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Factorial domains

Definition

An integral domain R is factorial if for each non-unit r € R,
© there is a factorization r = u; - - - uy as a product of irreducibles, and

@ this factorization is unique (up to reordering and unit multiple).
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© there is a factorization r = u; - - - uy as a product of irreducibles, and

@ this factorization is unique (up to reordering and unit multiple).

Z is factorial: each z = p; - - - pi for primes p; - - - pk.
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Factorial domains

Definition

An integral domain R is atomic if for each non-unit r € R,

© there is a factorization r = u; - - - uy as a product of irreducibles, and

O this factorization is it { : it mltiple).

Z is factorial: each z = p; - - - pi for primes p; - - - pk.
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Factorial domains

Definition

An integral domain R is atomic if for each non-unit r € R,

© there is a factorization r = u; - - - uy as a product of irreducibles, and

O this factorization is it { : e mltiple).

Z is factorial: each z = p; - - - pi for primes p; - - - pk.

Example
If R =Z[v/—5], then 6 € R has two distinct factorizations:

6=2-3=(1++v-5)(1—-+-5)
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Factorial domains

Definition

An integral domain R is atomic if for each non-unit r € R,

© there is a factorization r = u; - - - uy as a product of irreducibles, and

O this factorization is it { : e mltiple).

Z is factorial: each z = p; - - - pi for primes p; - - - pk.

Example
If R =Z[v/—5], then 6 € R has two distinct factorizations:

6=2-3=(1++v-5)(1—-+-5)

To prove: define a valuation a + b\/—5 — a® + 5b°.
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Factorial domains

Definition
An integral domain R is atomic if for each non-unit r € R,

© there is a factorization r = u; - - - uy as a product of irreducibles, and

O this factorization is it { : e mltiple).

Z is factorial: each z = p; - - - pi for primes p; - - - pk.

If R =Z[v/—5], then 6 € R has two distinct factorizations:
6=2-3=(1+v=5)(1—v=5b)

To prove: define a valuation a + b\/—5 — a® + 5b°.
The point: it's nontrivial.
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Factorial domains

Definition

An integral domain R is atomic if for each non-unit r € R,

© there is a factorization r = u; - - - uy as a product of irreducibles, and

O this factorization is it { : it mltiple).

Z is factorial: each z = p; - - - pi for primes p; - - - pk.

Christopher O'Neill (UC Davis) Invariants of non-unique factorization September 27, 2015 2/33



Factorial domains

Definition

An integral domain R is atomic if for each non-unit r € R,

© there is a factorization r = u; - - - uy as a product of irreducibles, and

O this factorization is it { : it mltiple).

Z is factorial: each z = p; - - - pi for primes p; - - - pk.

Let R = C[x?, x3].
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Factorial domains

Definition

An integral domain R is atomic if for each non-unit r € R,

© there is a factorization r = u; - - - uy as a product of irreducibles, and

O this factorization is it { : e mltiple).

Z is factorial: each z = p; - - - pi for primes p; - - - pk.

Let R = C[x?, x3].

QO x2 and x3 are irreducible.
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Factorial domains

Definition

An integral domain R is atomic if for each non-unit r € R,

© there is a factorization r = u; - - - uy as a product of irreducibles, and

O this factorization is it { : e mltiple).

Z is factorial: each z = p; - - - pi for primes p; - - - pk.

Let R = C[x?, x3].

QO x2 and x3 are irreducible.

Q X0 =x3 x3=x2.x2.x2
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Factorial domains

Definition
An integral domain R is atomic if for each non-unit r € R,

© there is a factorization r = u; - - - uy as a product of irreducibles, and

O this factorization is it { : e mltiple).

Z is factorial: each z = p; - - - pi for primes p; - - - pk.

Observation
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Factorial domains

Definition

An integral domain R is atomic if for each non-unit r € R,

© there is a factorization r = u; - - - uy as a product of irreducibles, and

O this factorization is it { : e mltiple).

Z is factorial: each z = p; - - - pi for primes p; - - - pk.

Observation
@ Where's the addition?
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An integral domain R is atomic if for each non-unit r € R,

© there is a factorization r = u; - - - uy as a product of irreducibles, and

O this factorization is it { : e mltiple).

Z is factorial: each z = p; - - - pi for primes p; - - - pk.

Observation
@ Where's the addition?

@ Factorization in (cancellative comutative) monoids:
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Factorial domains

Definition

An integral domain R is atomic if for each non-unit r € R,

© there is a factorization r = u; - - - uy as a product of irreducibles, and

O this factorization is it { : e mltiple).

Z is factorial: each z = p; - - - pi for primes p; - - - pk.

Observation
@ Where's the addition?

@ Factorization in (cancellative comutative) monoids:

(R, +,-)  ~ (R\{0},)
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Factorial domains

Definition

An integral domain R is atomic if for each non-unit r € R,

© there is a factorization r = u; - - - uy as a product of irreducibles, and

O this factorization is it { : e mltiple).

Z is factorial: each z = p; - - - pi for primes p; - - - pk.

Observation
@ Where's the addition?

e Factorization in (cancellative comutative) monoids:

(R4, ~ (R\{0},")
(C[M]7+7') ~ (M’)
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Interesting monoids

Definition

An arithmetical congruence monoid is a multiplicative submonoid
M, ={n:n=amod b} C Zg

for a, b > 0 with a®> = a mod b.
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Interesting monoids

An arithmetical congruence monoid is a multiplicative submonoid

M, ={n:n=amod b} C Zg

for a, b > 0 with a®> = a mod b.

| .

Example
The Hilbert monoid My 4 = {1,5,9,13,17,...}.
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for a, b > 0 with a®> = a mod b.
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Example
The Hilbert monoid My 4 = {1,5,9,13,17,...}.
@ Every product in My 4 is a product in Z.

Christopher O'Neill (UC Davis) Invariants of non-unique factorization September 27, 2015 3/33



Interesting monoids

An arithmetical congruence monoid is a multiplicative submonoid

M, ={n:n=amod b} C Zg

for a, b > 0 with a®> = a mod b.

| .

Example

The Hilbert monoid My 4 = {1,5,9,13,17,...}.
@ Every product in My 4 is a product in Z.
@ 9,21,49 € My 4 are irreducible.
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Interesting monoids

An arithmetical congruence monoid is a multiplicative submonoid

M, ={n:n=amod b} C Zg

for a, b > 0 with a®> = a mod b.

Example

The Hilbert monoid My 4 = {1,5,9,13,17,...}.
@ Every product in My 4 is a product in Z.
@ 9,21,49 € My 4 are irreducible.
@0 441 =9-49=21.21

| .
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Interesting monoids

An arithmetical congruence monoid is a multiplicative submonoid

M, ={n:n=amod b} C Zg

for a, b > 0 with a®> = a mod b.

The Hilbert monoid My 4 = {1,5,9,13,17,...}.
@ Every product in My 4 is a product in Z.
@ 9,21,49 € My 4 are irreducible.
0 441 =9-49=21.21
=(3)-()=@-7)-3-7).
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Interesting monoids

Definition

A numerical monoid S is an additive submonoid of N with [N\ S| < co.
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Interesting monoids

Definition

A numerical monoid S is an additive submonoid of N with [N\ S| < co.

Let S =(2,3) ={0,2,3,4,5,...} under addition.
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Interesting monoids

Definition

A numerical monoid S is an additive submonoid of N with [N\ S| < co.
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Interesting monoids

Definition

A numerical monoid S is an additive submonoid of N with [N\ S| < co.

Let S = (2,3) = {0,2,3,4,5,...} under addition. C[S] = C[x?,x?].
xX=x3.x3=x2.x2.x> ~ 6=3+3=2+2+2.
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Interesting monoids

Definition

A numerical monoid S is an additive submonoid of N with [N\ S| < co.

Let S = (2,3) = {0,2,3,4,5,...} under addition. C[S] = C[x?,x?].
xX=x3.x3=x2.x2.x> ~ 6=3+3=2+2+2.

Factorizations in S are additive!
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Interesting monoids

Definition

A numerical monoid S is an additive submonoid of N with [N\ S| < co.

Let S = (2,3) = {0,2,3,4,5,...} under addition. C[S] = C[x?,x?].
xX=x3.x3=x2.x2.x> ~ 6=3+3=2+2+2.

Factorizations in S are additive!

McN = (6,9,20) = {0,6,9,12,15,18,20,21, ...}.
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Interesting monoids

Definition
A numerical monoid S is an additive submonoid of N with [N\ S| < co.

Let S = (2,3) = {0,2,3,4,5,...} under addition. C[S] = C[x?,x?].
xX=x3.x3=x2.x2.x> ~ 6=3+3=2+2+2.

Factorizations in S are additive!

McN = (6,9,20) = {0,6,9,12,15,18,20,21,...}. “McNugget Monoid”
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Factorization invariants
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Factorization invariants

Fix a commutative, cancellative monoid (M, -). For each non-unit m € M,

Z(m) = {factorizations m = [[; u;}
denotes the set of factorizations of m.
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Factorization invariants

Fix a commutative, cancellative monoid (M, -). For each non-unit m € M,
Z(m) = {factorizations m = [[; u;}
denotes the set of factorizations of m. The elasticity of m is

max length in Z(m)

plm) = min length in Z(m) "
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Factorization invariants

Definition

Fix a commutative, cancellative monoid (M, -). For each non-unit m € M,
Z(m) = {factorizations m = [[; u;}
denotes the set of factorizations of m. The elasticity of m is

max length in Z(m)
min length in Z(m) "
The elasticity of M is p(M) = sup,,ep p(m).

p(m) =
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Factorization invariants

Definition

Fix a commutative, cancellative monoid (M, -). For each non-unit m € M,
Z(m) = {factorizations m = [[; u;}
denotes the set of factorizations of m. The elasticity of m is

max length in Z(m)
min length in Z(m) "

p(m) =

The elasticity of M is p(M) = sup,,ep p(m).

A\

Example (The good)
The Hilbert monoid: p(My4) = 1.
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Factorization invariants

Definition

Fix a commutative, cancellative monoid (M, -). For each non-unit m € M,
Z(m) = {factorizations m = [[; u;}
denotes the set of factorizations of m. The elasticity of m is

max length in Z(m)
min length in Z(m) "

p(m) =

The elasticity of M is p(M) = sup,,ep p(m).

A\

Example (The good)

The Hilbert monoid: p(My4) = 1.
o Every factorization of m € M 4 has the same length.
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Factorization invariants

Definition

Fix a commutative, cancellative monoid (M, -). For each non-unit m € M,
Z(m) = {factorizations m = [[; u;}
denotes the set of factorizations of m. The elasticity of m is

max length in Z(m)
min length in Z(m) "

p(m) =

The elasticity of M is p(M) = sup,,ep p(m).

A\

Example (The good)
The Hilbert monoid: p(My4) = 1.
o Every factorization of m € M 4 has the same length.

@ This is (almost) the best we could hope for.
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Factorization invariants

Definition

Fix a commutative, cancellative monoid (M, -). For each non-unit m € M,
Z(m) = {factorizations m = [[; u;}

denotes the set of factorizations of m. The elasticity of m is

max length in Z(m)

min length in Z(m) "

The elasticity of M is p(M) = sup,,ep p(m).

p(m) =

A\

Example (The bad)
Numerical monoids: S = (6,9,20) C N. p(S) = 20/6.
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Factorization invariants

Fix a commutative, cancellative monoid (M, -). For each non-unit m € M,

Z(m) = {factorizations m = [[; u;}
denotes the set of factorizations of m. The elasticity of m is
max length in Z(m)
min length in Z(m) "

The elasticity of M is p(M) = sup,,ep p(m).

p(m) =

A\

Example (The bad)
Numerical monoids: S = (6,9,20) C N. p(S) = 20/6.
©6-20=6+---+6=20+---+ 20, so p(6-20) = 20/6.
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Factorization invariants

Fix a commutative, cancellative monoid (M, -). For each non-unit m € M,

Z(m) = {factorizations m = [[; u;}
denotes the set of factorizations of m. The elasticity of m is
max length in Z(m)
min length in Z(m) "

The elasticity of M is p(M) = sup,,ep p(m).

p(m) =

A\

Example (The bad)

Numerical monoids: S = (6,9,20) C N. p(S) = 20/6.
06-20=6+---+6=20+---+20, so p(6-20) =20/6.
e p(n) <20/6 forall neS.
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Factorization invariants

Definition

Fix a commutative, cancellative monoid (M, -). For each non-unit m € M,
Z(m) = {factorizations m = [[; u;}
denotes the set of factorizations of m. The elasticity of m is

max length in Z(m)
min length in Z(m) "

p(m) =

The elasticity of M is p(M) = sup,,ep p(m).

A\

Example (The ugly)
The Meyerson monoid: p(Mase) = 2.
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Factorization invariants

Definition

Fix a commutative, cancellative monoid (M, -). For each non-unit m € M,
Z(m) = {factorizations m = [[; u;}
denotes the set of factorizations of m. The elasticity of m is

max length in Z(m)
min length in Z(m) "

p(m) =

The elasticity of M is p(M) = sup,,ep p(m).

A\

Example (The ugly)

The Meyerson monoid: p(Mase) = 2.
e p(m) < 2 for all me Myg!
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Factorization invariants

Definition

Fix a commutative, cancellative monoid (M, -). For each non-unit m € M,
Z(m) = {factorizations m = [[; u;}
denotes the set of factorizations of m. The elasticity of m is

max length in Z(m)
min length in Z(m) "

p(m) =

The elasticity of M is p(M) = sup,,ep p(m).

A\

Example (The ugly)

The Meyerson monoid: p(Mase) = 2.
e p(m) < 2 for all me Myg!
o Elasticity of My ¢ is not accepted.
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Numerical monoids

Definition

A numerical monoid S is an additive submonoid of N with [N\ S| < co.
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Numerical monoids

Definition

A numerical monoid S is an additive submonoid of N with [N\ S| < co.

McN = (6,9, 20) = {0,6,9,12,15,18,20,21,...}. “McNugget Monoid”
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Numerical monoids

Definition

A numerical monoid S is an additive submonoid of N with [N\ S| < co.

McN = (6,9, 20) = {0,6,9,12,15,18,20,21,...}. “McNugget Monoid”
60 = 7(6)+2(9)
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Numerical monoids

Definition

A numerical monoid S is an additive submonoid of N with [N\ S| < co.

McN = (6,9, 20) = {0,6,9,12,15,18,20,21,...}. “McNugget Monoid”

60 = 7(6)+2(9)
= 3(20)
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Numerical monoids

Definition

A numerical monoid S is an additive submonoid of N with [N\ S| < co.

McN = (6,9, 20) = {0,6,9,12,15,18,20,21,...}. “McNugget Monoid”

60 = 7(6)+2(9) s (7,2,0)
= 3(20) (0,0,3)
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Numerical monoids

Definition

A numerical monoid S is an additive submonoid of N with [N\ S| < co.

McN = (6,9, 20) = {0,6,9,12,15,18,20,21,...}. “McNugget Monoid”

60 = 7(6)+2(9) ~> (7,2,0)
= 3(20) ~ (0,0,3)
Definition
Fix a numerical monoid S = (ny,...,ngk). Forn€ S,
Zs(n) = {a=(ar,...,a) ENK:n=ain + -+ ang}

denotes the set of factorizations of n.
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A brief aside for motivation...

Fix a numerical monoid S = (n1, ..., nk).
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Fix a numerical monoid S = (n1, ..., nk).

Motivation: discrete optimization

Let A=[ny np -+ ngl.

Christopher O'Neill (UC Davis) Invariants of non-unique factorization September 27, 2015 7/33
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Fix a numerical monoid S = (n1, ..., nk).

Motivation: discrete optimization

Let A=[ny np -+ ngl.
Zs(n) = {a=(ar,...,a) ENK:n=ain + -+ ang}
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A brief aside for motivation...

Fix a numerical monoid S = (n1, ..., nk).

Motivation: discrete optimization

Let A=[ny np -+ ngl.

Zs(n) = {a=(ar,...,a) ENK:n=ain + -+ ang}
= {aeNK:n=A.a}
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A brief aside for motivation...

Fix a numerical monoid S = (n1, ..., nk).

Motivation: discrete optimization

Let A=[ny np -+ ngl.

Zs(n) = {a=(ar,...,a) ENK:n=ain + -+ ang}
= {aeNK:n=A.a}

is the set of solutions to a knapsack problem.
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Fix a numerical monoid S = (ny,..., nk).

Motivation: discrete optimization

Let A=[ny np -+ ngl.

Zs(n) = {a=(ar,...,a) ENK:n=ain + -+ ang}
= {aeNK:n=A.a}

is the set of solutions to a knapsack problem.

Motivation: additive combinatorics
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Fix a numerical monoid S = (ny,..., nk).

Motivation: discrete optimization

Let A=[ny np -+ ngl.

Zs(n) = {a=(ar,...,a) ENK:n=ain + -+ ang}
= {aeNK:n=A.a}

is the set of solutions to a knapsack problem.

Motivation: additive combinatorics

Let F(S) = max(N \ S) denote the Frobenius number of S.
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A brief aside for motivation...

Fix a numerical monoid S = (ny,..., nk).

Motivation: discrete optimization

Let A=[ny np -+ ngl.

Zs(n) = {a=(ar,...,a) ENK:n=ain + -+ ang}
= {aeNK:n=A.a}

is the set of solutions to a knapsack problem.

Motivation: additive combinatorics

Let F(S) = max(N \ S) denote the Frobenius number of S.

F({(ni,n2)) = ninp—ni—n
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A brief aside for motivation...

Fix a numerical monoid S = (ny,..., nk).

Motivation: discrete optimization

Let A=[ny np -+ ngl.

Zs(n) = {a=(ar,...,a) ENK:n=ain + -+ ang}
= {aeNK:n=A.a}

is the set of solutions to a knapsack problem.

Motivation: additive combinatorics

Let F(S) = max(N \ S) denote the Frobenius number of S.

F({(n1,n2)) = ninp—ni—
F((6,9,20)) = 43
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A brief aside for motivation...

Fix a numerical monoid S = (ny,..., nk).

Motivation: discrete optimization

Let A=[ny np -+ ngl.

Zs(n) = {a=(ar,...,a) ENK:n=ain + -+ ang}
= {aeNK:n=A.a}

is the set of solutions to a knapsack problem.

Motivation: additive combinatorics

Let F(S) = max(N \ S) denote the Frobenius number of S.

F({(n1,n2)) = ninp—ni—
F((6,9,20)) = 43

Frobenius coin-exchange problem: find the largest unchangeable value
with coins ny, ..., ng.
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The set of factorizations: a complete invariant

Fix a numerical monoid S = (ny,...,nk). Forne€ S,
Zs(n) = {aENk : n:a1n1+~--+aknk}
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The set of factorizations: a complete invariant

Fix a numerical monoid S = (ny,...,nk). Forne€ S,
Zs(n) = {aENk : n:aln1+~--+aknk}

Definition

The set of factorizations of S is the set

Z(S)={Zs(n): ne S}
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The set of factorizations: a complete invariant

Fix a numerical monoid S = (ny,...,nk). Forne€ S,
Zs(n) = {aENk:n:aln1+~--~l—aknk}

Definition

The set of factorizations of S is the set

Z(S)={Zs(n): ne S}

| N\

Example

Z((6,9,20)) =

A\
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The set of factorizations: a complete invariant

Fix a numerical monoid S = (ny,...,nk). Forne€ S,
Zs(n) = {aENk:n:aln1+~--~l—aknk}

Definition

The set of factorizations of S is the set

Z(S)={Zs(n): ne S}

| N\

Example

{(1,0,0)},{(0,1,0)},{(0,0,1)},
Z((6,9,20)) =

A\
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The set of factorizations: a complete invariant

Fix a numerical monoid S = (ny,...,nk). Forne€ S,
Zs(n) = {aENk:n:aln1+~--~l—aknk}

Definition

The set of factorizations of S is the set

Z(S)={Zs(n): ne S}

| N\

Example

}(17 0,0)},{(0,1,0)},{(0,0, 1)},

£((6,9,20)) = 4 1(20.0)1,{(3,0,0),(0,2,0)},

A\
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The set of factorizations: a complete invariant

Fix a numerical monoid S = (ny,...,nk). Forne€ S,
Zs(n) = {aENk:n:aln1+~--~l—aknk}

Definition

The set of factorizations of S is the set

Z(S)={Zs(n): ne S}

Eh e
2((6.9.20) = 1 1(6/09).(10,0,0) (1.5.0).. 3.

A\
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The set of factorizations: a complete invariant

Fix a numerical monoid S = (ny,...,nk). Forne€ S,
Zs(n) = {aENk:n:aln1+~--~l—aknk}

Definition

The set of factorizations of S is the set

Z(S)={Zs(n): ne S}

Eh e
2((6,9,20)) = ((0.0.3).10 150,00, (3.0,

A\

Christopher O'Neill (UC Davis) Invariants of non-unique factorization September 27, 2015 8 /33



The set of factorizations: a complete invariant

Fix a numerical monoid S = (ny,...,nk). Forne€ S,
Zs(n) = {aENk:n:aln1+~--~l—aknk}

Definition

The set of factorizations of S is the set

Z(S)={Zs(n): ne S}

v
Observations
V.
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The set of factorizations: a complete invariant

Fix a numerical monoid S = (ny,...,nk). Forne€ S,
Zs(n) = {aENk:n:aln1+~--~l—aknk}

Definition

The set of factorizations of S is the set

Z(S)={Zs(n): ne S}

v
Observations

@ Z(S) encapsulates all relations between ny, ..., ny.

N
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The set of factorizations: a complete invariant

Fix a numerical monoid S = (ny,...,nk). Forne€ S,
Zs(n) = {aENk:n:aln1+~--~l—aknk}

Definition

The set of factorizations of S is the set

Z(S)={Zs(n): ne S}

v
Observations

@ Z(S) encapsulates all relations between ny, ..., ny.

e Z(S) determines S up to isomorphism.

N
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The set of factorizations: a complete invariant

Fix a numerical monoid S = (ny,...,nk). Forne€ S,
Zs(n) = {aENk:n:aln1+~--~l—aknk}

Definition

The set of factorizations of S is the set

Z(S)={Zs(n): ne S}

v
Observations

@ Z(S) encapsulates all relations between ny, ..., ny.

e Z(S) determines S up to isomorphism.

e Z(S) is enormous.

N
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The set of factorizations: a complete invariant

Fix a numerical monoid S = (ny,...,nk). Forne€ S,
Zs(n) = {aENk:n:aln1+~--~l—aknk}

The set of factorizations of S is the set

Z(S)={Zs(n): ne S}

v

@ Z(S) encapsulates all relations between ny, ..., ny.

e Z(S) determines S up to isomorphism.

e Z(S) is enormous.

N

In McN = (6,9,20), Z(60) uniquely determines Z(McN).
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A step in the right direction: length sets
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A step in the right direction: length sets

Definition
Let S = (m,...,nk). Forne s,

L(n) = {a1+ - +ak:(a,...,a) € Z(n)}
denotes the length set of n.

Christopher O'Neill (UC Davis) Invariants of non-unique factorization September 27, 2015 9 /33



A step in the right direction: length sets

Definition
Let S = (m,...,nk). Forne s,

L(n) = {a1+ - +ak:(a,...,a) € Z(n)}
denotes the length set of n.

Example
McN = (6,9, 20):
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A step in the right direction: length sets

Definition
Let S = (m,...,nk). Forne s,

L(n) = {31+"-+3k : (31,...,3/() GZ(H)}
denotes the length set of n.

McN = (6,9, 20):
Z(60) = {(0,0,3),(1,6,0),(4,4,0),(7,2,0),(10,0,0)}
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A step in the right direction: length sets

Definition
Let S = (m,...,nk). Forne s,

L(n) = {31+"-+3k : (31,...,3/() GZ(H)}
denotes the length set of n.

McN = (6,9, 20):
Z(60) = {(0,0,3),(1,6,0),(4,4,0),(7,2,0),(10,0,0)}
L(60) = {3,7,8,9,10}
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A step in the right direction: length sets

Definition
Let S = (m,...,nk). Forne s,

L(n) = {31+"-+3k : (31,...,3/() GZ(H)}
denotes the length set of n.

McN = (6,9, 20):

Z(60) = {(0,0,3),(1,6,0),(4,4,0),(7,2,0),(10,0,0)}
L(60) = {3,7,8,9,10}

S =(7,10,13, 16):
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A step in the right direction: length sets

Definition
Let S = (m,...,nk). Forne s,

L(n) = {31+"-+3k : (31,...,3/() GZ(H)}
denotes the length set of n.

McN = (6,9, 20):

Z(60) = {(0,0,3),(1,6,0),(4,4,0),(7,2,0),(10,0,0)}
L(60) = {3,7,8,9,10}

S =(7,10,13, 16):
7(60) = {(0,6,0,0),(1,4,1,0),(2,2,2,0),(3,0,3,0),...}

Christopher O'Neill (UC Davis) Invariants of non-unique factorization September 27, 2015 9 /33



A step in the right direction: length sets

Definition
Let S = (m,...,nk). Forne s,

L(n) = {31+"-+3k : (31,...,3/() GZ(H)}
denotes the length set of n.

McN = (6,9, 20):

Z(60) = {(0,0,3),(1,6,0),(4,4,0),(7,2,0),(10,0,0)}
L(60) = {3,7,8,9,10}

S =(7,10,13, 16):

Z(60) = {(0,6,0,0),(1,4,1,0),(2,2,2,0),(3,0,3,0),...}
L(60) = {6}

Christopher O'Neill (UC Davis) Invariants of non-unique factorization September 27, 2015 9 /33



Maximum and minimum factorization length

Let S = (n1,...,nk). Forne s,
L(n) = {al—i—---—l—ak:(al,...,ak)EZ(n)}
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Maximum and minimum factorization length

Let S = (n1,...,nk). Forne s,
L(n) = {al—i—---—l—ak:(al,...,ak)EZ(n)}

Definition
For ne S, let

M(n) = max L(n) and
m(n) = min L(n)
denote the maximum and minimum factorization lengths of n.
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Maximum and minimum factorization length

Let S = (n1,...,nk). Forne s,
L(n) = {a1+---+ak:(a1,...,ak) € Z(n)}

Definition
For ne S, let

M(n) = max L(n) and
m(n) = min L(n)
denote the maximum and minimum factorization lengths of n.

| A\

Example
S = (6,9, 20):
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Maximum and minimum factorization length

Let S = (n1,...,nk). Forne s,
L(n) = {a1+---+ak:(a1,...,ak) € Z(n)}

Definition
For ne S, let

M(n) = max L(n) and
m(n) = min L(n)
denote the maximum and minimum factorization lengths of n.

| A

Example
S = (6,9,20):
Z(60) = {(0,0,3),(1,6,0),(4,4,0),(7,2,0),(10,0,0)}
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Maximum and minimum factorization length

Let S = (n1,...,nk). Forne s,
L(n) = {a1+---+ak:(a1,...,ak) € Z(n)}

Definition
For ne S, let

M(n) = max L(n) and
m(n) = min L(n)
denote the maximum and minimum factorization lengths of n.

| A

Example

S = (6,9, 20):
Z(60) = {(0,0,3),(1,6,0),(4,4,0),(7,2,0),(10,0,0)}
M(60) = 10
m(60) = 3

Christopher O'Neill (UC Davis) Invariants of non-unique factorization September 27, 2015 10 / 33



Maximum and minimum factorization length

Let S = (n,...,nk). Fornes,
M(n) = max L(n) m(n) = min L(n)
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Maximum and minimum factorization length

Let S = (n,...,nk). Fornes,
M(n) = max L(n) m(n) = min L(n)

Observations
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Maximum and minimum factorization length

Let S = (n,...,nk). Fornes,
M(n) = max L(n) m(n) = min L(n)

Observations

@ Max length factorization: lots of small irreducibles
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Maximum and minimum factorization length

Let S = (n,...,nk). Fornes,
M(n) = max L(n) m(n) = min L(n)

Observations

@ Max length factorization: lots of small irreducibles

@ Min length factorization: lots of large irreducibles

Christopher O'Neill (UC Davis) Invariants of non-unique factorization September 27, 2015



Maximum and minimum factorization length

Let S = (n,...,nk). Fornes,
M(n) = max L(n) m(n) = min L(n)

@ Max length factorization: lots of small irreducibles

@ Min length factorization: lots of large irreducibles

S =(6,9,20):
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Maximum and minimum factorization length

Let S = (n,...,nk). Fornes,
M(n) = max L(n) m(n) = min L(n)

Observations

@ Max length factorization: lots of small irreducibles

@ Min length factorization: lots of large irreducibles

| \

Example
S = (6,9, 20):
M(40) = 2 and Z(40) = {(0,0,2)}
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Maximum and minimum factorization length

Let S = (n,...,nk). Fornes,
M(n) = max L(n) m(n) = min L(n)

Observations

@ Max length factorization: lots of small irreducibles

@ Min length factorization: lots of large irreducibles

| \

Example
S = (6,9, 20):

M(40) = 2 and Z(40) = {(0,0,2)}
S = (5,16,17,18,19):
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Maximum and minimum factorization length

Let S = (n,...,nk). Fornes,
M(n) = max L(n) m(n) = min L(n)

Observations
@ Max length factorization: lots of small irreducibles

@ Min length factorization: lots of large irreducibles

Example
S = (6,9, 20):
M(40) = 2 and Z(40) = {(0,0,2)}
S = (5,16,17,18,19):
m@2) = 5 and Z(82) = {(0,3,2,0,0),...}

| \
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Maximum and minimum factorization length

Let S = (n,...,nk). Fornes,
M(n) = max L(n) m(n) = min L(n)

Observations
@ Max length factorization: lots of small irreducibles

@ Min length factorization: lots of large irreducibles

Example
S = (6,9, 20):

M(40) = 2 and Z(40) = {(0,0,2)}
S = (5,16,17,18,19):

m82) = 5 and Z(82) = {(0,3,2,0,0),...}
m(462) = 25 and Z(462) {(0,3,2,0,20),...}

| \
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Maximum and minimum factorization length

Let S = (m,...,nk). Forne s,
M(n) = max L(n) m(n) = min L(n)
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Maximum and minimum factorization length

Let S = (m,...,nk). Forne s,
M(n) = max L(n) m(n) = min L(n)

Theorem (Barron—-O—Pelayo, 2014)

Let S = (n,...,nk). For n> ng(ng_1 —1),
M(n+n) = 1+ M(n)
m(n+nk) = 1+ m(n)
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Maximum and minimum factorization length

Let S = (m,...,nk). Forne s,
M(n) = max L(n) m(n) = min L(n)

Theorem (Barron—-O—Pelayo, 2014)

Let S = (n,...,nk). For n> ng(ng_1 —1),
M(n+n) = 1+ M(n)
m(n+nk) = 1+ m(n)
Equivalently, M(n), m(n) are eventually quasilinear:
M(n) = Ln+ag(n
) = Lot o
ng

for periodic functions ag(n), bo(n).
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Maximum and minimum factorization length

Let S = (m,...,nk). Forne s,
M(n) = max L(n) m(n) = min L(n)

Theorem (Barron—-O—Pelayo, 2014)

Let S = (n,...,nk). For n> ng(ng_1 —1),
M(n+n) = 1+ M(n)
m(n+nk) = 1+ m(n)
Equivalently, M(n), m(n) are eventually quasilinear:
M(n) = Ln+ag(n
mgng = ninj— b(())((n))
Nk
for periodic functions ag(n), bo(n).

Interpretation:
Factorizations are chaotic for small monoid elements,
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Maximum and minimum factorization length

Let S = (m,...,nk). Forne s,
M(n) = max L(n) m(n) = min L(n)

Theorem (Barron—-O—Pelayo, 2014)

Let S = (n,...,nk). For n> ng(ng_1 —1),
M(n+n) = 1+ M(n)
m(n+nk) = 1+ m(n)
Equivalently, M(n), m(n) are eventually quasilinear:
M(n) = Ln+ag(n
) = Lot o
ng

for periodic functions ag(n), bo(n).

Interpretation:
Factorizations are chaotic for small monoid elements,

but stabalize for large monoid elements

Christopher O'Neill (UC Davis) Invariants of non-unique factorization September 27, 2015



Maximum and minimum factorization length

Let S = (n,...,nk). For n> ng(ng_1 — 1),
M(n) = ,Tll” + ao(n) m(n) = nikn+ bo(n)
for periodic ag(n), bo(n).

Christopher O'Neill (UC Davis) Invariants of non-unique factorization September 27, 2015 13 / 33



Maximum and minimum factorization length

Let S = (n,...,nk). For n> ng(ng_1 — 1),

M(n) = n%” + ao(n) m(n) = nikn+ bo(n)
for periodic ag(n), bo(n).
S =(6,9,20):

Christopher O'Neill (UC Davis)
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Maximum and minimum factorization length

Let S = (n,...,nk). For n> ng(ng_1 — 1),

M(n) = n%” + ao(n) m(n) = nikn+ bo(n)
for periodic ag(n), bo(n).
S =(6,9,20):
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Maximum and minimum factorization length

Let S = (n,...,nk). For n> ng(ng_1 — 1),

M(n) = n%” + ao(n)
for periodic ag(n), bo(n).
S = (5,16,17,18, 19):

Christopher O'Neill (UC Davis)

m(n) = nikn + bo(n)

Invariants of non-unique factorization September 27, 2015
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Maximum and minimum factorization length

Let S = (n,...,nk). For n> ng(ng_1 — 1),

M(n) = ,Tll” + ao(n) m(n) = nikn+ bo(n)
for periodic ag(n), bo(n).
S =(5,16,17,18,19):

s e esessssse

...................
oooooooooooooooooo

m(n): S — N
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Return to elasticity

Let S = (m,...,nk). Forne s,

p(n) = M(n)/m(n)

denotes the elasticity of n.
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Return to elasticity

Let S = (m,...,nk). Forne s,

p(n) = M(n)/m(n)

denotes the elasticity of n. Let R(S) = {p(n): n € S}.
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Return to elasticity

Let S = (m,...,nk). Forne s,

p(n) = M(n)/m(n)

denotes the elasticity of n. Let R(S) = {p(n): n € S}.

Theorem (Chapman—-Holden-Moore, 2006)

@ p(S) =supR(S) = p(nink) = nk/n1.
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Return to elasticity

Let S = (m,...,nk). Forne s,

p(n) = M(n)/m(n)

denotes the elasticity of n. Let R(S) = {p(n): n € S}.

Theorem (Chapman—-Holden-Moore, 2006)

e p(S) =supR(S) = p(nmnk) = nik/n.
@ sup R(S) is the only accumulation point of R(S).
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Return to elasticity

Let S = (m,...,nk). Forne s,

p(n) = M(n)/m(n)

denotes the elasticity of n. Let R(S) = {p(n): n € S}.

Theorem (Chapman—-Holden-Moore, 2006)

e p(S) =supR(S) = p(nmnk) = nik/n.
@ sup R(S) is the only accumulation point of R(S).

Idea:

(nk, o,... ,0), (0, ..., 0, n1) € Z(nlnk).
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Return to elasticity

Let S = (m,...,nk). Forne s,

p(n) = M(n)/m(n)
denotes the elasticity of n. Let R(S) = {p(n): n € S}.

Theorem (Chapman—-Holden-Moore, 2006)

e p(S) =supR(S) = p(nmnk) = nik/n.
@ sup R(S) is the only accumulation point of R(S).

Idea:
(nk, o,... ,0), (0, ..., 0, n1) € Z(nlnk).
More generally:

p(m) =nk/nm < n1,ng divide m
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Return to elasticity

S = (20,21, 45):

2.2

1.6
141

1.2

1 I 1 I 1
0 500 1000 1500 2000 2500 3000
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Return to elasticity

Let S = (m,...,nk). Forne s,

p(n) = M(n)/m(n)

denotes the elasticity of n. Let R(S) = {p(n) : n € S}.

Christopher O'Neill (UC Davis) Invariants of non-unique factorization September 27, 2015 17 / 33



Return to elasticity

Let S = (m,...,nk). Forne s,

p(n) = M(n)/m(n)

denotes the elasticity of n. Let R(S) = {p(n) : n € S}.

Theorem (Barron-O—Pelayo, 2014)

Fix a numerical monoid S = (ny,...,nx). For n>0,
M(n+n) = 1+ M(n)
m(n+n,) = 1+ m(n)
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Return to elasticity

Let S = (m,...,nk). Forne s,

p(n) = M(n)/m(n)

denotes the elasticity of n. Let R(S) = {p(n) : n € S}.

Theorem (Barron-O—Pelayo, 2014)

Fix a numerical monoid S = (ny,...,nx). For n>0,
M(n+ nmnk) = ng+ M(n)
m(n+ mng) = n1+ m(n)
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Return to elasticity

Let S = (n,...,nk). Forne S,
p(n) = M(n)/m(n)

denotes the elasticity of n. Let R(S) = {p(n) : n € S}.

Theorem (Barron-O—Pelayo, 2014)

Fix a numerical monoid S = (ny,...,nx). For n>0,
M(n+ nmnk) = ng+ M(n)
m(n+ mng) = n1+ m(n) )

Theorem (Barron-O—Pelayo, 2014)

Aside from finitely many values, the set R(S) equals a union of finitely
many monotone increasing sequences, each approaching p(S) = nx/n:.

M(n) + ng

n-+ning) =
A 17%) m(n) + m
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Return to elasticity

S = (20,21, 45):

2.2

1.6
141

1.2

1 I 1 I 1
0 500 1000 1500 2000 2500 3000
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Return to elasticity

S = (27,45, 62,93):

251
2L
csesqdyigpenene e * 0 <
oo ' gorerte® °
.
e .
L L L L L
0 500 1000 1500 2000
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The delta set

Fix a numerical monoid S = (ny,...,nk). For n € S, write
L(n) = {a1+~--—|—ak : (31,...,ak) EZ(H)}
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The delta set

Fix a numerical monoid S = (ny,...,nk). For n € S, write
L(n) = {al—i—‘--—i—ak:(al,...,ak)eZ(n)}
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The delta set

Fix a numerical monoid S = (ny,...,nk). For n € S, write
L(n) = {a1+~--—|—ak : (31,...,ak) EZ(H)}
= {fl <£2<...}
The delta set of n is the set
A(n) = {E, - 6,-_1} .
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The delta set

Fix a numerical monoid S = (ny,...,nk). For n € S, write
L(n) = {a1+~--—|—ak : (31,...,ak) EZ(H)}
= {£1 <£2<...}
The delta set of n is the set
A(n) = {ti—tia}.

Example
McN = (6,9,20):
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The delta set

Fix a numerical monoid S = (ny,...,nk). For n € S, write
L(n) = {a1+---+ak:(a1,...,a) € Z(n)}
The delta set of n is the set
A(n) = {E, - 6,'_1} .
Example
McN = (6,9, 20):
2(60) = {(07 0, 3)7 (1’ 6, 0)7 (47 4, 0)7 (77 2, 0)7 (107 0, O)}
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The delta set

Fix a numerical monoid S = (ny,...,nk). For n € S, write
L(n) = {a1+---+ak:(a1,...,ak) € Z(n)}
= {£1 <£2<...}
The delta set of n is the set
A(n) = {ti—tia}.

Example
McN = (6,9,20):

7(60) = {(0,0,3),(1,6,0),(4,4,0),(7,2,0),(10,0,0)}
L(60) {3,7,8,9,10}
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The delta set

Fix a numerical monoid S = (ny,...,nk). For n € S, write
L(n) = {a1+---+ak:(a1,...,ak) € Z(n)}
= {£1 <£2<...}
The delta set of n is the set
A(n) = {ti—tia}.

Example

McN = (6,9,20):
Z(60) = {(0,0,3),(1,6,0),(4,4,0),(7,2,0),(10,0,0)}
L(60) = {3,7,8,9,10}
A(60) = {1,4}
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The delta set

Fix a numerical monoid S = (ny,...,nk). For n € S, write
L(n) = {a1+---+ak:(a1,...,ak) € Z(n)}
= {li<ba< -}
The delta set of n is the set

A(n) = {E,‘—g,'_l}.
McN = (6,9, 20):

Z(60) = {(0,0,3),(1,6,0),(4,4,0),(7,2,0),(10,0,0)}
L(60) = {3,7,8,9,10}
A(60) = {1,4}

S =(7,10,13,16):
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The delta set

Fix a numerical monoid S = (ny,...,nk). For n € S, write
L(n) = {a1+---+ak:(a1,...,ak) € Z(n)}
= {li<ba< -}
The delta set of n is the set

A(n) = {E,‘—g,'_l}.
McN = (6,9, 20):

7(60) = {(0,0,3),(1,6,0),(4,4,0),(7,2,0),(10,0,0)}
L(60) = {3,7,8,9,10}
A(60) = {1,4}
S = (7,10, 13, 16):
Z(60) = {(0,6,0,0),(1,4,1,0),(2,2,2,0),(3,0,3,0),...}
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The delta set

Fix a numerical monoid S = (ny,...,nk). For n € S, write
L(n) = {a1+---+ak:(a1,...,ak) € Z(n)}
= {li<ba< -}
The delta set of n is the set

A(n) = {E,‘—g,'_l}.
McN = (6,9, 20):
Z(60) = {(0,0,3),(1,6,0),(4,4,0),(7,2,0),(10,0,0)}
L(60) = {3,7,8,9,10}
A(60) = {1,4}
S =(7,10,13,16):
Z(60) = {(0,6,0,0),(1,4,1,0),(2,2,2,0),(3,0,3,0),...}
L(60) = {6}
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The delta set

Fix a numerical monoid S = (ny,...,nk). For n € S, write

L(n) = {a1+---+ak:(a1,...,ak) € Z(n)}
The delta set of n is the set

A(n) = {E,‘—g,'_l}.
McN = (6,9, 20):

Z(60) = {(0,0,3),(1,6,0),(4,4,0),(7,2,0),(10,0,0)}
L(60) = {3,7,8,9,10}
A(60) = {1,4}

S =(7,10,13,16):

Z(60) = {(0,6,0,0),(1,4,1,0),(2,2,2,0),(3,0,3,0),...}
L(60) = {6}
A(60) = 0
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The delta set

Fix a numerical monoid S = (ny,...,nk). For n € S, write
L(n) = {a1+~--—|—ak : (31,...,ak) EZ(H)}
= {fl <£2<...}
The delta set of n is the set
A(n) = {E, - 6,-_1} .
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The delta set

Fix a numerical monoid S = (ny,...,nk). For n € S, write
L(n) = {a1+~--—|—ak : (31,...,ak) EZ(H)}
= {fl <£2<...}
The delta set of n is the set
A(n) = {E, - 6,-_1} .
S =(6,9,20):
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The delta set

Fix a numerical monoid S = (ny,...,nk). For n € S, write
L(n) = {a1+~--—|—ak : (31,...,ak) EZ(H)}
= {fl <£2<...}
The delta set of n is the set
A(n) = {E, - 6,-_1} .
S =(6,9,20):

50 100 150

(n,i) ~ i€ A(n)
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The delta set

Theorem (Chapman—Hoyer—Kaplan, 2000)

S={(m,...,nx). Forn>2knn?,
A(n) = A(n + niny).
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The delta set

Theorem (Chapman—Hoyer—Kaplan, 2000)

S={(m,...,nx). Forn>2knn?,

A(n) = A(n + niny).

S = (6,9, 20):

3L

50 100 150
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The delta set

Theorem (Chapman—Hoyer—Kaplan, 2000)

S={(m,...,nx). Forn>2knn?,

A(n) = A(n + niny).

50

Interpretation:

Factorizations are chaotic for small monoid elements,
but stabalize for large monoid elements

150

Christopher O'Neill (UC Davis)

Invariants of non-unique factorization September 27, 2015
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The catenary degree
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The catenary degree

Definition
Let S = (n1,...,ny). For factorizations a,b € Z(n) of n € S,
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The catenary degree

Definition

Let S = (n1,...,ny). For factorizations a,b € Z(n) of n € S,
gcd(a,b) = (min(a1, b1),...,min(ak, bk))
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The catenary degree

Definition

Let S = (n1,...,ny). For factorizations a,b € Z(n) of n € S,
gcd(a,b) = (min(a1, b1),...,min(ak, bk))
d(ab) = max{|a— gcd(a,b)], |b— ged(a, b))}
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The catenary degree

Let S = (n1,...,ny). For factorizations a,b € Z(n) of n € S,
gcd(a,b) = (min(a1, b1),...,min(ak, bk))
d(a,b) = max{|a— gcd(a,b)|,|b —gcd(a,b)|}

S=(4,6,77 cN,a=(3,1,1),b=(1,0,3) € Zs5(25).
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The catenary degree

Definition

Let S = (n1,...,ny). For factorizations a,b € Z(n) of n € S,
gcd(a,b) = (min(a1, b1),...,min(ak, bk))
d(ab) = max{|a— gcd(a,b)], |b— ged(a, b))}

S=(4,6,77 cN,a=(3,1,1),b=(1,0,3) € Zs5(25).
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The catenary degree

Definition

Let S = (n1,...,ny). For factorizations a,b € Z(n) of n € S,
gcd(a,b) = (min(a1, b1),...,min(ak, bk))
d(ab) = max{|a— gcd(a,b)], |b— ged(a, b))}

| A\

Example
S=(4,6,7) cN,a=(3,1,1),b=(1,0,3) € Zs(25).
e g = gcd(a,b)
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The catenary degree

Definition

Let S = (n1,...,ny). For factorizations a,b € Z(n) of n € S,
gcd(a,b) = (min(a1, b1),...,min(ak, bk))
d(ab) = max{|a— gcd(a,b)], |b— ged(a, b))}

S=(4,6,7) cN,a=(3,1,1),b=(1,0,3) € Zs(25).
e g = gcd(a,b)
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The catenary degree

Definition

Let S = (n1,...,ny). For factorizations a,b € Z(n) of n € S,
gcd(a,b) = (min(a1, b1),...,min(ak, bk))
d(ab) = max{|a— gcd(a,b)], |b— ged(a, b))}

S=(4,6,7) cN,a=(3,1,1),b=(1,0,3) € Zs(25).
e g =gcd(a,b) =(1,0,1).
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The catenary degree

Let S = (n1,...,ny). For factorizations a,b € Z(n) of n € S,
gcd(a,b) = (min(a1, b1),...,min(ak, bk))
d(a,b) = max{|a— gcd(a,b)|,|b —gcd(a,b)|}

S= (46,7 CN, a=(3,1,1),b=(1,0,3) € Zs(25).
e g =gcd(a,b) =(1,0,1).
e d(a,b)
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The catenary degree

Let S = (n1,...,ny). For factorizations a,b € Z(n) of n € S,
gcd(a,b) = (min(a1, b1),...,min(ak, bk))
d(a,b) = max{|a— gcd(a,b)|,|b —gcd(a,b)|}

S=(4,6,7) cN,a=(3,1,1),b=(1,0,3) € Zs(25).
e g =gcd(a,b) =(1,0,1).
o d(a,b) = max{|a—gl,[b—gl}

Christopher O'Neill (UC Davis) Invariants of non-unique factorization September 27, 2015 23 /33



The catenary degree

Definition

Let S = (n1,...,ny). For factorizations a,b € Z(n) of n € S,
gcd(a,b) = (min(a1, b1),...,min(ak, bk))
d(ab) = max{|a— gcd(a,b)], |b— ged(a, b))}

Example
S=(4,6,7) cN,a=(3,1,1),b=(1,0,3) € Zs(25).

e g =gcd(a,b) =(1,0,1).
>
b

° d(aab) = maX{|a - g|7 ‘b - g|}

N
Q
ﬂ
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The catenary degree

Definition

Let S = (n1,...,ny). For factorizations a,b € Z(n) of n € S,
gcd(a,b) = (min(a1, b1),...,min(ak, bk))
d(ab) = max{|a— gcd(a,b)], |b— ged(a, b))}

Example
S=(4,6,7) cN,a=(3,1,1),b=(1,0,3) € Zs(25).

e g =gcd(a,b) =(1,0,1).
>
b

e d(a,b) = max{jla—g|,|b—g|} =3.

N
Q
ﬂ
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The catenary degree: definition by a big example

S = (11,36, 39), n = 450
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The catenary degree: definition by a big example

S = (11,36, 39), n = 450

066 o7 (27,1,3)

(3,4,7) (24,3,2)

(9,0,9) 16 (18,7,0)
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The catenary degree: definition by a big example

S = (11,36, 39), n = 450

066 o7 (27,1,3)

(3,4,7) (24,3,2)

(9,0,9) 16 (18,7,0)
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The catenary degree: definition by a big example

S = (11,36, 39), n = 450

(0,6,6) (27,1,3)

(24,3,2)

(9,0,9) 16 (18,7,0)
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The catenary degree: definition by a big example

S = (11,36, 39), n = 450

(0,6,6) (27,1,3)

(24,3,2)

(9,0,9) 16 (18,7,0)
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The catenary degree: definition by a big example

S = (11,36, 39), n = 450

(0,6,6) (27,1,3)

(24,3,2)

(9,0,9) 16 (18,7,0)
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The catenary degree: definition by a big example

S = (11,36, 39), n = 450

(0,6,6) (27,1,3)

(3,4,7) 8 8 (24,3,2)

6,28 8 21,51
(6.2,8) 17 178 ( )

(9,0,9) 16 (18,7,0)
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The catenary degree: definition by a big example

S = (11,36, 39), n = 450

(0,6,6) (27,1,3)

4 4

(3,4,7) 8 8 (24,3,2)
4 12 12 4
18 18
18

6,2,8 8 21,51
( ) 17 178 ( )

4 4

(9,0,9) 16 (18,7,0)
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The catenary degree: definition by a big example

S = (11,36, 39), n = 450

(0,6,6) (27,1,3)

(24,3,2)

(9,0,9) 16 (18,7,0)
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The catenary degree: definition by a big example

S = (11,36, 39), n = 450

(0,6,6) (27,1,3)
p L

4 4

(3,4,7) 8 8 (24,3,2)
4 12 12 4
18 18
18

6,2,8 8 21,5,1
( ) 17 178 ( )

4 4

(9,0,9) 16 (18,7,0)
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The catenary degree: definition by a big example

S = (11,36, 39), n = 450

(0,6,6) (27.1.3)
p
4 4
(3,4,7) 8 8 (24,3,2)
4 12 12 4
Q y
18
62,8 8 21,5,1
(6,2,8) .- -8 (21,5,1)
4 4

(9,0,9) 16 (18,7,0)
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The catenary degree: definition by a big example

S = (11,36, 39), n = 450

(0,6,6) (2751 )]
p

4 4

(3,4,7) 8 8 (24,3,2)
4 12 12 4

6,2,8 8 21,5,1
( ) 17 178 ( )

4 4

(9,0,9) 16 (18,7,0)
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The catenary degree: definition by a big example

S = (11,36, 39), n = 450

(0,6,6) (2751 )]
p

4 4

(3,4,7) 8 8 (24,3,2)
4 12 12 4

6,2,8 8 21,5,1
( ) 17 178 ( )

4 4

(9,0,9) 16 (18,7,0)

Christopher O'Neill (UC Davis) Invariants of non-unique factorization September 27, 2015 24 /33



The catenary degree: definition by a big example

S = (11,36, 39), n = 450

(0,6,6) (2751 )]
p
4 4
(3,4,7) 8 8 (24,3,2)
4 12 12 4
(6,2,8) 8 8 (21,5,1)
4 4

(9,0,9) 16 (18,7,0)
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The catenary degree: definition by a big example

S = (11,36, 39), n = 450

(0,6,6) (2751 )]
p
4 4
(3,4,7) 8 8 (24,3,2)
4 12 12 4
(6,2,8) 8 8 (21,5,1)
4 4

(9,0,9) 16 (18,7,0)

Christopher O'Neill (UC Davis) Invariants of non-unique factorization September 27, 2015 24 /33



The catenary degree: definition by a big example

S = (11,36, 39), n = 450

(27,1,3)
L

(24,3,2)
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The catenary degree: definition by a big example

S = (11,36,39), n = 450, c(n) = 16

(0,6',6) (2751 ,3)

(24,3,2)
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The catenary degree: a big example (method 2)

S = (11,36, 39), n = 450
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The catenary degree: a big example (method 2)

S = (11,36, 39), n = 450

(0,6,6) 27,1,3)
[ ] [ ]
3,4,7) (24,3,2)
* [ ]
6,2,8) *215,1)
[ ] [ ]
(9,0.9) (18,7,0)

Christopher O'Neill (UC Davis) Invariants of non-unique factorization September 27, 2015 25 /33



The catenary degree: a big example (method 2)

S = (11,36, 39), n = 450

(0,6,6) (27,1,3)
4 4
(3,4,7) (24,3,2)
4 4
(6,2,8) (21,5,1)
4 4
(9,0,9) (18,7,0)
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The catenary degree: a big example (method 2)

S = (11,36, 39), n = 450

(0,6,6) (27,1,3)

(24,3,2)

(9,0,9) (18,7,0)
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The catenary degree: a big example (method 2)

S = (11,36, 39), n = 450

(0,6',6) (2751 ,3)

(24,3,2)
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The catenary degree: a big example (method 2)

S = (11,36, 39), n = 450

(0,6,6) (2751 )]
p
4 4
(3,4,7) 8 8 (24,3,2)
4 12 12 4
(6,2,8) 8 8 (21,5,1)
4 4

(9,0,9) 16 (18,7,0)
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The catenary degree: a big example (method 2)

S = (11,36,39), n = 450, c(n) = 16

(0,6,6) (2751 )]
p
4 4
(3,4,7) 8 8 (24,3,2)
4 12 12 4
(6,2,8) 8 8 (21,5,1)
4 4

(9,0,9) 16 (18,7,0)
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The catenary degree: eventual periodicity

S = (5,23,26):
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The catenary degree: eventual periodicity

S = (5,23,26):
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The catenary degree: eventual periodicity

S = (5,23,26):

Theorem (Chapman-Corrales-Miller-Miller-Patel, 2014)
Let S = (n,...,nk). Forn>0,

c(n) =c(n+ ny---ng).

Christopher O'Neill (UC Davis)

Invariants of non-unique factorization
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The w-primality invariant

Fix an integral domain R and nonzero, nonunit x € R.
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The w-primality invariant

Fix an integral domain R and nonzero, nonunit x € R.

Definition

x is prime if x | ab implies x | a or x | b.
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The w-primality invariant

Fix an integral domain R and nonzero, nonunit x € R.

Definition

x is prime if x | ab implies x | a or x | b.

ldea: w(x) € Zsg such that w(x) =1 if and only if x is prime.
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The w-primality invariant

Fix an integral domain R and nonzero, nonunit x € R.

Definition

x is prime if x | ab implies x | a or x | b.

ldea: w(x) € Zsg such that w(x) =1 if and only if x is prime.

Definition (w-primality)

Define w(x) = m minimal such that

x| [Tizyqi, r>m
= x|Ilier g, ITI<m
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The w-primality invariant

Fix an integral domain R and nonzero, nonunit x € R.

Definition
x is prime if x | ab implies x | a or x | b.

ldea: w(x) € Zsg such that w(x) =1 if and only if x is prime.

Definition (w-primality)
Define w(x) = m minimal such that

x| [Tizyqi, r>m
= x|Ilier g, ITI<m

R is factorial if and only if every irreducible element of R is prime.
Moreover, w(py - - - p;) = r for any primes p1,...,p, € R.

September 27, 2015
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The w-primality invariant

Fix a numerical monoid S = (ny,..., nk).
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The w-primality invariant

Fix a numerical monoid S = (ny,..., nk).

Definition (w-primality, additive version)

For n € S, define w(n) = m minimal such that

>i.9i—n€eS, r>m
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The w-primality invariant

Fix a numerical monoid S = (ny,..., nk).

Definition (w-primality, additive version)

For n € S, define w(n) = m minimal such that

>i.9i—n€eS, r>m

| N

Warnings

o In S, ndivides n’ if n+ m = n’ for some m € S.
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The w-primality invariant

Fix a numerical monoid S = (ny,..., nk).

Definition (w-primality, additive version)

For n € S, define w(n) = m minimal such that

>i.9i—n€eS, r>m

o
Warnings

@ In S, ndivides n" if n4+ m = n’ for some m € S. Equivalently,

n divides ' «~ n'—nesS
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The w-primality invariant

Fix a numerical monoid S = (ny,..., nk).

Definition (w-primality, additive version)

For n € S, define w(n) = m minimal such that

>i.9i—n€eS, r>m

o
Warnings

@ In S, ndivides n" if n4+ m = n’ for some m € S. Equivalently,

n divides ' «~ n'—nesS

@ "Prime element of S” is different from “prime integer”
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The w-primality invariant

Fix a numerical monoid S = (ny,..., nk).
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The w-primality invariant

Fix a numerical monoid S = (ny,..., nk).

@ The w-function is unbounded.
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The w-primality invariant

Fix a numerical monoid S = (ny,..., nk).

@ The w-function is unbounded.

@ The w-function is sub-additive, i.e.
w(a+ b) <w(a) + w(b)
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The w-primality invariant

Fix a numerical monoid S = (ny,..., nk).

@ The w-function is unbounded.

@ The w-function is sub-additive, i.e.
w(a+ b) <w(a) + w(b)

Wild conjecture

Is the w-function eventually quasilinear?
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The w-primality invariant

Fix a numerical monoid S = (ny,..., nk).

@ The w-function is unbounded.

@ The w-function is sub-additive, i.e.
w(a+ b) <w(a) + w(b)

Wild conjecture

Is the w-function eventually quasilinear?

Theorem (O—Pelayo, 2013)

Let S = (n,...,nx) CN. Forn>0,
w(n) = n%n + ao(n)
for some ny-periodic function ag(n). Equivalently,
w(n+nm)=14w(n)
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The w-primality invariant

Theorem (O—Pelayo, 2013)

Let S = (n,...,nx) CN. Forn> 0,
w(n) = n%n—i—ao(n)

where ag(n) periodic with period n;.
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The w-primality invariant

Theorem (O—Pelayo, 2013)

Let S = (n,...,nx) CN. Forn> 0,
w(n) = n%n—i—ao(n)

where ag(n) periodic with period n;.
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Bringing it all together

For any numerical monoid S = (ny, ..., ng):
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e M(n) and m(n) are eventually quasilinear
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Bringing it all together

For any numerical monoid S = (ny, ..., ng):

e M(n) and m(n) are eventually quasilinear
@ w(n) is eventually quasilinear

@ c(n) is eventually periodic
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Bringing it all together

For any numerical monoid S = (ny, ..., ng):

e M(n) and m(n) are eventually quasilinear
@ w(n) is eventually quasilinear
@ c(n) is eventually periodic

e A(n) is eventually periodic
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Bringing it all together

For any numerical monoid S = (ny, ..., ng):

e M(n) and m(n) are eventually quasilinear
@ w(n) is eventually quasilinear
@ c(n) is eventually periodic

e A(n) is eventually periodic

Why?
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Bringing it all together

For any numerical monoid S = (ny, ..., ng):

e M(n) and m(n) are eventually quasilinear
@ w(n) is eventually quasilinear
@ c(n) is eventually periodic

e A(n) is eventually periodic

Why?

Interpretation:

Factorizations are chaotic for small monoid elements,
but stabalize for large monoid elements
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Bringing it all together

For any numerical monoid S = (ny, ..., ng):

e M(n) and m(n) are eventually quasilinear
@ w(n) is eventually quasilinear
@ c(n) is eventually periodic

e A(n) is eventually periodic

Why?

Interpretation:

Factorizations are chaotic for small monoid elements,
but stabalize for large monoid elements

Ok sure, but why??7?

Christopher O'Neill (UC Davis) Invariants of non-unique factorization September 27, 2015



Bringing it all together

For any numerical monoid S = (ny, ..., ng):

e M(n) and m(n) are eventually quasilinear
@ w(n) is eventually quasilinear
@ c(n) is eventually periodic

e A(n) is eventually periodic

Why?

Interpretation:

Factorizations are chaotic for small monoid elements,
but stabalize for large monoid elements

Ok sure, but why??? What's the underlying reason??
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Bringing it all together

Answer: Hilbert functions!
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over graded algebra R

Christopher O'Neill (UC Davis) Invariants of non-unique factorization September 27, 2015 32/33



Bringing it all together

Answer: Hilbert functions!

Graded module N - Hilbert function H(N; n)
over graded algebra R defined for n > 0
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Bringing it all together

Answer: Hilbert functions!

Graded module N - Hilbert function H(N; n)
over graded algebra R defined for n > 0

Hilbert's Theorem

The Hilbert function of any finitely generated positively graded module N
is eventually quasipolynomial.
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Bringing it all together

Answer: Hilbert functions!

Graded module N - Hilbert function H(N; n)
over graded algebra R defined for n > 0

Hilbert's Theorem

The Hilbert function of any finitely generated positively graded module N
is eventually quasipolynomial.

Theorem (O, 2015)

The values of M(n), m(n), w(n), A(n), and c(n) over any numerical
monoid are each determined by Hilbert functions.

A\
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Bringing it all together

Answer: Hilbert functions!

Graded module N - Hilbert function H(N; n)
over graded algebra R defined for n > 0

Hilbert's Theorem

The Hilbert function of any finitely generated positively graded module N
is eventually quasipolynomial.

Theorem (O, 2015)

The values of M(n), m(n), w(n), A(n), and c(n) over any numerical
monoid are each determined by Hilbert functions.

A\

For instance:

S numerical monoid
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Bringing it all together

Answer: Hilbert functions!

Graded module N - Hilbert function H(N; n)
over graded algebra R defined for n > 0

Hilbert's Theorem

The Hilbert function of any finitely generated positively graded module N
is eventually quasipolynomial.

Theorem (O, 2015)

The values of M(n), m(n), w(n), A(n), and c(n) over any numerical
monoid are each determined by Hilbert functions.

v

For instance:

Graded module N

S numerical monoid ~ ~~ with H(N; n) = M(n)
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Bringing it all together

Answer: Hilbert functions!

Graded module N - Hilbert function H(N; n)
over graded algebra R defined for n > 0

Hilbert's Theorem

The Hilbert function of any finitely generated positively graded module N
is eventually quasipolynomial.

Theorem (O, 2015)

The values of M(n), m(n), w(n), A(n), and c(n) over any numerical
monoid are each determined by Hilbert functions.

v

For instance:

Graded module N

S numerical monoid ~ ~~ with H(N; n) = M(n)

Hilbert's Theorem = M(n) is quasilinear.
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