is unique (up to reordering and unit multiple).

Example

 \mathbb{Z} is factorial: each $z = p_1 \cdots p_k$ for primes $p_1 \cdots p_k$.

Example

If $R = \mathbb{Z}[\sqrt{-5}]$, then $6 \in R$ has two distinct factorizations:

$$6 = 2 \cdot 3 = (1 + \sqrt{-5})(1 - \sqrt{-5})$$

Definition

An integral domain R is *atomic* if for each non-unit $r \in R$,

- **()** there is a *factorization* $r = u_1 \cdots u_k$ as a product of irreducibles, and
- **2** this factorization is unique (up to reordering and unit multiple).

Example

 \mathbb{Z} is factorial: each $z = p_1 \cdots p_k$ for primes $p_1 \cdots p_k$.

Example

If $R = \mathbb{Z}[\sqrt{-5}]$, then $6 \in R$ has two distinct factorizations:

$$6 = 2 \cdot 3 = (1 + \sqrt{-5})(1 - \sqrt{-5})$$

To prove: define a valuation $a + b\sqrt{-5} \mapsto a^2 + 5b^2$.

Definition

An integral domain R is *atomic* if for each non-unit $r \in R$,

- **()** there is a *factorization* $r = u_1 \cdots u_k$ as a product of irreducibles, and
- 2 this factorization is unique (up to reordering and unit multiple).

Example

 \mathbb{Z} is factorial: each $z = p_1 \cdots p_k$ for primes $p_1 \cdots p_k$.

Example

If $R = \mathbb{Z}[\sqrt{-5}]$, then $6 \in R$ has two distinct factorizations:

$$6 = 2 \cdot 3 = (1 + \sqrt{-5})(1 - \sqrt{-5})$$

To prove: define a valuation $a + b\sqrt{-5} \mapsto a^2 + 5b^2$. The point: it's nontrivial.

Definition

An integral domain R is *atomic* if for each non-unit $r \in R$,

- **()** there is a *factorization* $r = u_1 \cdots u_k$ as a product of irreducibles, and
- **2** this factorization is unique (up to reordering and unit multiple).

Example

 \mathbb{Z} is factorial: each $z = p_1 \cdots p_k$ for primes $p_1 \cdots p_k$.

Definition

An integral domain R is *atomic* if for each non-unit $r \in R$,

- **()** there is a *factorization* $r = u_1 \cdots u_k$ as a product of irreducibles, and
- **2** this factorization is unique (up to reordering and unit multiple).

Example

 \mathbb{Z} is factorial: each $z = p_1 \cdots p_k$ for primes $p_1 \cdots p_k$.

Let
$$R = \mathbb{C}[x^2, x^3]$$
.

Definition

An integral domain R is *atomic* if for each non-unit $r \in R$,

- **()** there is a *factorization* $r = u_1 \cdots u_k$ as a product of irreducibles, and
- **2** this factorization is unique (up to reordering and unit multiple).

Example

 \mathbb{Z} is factorial: each $z = p_1 \cdots p_k$ for primes $p_1 \cdots p_k$.

Let
$$R = \mathbb{C}[x^2, x^3]$$
.
• x^2 and x^3 are irreducible.

Definition

An integral domain R is *atomic* if for each non-unit $r \in R$,

- **()** there is a *factorization* $r = u_1 \cdots u_k$ as a product of irreducibles, and
- 2 this factorization is unique (up to reordering and unit multiple).

Example

 \mathbb{Z} is factorial: each $z = p_1 \cdots p_k$ for primes $p_1 \cdots p_k$.

Let
$$R = \mathbb{C}[x^2, x^3]$$
.
• x^2 and x^3 are irreducible.
• $x^6 = x^3 \cdot x^3 = x^2 \cdot x^2 \cdot x^2$.

Definition

An integral domain R is *atomic* if for each non-unit $r \in R$,

- **()** there is a *factorization* $r = u_1 \cdots u_k$ as a product of irreducibles, and
- 2 this factorization is unique (up to reordering and unit multiple).

Example

 \mathbb{Z} is factorial: each $z = p_1 \cdots p_k$ for primes $p_1 \cdots p_k$.

Definition

An integral domain R is *atomic* if for each non-unit $r \in R$,

- **()** there is a *factorization* $r = u_1 \cdots u_k$ as a product of irreducibles, and
- 2 this factorization is unique (up to reordering and unit multiple).

Example

 \mathbb{Z} is factorial: each $z = p_1 \cdots p_k$ for primes $p_1 \cdots p_k$.

Observation

• Where's the addition?

Definition

An integral domain R is *atomic* if for each non-unit $r \in R$,

- **()** there is a *factorization* $r = u_1 \cdots u_k$ as a product of irreducibles, and
- 2 this factorization is unique (up to reordering and unit multiple).

Example

 \mathbb{Z} is factorial: each $z = p_1 \cdots p_k$ for primes $p_1 \cdots p_k$.

- Where's the addition?
- Factorization in (cancellative comutative) monoids:

Definition

An integral domain R is *atomic* if for each non-unit $r \in R$,

- **()** there is a *factorization* $r = u_1 \cdots u_k$ as a product of irreducibles, and
- 2 this factorization is unique (up to reordering and unit multiple).

Example

 \mathbb{Z} is factorial: each $z = p_1 \cdots p_k$ for primes $p_1 \cdots p_k$.

- Where's the addition?
- Factorization in (cancellative comutative) monoids:

$$(R,+,\cdot) \quad \rightsquigarrow \quad (R \setminus \{0\},\cdot)$$

Definition

An integral domain R is *atomic* if for each non-unit $r \in R$,

- **()** there is a *factorization* $r = u_1 \cdots u_k$ as a product of irreducibles, and
- 2 this factorization is unique (up to reordering and unit multiple).

Example

 \mathbb{Z} is factorial: each $z = p_1 \cdots p_k$ for primes $p_1 \cdots p_k$.

- Where's the addition?
- Factorization in (cancellative comutative) monoids:

$$\begin{array}{rcl} (R,+,\cdot) & \rightsquigarrow & (R\setminus\{0\},\cdot)\\ (\mathbb{C}[M],+,\cdot) & \rightsquigarrow & (M,\cdot) \end{array}$$

An arithmetical congruence monoid is a multiplicative submonoid

$$M_{a,b} = \{n : n \equiv a \mod b\} \subset \mathbb{Z}_{>0}$$

for a, b > 0 with $a^2 \equiv a \mod b$.

An arithmetical congruence monoid is a multiplicative submonoid

$$M_{a,b} = \{n : n \equiv a \mod b\} \subset \mathbb{Z}_{>0}$$

for a, b > 0 with $a^2 \equiv a \mod b$.

Example

An arithmetical congruence monoid is a multiplicative submonoid

$$M_{a,b} = \{n : n \equiv a \mod b\} \subset \mathbb{Z}_{>0}$$

for a, b > 0 with $a^2 \equiv a \mod b$.

Example

The Hilbert monoid $M_{1,4} = \{1, 5, 9, 13, 17, \ldots\}$.

• Every product in $M_{1,4}$ is a product in \mathbb{Z} .

An arithmetical congruence monoid is a multiplicative submonoid

$$M_{a,b} = \{n : n \equiv a \mod b\} \subset \mathbb{Z}_{>0}$$

for a, b > 0 with $a^2 \equiv a \mod b$.

Example

- Every product in $M_{1,4}$ is a product in \mathbb{Z} .
- $9, 21, 49 \in M_{1,4}$ are irreducible.

An arithmetical congruence monoid is a multiplicative submonoid

$$M_{a,b} = \{n : n \equiv a \mod b\} \subset \mathbb{Z}_{>0}$$

for a, b > 0 with $a^2 \equiv a \mod b$.

Example

- Every product in $M_{1,4}$ is a product in \mathbb{Z} .
- $9, 21, 49 \in M_{1,4}$ are irreducible.
- $441 = 9 \cdot 49 = 21 \cdot 21$

An arithmetical congruence monoid is a multiplicative submonoid

$$M_{a,b} = \{n : n \equiv a \mod b\} \subset \mathbb{Z}_{>0}$$

for a, b > 0 with $a^2 \equiv a \mod b$.

Example

- Every product in $M_{1,4}$ is a product in \mathbb{Z} .
- 9,21,49 \in $M_{1,4}$ are irreducible.

•
$$441 = 9 \cdot 49 = 21 \cdot 21$$

= $(3^2) \cdot (7^2) = (3 \cdot 7) \cdot (3 \cdot 7).$

A numerical monoid S is an additive submonoid of \mathbb{N} with $|\mathbb{N} \setminus S| < \infty$.

A numerical monoid S is an **additive** submonoid of \mathbb{N} with $|\mathbb{N} \setminus S| < \infty$.

Example

Let $S = \langle 2, 3 \rangle = \{2, 3, 4, 5, ...\}$ under addition.

A numerical monoid S is an **additive** submonoid of \mathbb{N} with $|\mathbb{N} \setminus S| < \infty$.

Example

Let $S = \langle 2, 3 \rangle = \{2, 3, 4, 5, ...\}$ under addition. $\mathbb{C}[S] = \mathbb{C}[x^2, x^3]$.

A numerical monoid S is an additive submonoid of \mathbb{N} with $|\mathbb{N} \setminus S| < \infty$.

Let
$$S = \langle 2, 3 \rangle = \{2, 3, 4, 5, ...\}$$
 under addition. $\mathbb{C}[S] = \mathbb{C}[x^2, x^3]$.
 $x^6 = x^3 \cdot x^3 = x^2 \cdot x^2 \cdot x^2$

A numerical monoid S is an additive submonoid of \mathbb{N} with $|\mathbb{N} \setminus S| < \infty$.

Let
$$S = \langle 2, 3 \rangle = \{2, 3, 4, 5, ...\}$$
 under addition. $\mathbb{C}[S] = \mathbb{C}[x^2, x^3]$.
 $x^6 = x^3 \cdot x^3 = x^2 \cdot x^2 \cdot x^2 \quad \rightsquigarrow \quad 6 = 3 + 3 = 2 + 2 + 2.$

A numerical monoid S is an additive submonoid of \mathbb{N} with $|\mathbb{N} \setminus S| < \infty$.

Example

Let
$$S = \langle 2, 3 \rangle = \{2, 3, 4, 5, ...\}$$
 under **addition**. $\mathbb{C}[S] = \mathbb{C}[x^2, x^3]$.
 $x^6 = x^3 \cdot x^3 = x^2 \cdot x^2 \cdot x^2 \quad \rightsquigarrow \quad 6 = 3 + 3 = 2 + 2 + 2.$

Factorizations in S are additive!

A numerical monoid S is an **additive** submonoid of \mathbb{N} with $|\mathbb{N} \setminus S| < \infty$.

Example

Let
$$S = \langle 2, 3 \rangle = \{2, 3, 4, 5, ...\}$$
 under addition. $\mathbb{C}[S] = \mathbb{C}[x^2, x^3]$.
 $x^6 = x^3 \cdot x^3 = x^2 \cdot x^2 \cdot x^2 \quad \rightsquigarrow \quad 6 = 3 + 3 = 2 + 2 + 2.$

Factorizations in S are additive!

Example

 $McN = \langle 6, 9, 20 \rangle = \{0, 6, 9, 12, 15, 18, 20, 21, \ldots \}.$

A numerical monoid S is an **additive** submonoid of \mathbb{N} with $|\mathbb{N} \setminus S| < \infty$.

Example

Let
$$S = \langle 2, 3 \rangle = \{2, 3, 4, 5, ...\}$$
 under addition. $\mathbb{C}[S] = \mathbb{C}[x^2, x^3]$.
 $x^6 = x^3 \cdot x^3 = x^2 \cdot x^2 \cdot x^2 \quad \rightsquigarrow \quad 6 = 3 + 3 = 2 + 2 + 2.$

Factorizations in S are additive!

Example

 $\mathit{McN} = \langle 6, 9, 20 \rangle = \{0, 6, 9, 12, 15, 18, 20, 21, \ldots \}.$ "McNugget Monoid"

Factorization invariants

Christopher O'Neill (Texas A&M University) Invariants of non-unique factorization

Fix a commutative, cancellative monoid (M, \cdot) . For each non-unit $m \in M$,

$$\mathsf{Z}(m) = \{ \mathsf{factorizations} \ m = \prod_i u_i \}$$

denotes the set of factorizations of m.

Fix a commutative, cancellative monoid (M, \cdot) . For each non-unit $m \in M$,

$$Z(m) = \{ factorizations \ m = \prod_i u_i \}$$

denotes the set of factorizations of m. The elasticity of m is

$$\rho(m) = \frac{\max \text{ length in } Z(m)}{\min \text{ length in } Z(m)}$$

Fix a commutative, cancellative monoid (M, \cdot) . For each non-unit $m \in M$,

$$Z(m) = \{ factorizations \ m = \prod_i u_i \}$$

denotes the set of factorizations of m. The elasticity of m is

$$\rho(m) = \frac{\max \text{ length in } Z(m)}{\min \text{ length in } Z(m)}.$$

The *elasticity* of *M* is $\rho(M) = \sup_{m \in M} \rho(m)$.

Fix a commutative, cancellative monoid (M, \cdot) . For each non-unit $m \in M$,

$$Z(m) = \{$$
factorizations $m = \prod_i u_i \}$

denotes the set of factorizations of m. The elasticity of m is

$$\rho(m) = rac{\max \text{ length in } Z(m)}{\min \text{ length in } Z(m)}.$$

The *elasticity* of *M* is $\rho(M) = \sup_{m \in M} \rho(m)$.

Example (The good)

The Hilbert monoid: $\rho(M_{1,4}) = 1$.

Fix a commutative, cancellative monoid (M, \cdot) . For each non-unit $m \in M$,

$$Z(m) = \{$$
factorizations $m = \prod_i u_i \}$

denotes the set of factorizations of m. The elasticity of m is

$$ho(m) = rac{\max \text{ length in } Z(m)}{\min \text{ length in } Z(m)}.$$

The *elasticity* of *M* is $\rho(M) = \sup_{m \in M} \rho(m)$.

Example (The good)

The Hilbert monoid: $\rho(M_{1,4}) = 1$.

• Every factorization of $m \in M_{1,4}$ has the same length.

Fix a commutative, cancellative monoid (M, \cdot) . For each non-unit $m \in M$,

$$Z(m) = \{$$
factorizations $m = \prod_i u_i \}$

denotes the set of factorizations of m. The elasticity of m is

$$\rho(m) = rac{\max \text{ length in } Z(m)}{\min \text{ length in } Z(m)}.$$

The *elasticity* of *M* is $\rho(M) = \sup_{m \in M} \rho(m)$.

Example (The good)

The Hilbert monoid: $\rho(M_{1,4}) = 1$.

- Every factorization of $m \in M_{1,4}$ has the same length.
- This is (almost) the best we could hope for.

Fix a commutative, cancellative monoid (M, \cdot) . For each non-unit $m \in M$,

$$Z(m) = \{ factorizations \ m = \prod_i u_i \}$$

denotes the set of factorizations of m. The elasticity of m is

$$\rho(m) = \frac{\max \text{ length in } Z(m)}{\min \text{ length in } Z(m)}.$$

The *elasticity* of *M* is $\rho(M) = \sup_{m \in M} \rho(m)$.

Example (The bad)

Numerical monoids: $McN = \langle 6, 9, 20 \rangle \subset \mathbb{N}$. $\rho(McN) = 20/6$.

Fix a commutative, cancellative monoid (M, \cdot) . For each non-unit $m \in M$,

$$Z(m) = \{ factorizations \ m = \prod_i u_i \}$$

denotes the set of factorizations of m. The elasticity of m is

$$\rho(m) = \frac{\max \text{ length in } Z(m)}{\min \text{ length in } Z(m)}.$$

The *elasticity* of *M* is $\rho(M) = \sup_{m \in M} \rho(m)$.

Example (The bad)

Numerical monoids: $McN = \langle 6, 9, 20 \rangle \subset \mathbb{N}$. $\rho(McN) = 20/6$.

•
$$6 \cdot 20 = 6 + \dots + 6 = 20 + \dots + 20$$
, so $\rho(6 \cdot 20) = 20/6$.

Fix a commutative, cancellative monoid (M, \cdot) . For each non-unit $m \in M$,

$$Z(m) = \{$$
factorizations $m = \prod_i u_i \}$

denotes the set of factorizations of m. The elasticity of m is

$$\rho(m) = \frac{\max \text{ length in } Z(m)}{\min \text{ length in } Z(m)}.$$

The *elasticity* of *M* is $\rho(M) = \sup_{m \in M} \rho(m)$.

Example (The bad)

Numerical monoids: $McN = \langle 6, 9, 20 \rangle \subset \mathbb{N}$. $\rho(McN) = 20/6$.

•
$$6 \cdot 20 = 6 + \dots + 6 = 20 + \dots + 20$$
, so $\rho(6 \cdot 20) = 20/6$.

•
$$\rho(n) \leq 20/6$$
 for all $n \in McN$.

Fix a commutative, cancellative monoid (M, \cdot) . For each non-unit $m \in M$,

$$Z(m) = \{$$
factorizations $m = \prod_i u_i \}$

denotes the set of factorizations of m. The elasticity of m is

$$\rho(m) = rac{\max \text{ length in } Z(m)}{\min \text{ length in } Z(m)}.$$

The *elasticity* of *M* is $\rho(M) = \sup_{m \in M} \rho(m)$.

Example (The ugly)

The Meyerson monoid: $\rho(M_{4,6}) = 2$.

Fix a commutative, cancellative monoid (M, \cdot) . For each non-unit $m \in M$,

$$Z(m) = \{$$
factorizations $m = \prod_i u_i \}$

denotes the set of factorizations of m. The elasticity of m is

$$\rho(m) = rac{\max \text{ length in } Z(m)}{\min \text{ length in } Z(m)}.$$

The *elasticity* of *M* is $\rho(M) = \sup_{m \in M} \rho(m)$.

Example (The ugly)

The Meyerson monoid: $\rho(M_{4,6}) = 2$.

• $\rho(m) < 2$ for all $m \in M_{4,6}!$

Fix a commutative, cancellative monoid (M, \cdot) . For each non-unit $m \in M$,

$$Z(m) = \{$$
factorizations $m = \prod_i u_i \}$

denotes the set of factorizations of m. The elasticity of m is

$$\rho(m) = rac{\max \text{ length in } Z(m)}{\min \text{ length in } Z(m)}.$$

The *elasticity* of *M* is $\rho(M) = \sup_{m \in M} \rho(m)$.

Example (The ugly)

The Meyerson monoid: $\rho(M_{4,6}) = 2$.

- $\rho(m) < 2$ for all $m \in M_{4,6}!$
- Elasticity of $M_{4,6}$ is not accepted.

Let $S = \langle n_1, \dots, n_k \rangle \subset (\mathbb{N}, +)$. For $n \in S$, $M(n) = max \text{ length in } Z(n) \qquad m(n) = min \text{ length in } Z(n)$

Let
$$S = \langle n_1, \dots, n_k \rangle \subset (\mathbb{N}, +)$$
. For $n \in S$,
 $M(n) = max \text{ length in } Z(n) \qquad m(n) = min \text{ length in } Z(n)$

Observations

Let
$$S = \langle n_1, \dots, n_k \rangle \subset (\mathbb{N}, +)$$
. For $n \in S$,
 $M(n) = max \text{ length in } Z(n) \qquad m(n) = min \text{ length in } Z(n)$

Observations

• Max length factorization: lots of small irreducibles

Let
$$S = \langle n_1, \dots, n_k \rangle \subset (\mathbb{N}, +)$$
. For $n \in S$,
 $M(n) = \max$ length in $Z(n)$ $m(n) = \min$ length in $Z(n)$

Observations

- Max length factorization: lots of small irreducibles
- Min length factorization: lots of large irreducibles

Let
$$S = \langle n_1, \dots, n_k \rangle \subset (\mathbb{N}, +)$$
. For $n \in S$,
 $M(n) = max$ length in $Z(n)$ $m(n) = min$ length in $Z(n)$

Observations

- Max length factorization: lots of small irreducibles
- Min length factorization: lots of large irreducibles

Theorem (Barron–O–Pelayo, 2014)

Let
$$S = \langle n_1, ..., n_k \rangle$$
. For $n > n_k(n_{k-1} - 1)$,
 $M(n + n_1) = 1 + M(n)$
 $m(n + n_k) = 1 + m(n)$

Let
$$S = \langle n_1, \dots, n_k \rangle \subset (\mathbb{N}, +)$$
. For $n \in S$,
 $M(n) = \max$ length in $Z(n)$ $m(n) = \min$ length in $Z(n)$

Observations

- Max length factorization: lots of small irreducibles
- Min length factorization: lots of large irreducibles

Theorem (Barron–O–Pelayo, 2014)

Let
$$S = \langle n_1, \dots, n_k \rangle$$
. For $n > n_k(n_{k-1} - 1)$,

$$M(n + n_1) = 1 + M(n)$$

$$m(n + n_k) = 1 + m(n)$$

Equivalently, M(n), m(n) are eventually quasilinear:

$$\begin{array}{rcl} \mathsf{M}(n) & = & \frac{1}{n_1}n + a_0(n) \\ \mathsf{m}(n) & = & \frac{1}{n_k}n + b_0(n) \end{array}$$

for periodic functions $a_0(n)$, $b_0(n)$.

Theorem (Barron–O–Pelayo, 2014)

Let $S = \langle n_1, ..., n_k \rangle$. For $n > n_k(n_{k-1} - 1)$, $M(n + n_1) = 1 + M(n)$ and $m(n + n_k) = 1 + m(n)$.

Theorem (Barron–O–Pelayo, 2014)

Let $S = \langle n_1, ..., n_k \rangle$. For $n > n_k(n_{k-1} - 1)$, $M(n + n_1) = 1 + M(n)$ and $m(n + n_k) = 1 + m(n)$.

 $S = \langle 6, 9, 20 \rangle$:

Theorem (Barron–O–Pelayo, 2014)

Let $S = \langle n_1, ..., n_k \rangle$. For $n > n_k(n_{k-1} - 1)$, $M(n + n_1) = 1 + M(n)$ and $m(n + n_k) = 1 + m(n)$.

 $S = \langle 6, 9, 20 \rangle$:

n = 1000001.

Theorem (Barron–O–Pelayo, 2014)

Let
$$S = \langle n_1, ..., n_k \rangle$$
. For $n > n_k(n_{k-1} - 1)$,
 $M(n + n_1) = 1 + M(n)$ and $m(n + n_k) = 1 + m(n)$.

 $S = \langle 6, 9, 20 \rangle$:

n = 1000001.

m(1000001) = ?

Theorem (Barron–O–Pelayo, 2014)

Let $S = \langle n_1, ..., n_k \rangle$. For $n > n_k(n_{k-1} - 1)$, $M(n + n_1) = 1 + M(n)$ and $m(n + n_k) = 1 + m(n)$.

 $S = \langle 6, 9, 20 \rangle$:

n = 1000001.

m(1000001) = ?

m(181) = 11 and 181 = 2(6) + 1(9) + 8(20)

Theorem (Barron–O–Pelayo, 2014)

Let $S = \langle n_1, ..., n_k \rangle$. For $n > n_k(n_{k-1} - 1)$, $M(n + n_1) = 1 + M(n)$ and $m(n + n_k) = 1 + m(n)$.

 $S = \langle 6, 9, 20 \rangle$:

n = 1000001.

Theorem (Barron–O–Pelayo, 2014)

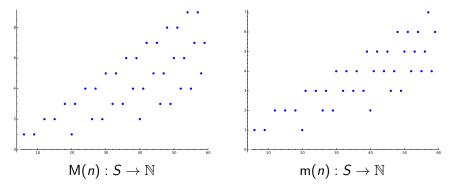
Let $S = \langle n_1, ..., n_k \rangle$. For $n > n_k(n_{k-1} - 1)$, $M(n + n_1) = 1 + M(n)$ and $m(n + n_k) = 1 + m(n)$.

 $S = \langle 6, 9, 20 \rangle$:

Theorem (Barron–O–Pelayo, 2014)

Let $S = \langle n_1, ..., n_k \rangle$. For $n > n_k(n_{k-1} - 1)$, $M(n + n_1) = 1 + M(n)$ and $m(n + n_k) = 1 + m(n)$.

 $S = \langle 6, 9, 20 \rangle$:



Theorem (Barron–O–Pelayo, 2014)

Let $S = \langle n_1, ..., n_k \rangle$. For $n > n_k(n_{k-1} - 1)$, $M(n + n_1) = 1 + M(n)$ and $m(n + n_k) = 1 + m(n)$.

 $S = \langle 5, 16, 17, 18, 19 \rangle$:

Theorem (Barron–O–Pelayo, 2014)

Let $S = \langle n_1, ..., n_k \rangle$. For $n > n_k(n_{k-1} - 1)$, $M(n + n_1) = 1 + M(n)$ and $m(n + n_k) = 1 + m(n)$.

 $S = \langle 5, 16, 17, 18, 19 \rangle$:

