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UC Davis, Math 148: “Discrete Math”

Topics: finite fields, block designs, error-correcting codes

Students: 45% Math, 40% CS, 15% other
highly varied math backgrounds

Course structure: half lecture days
half discovery learning (“discussion”) days
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Overview of block designs
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Overview of error-correcting codes

Encode messages so recipient can detect/correct errors

Example
A → 000 B → 111

Send message ABBA:

000 111 111 000  000 110 111 010

Goal: efficient error-correcting codes

Block designs −→ Error-correcting codes
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Course content

Content: finite fields (5 weeks)
block designs (2 weeks)
error-correcting codes (2 weeks)

Students: 50% intro to proofs, 50% proof-based linear algebra
15% taken abstract algebra, 20% no modular arithmetic

Finite fields: modular arithmetic
rings and fields
polynomial rings, factorization
finite fields, fundamental theorem
finite geometry

Goals: emphasize usage in practice
some theory/proof practice
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Course structure

Split days: 2 lecture days (Monday/Wednesday)
2 discussion days (Thursday/Friday)

Discussion days: work in groups of 3-4
cover new/essential material
short preliminary assignment beforehand

Choosing split: introduce topic in lecture, discover theorems in discussion
preview topic in discussion, introduce formally in lecture

Benefits of “half-IBL”: adjust lecture after rough discussion
maintain “expected” pace
lower chance of student revolt

Bonus benefit: help sidestep theoretical aspects
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Sample discussion: finite fields

Winter 2018, Math 148: Week 4 Problem Set
Due: Friday, February 9th, 2018

Finite Fields

Discussion problems. The problems below should be completed in class.

(D1) Finite fields. The goal of this problem is to systematically build “small” finite fields.

(a) Suppose F3 = {0, 1, a} is a field with exactly 3 elements. Fill in as much of the addition
and multiplication table as you can using only the field axioms.

(b) How many entries in your answer to part (a) remain? Which field(s) can F3 be?

(c) Do the same for a field F4 = {0, 1, a, b} with exactly 4 elements.

(d) What is the order of each element of F4? What familiar additive group did you obtain?
With this in mind, is the multiplication structure what you expected it to be?

(e) Suppose F6 is a field with exactly 6 elements. Can 1 2 F6 have order 6?

(f) It turns out the order of an element of a finite ring must divide the size of the ring.
With this in mind, for each possible order of 1 2 F6, try writing out the addition and
multiplication tables. When are you able to fill both tables?

(g) Fill in the addition and multiplication tables for a field F5 = {0, 1, a, b, c} with exactly
5 elements (this is tricky, but a fun challenge!). What ring(s) do you get?

(D2) Constructing finite fields.

(a) Compare within your group the polynomials you found in Z2[z] in problem (P2).

(b) For any finite field F , the set F \ {0} is a cyclic group under multiplication (you
proved this on your homework last week for F = Z13). Verify this fact for F4 (from
the preliminary problems) by finding a cyclic generator (i.e. an element a 2 F4 such
that every nonzero element of F4 is a power of a).

(c) A nonzero element of Fpr is primitive if it generates Fpr \ {0} as a group under multi-
plication. Find a primitive element in F7, F11 and F41.

(d) Using the methods we have developed so far, construct a finite field F9 with exactly 9
elements. Find a primitive element in F9 \ {0}.

(e) Determine which elements of F32 are primitive. Hint: no excessive calculations needed!

(D3) Factoring over finite fields. Let q = pr for p prime and r � 1.

(a) Factor the polynomial x5 � x over F5. Do the same for x7 � x over F7.

(b) Factor the polynomial x4 � x over F4. Hint: use a variable other than x (such as z)
when writing elements of F4.

(c) Formulate a conjecture for how xq � x factors over Fq (you don’t have to prove it!).

(d) Factor x4 �x and x8 �x over Z2. Hint: look at your answer to problem (D2) part (a).

(e) Factor x9 � x over Z3. Hint: find some low-degree irreducible polynomials over Z3.

(f) Formulate a conjecture about how xpn � x factors over Zp (proof not required!).

(g) Factor x8 �x over F4. Does this hint at an extension of your conjecture from part (f)?

1
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+ 0 1 a
0 0 1 a
1 1
a a
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Sample discussion: finite fields

Winter 2018, Math 148: Week 4 Problem Set
Due: Friday, February 9th, 2018

Finite Fields

Discussion problems. The problems below should be completed in class.

(D1) Finite fields. The goal of this problem is to systematically build “small” finite fields.

(a) Suppose F3 = {0, 1, a} is a field with exactly 3 elements. Fill in as much of the addition
and multiplication table as you can using only the field axioms.

(b) How many entries in your answer to part (a) remain? Which field(s) can F3 be?

(c) Do the same for a field F4 = {0, 1, a, b} with exactly 4 elements.

(d) What is the order of each element of F4? What familiar additive group did you obtain?
With this in mind, is the multiplication structure what you expected it to be?

(e) Suppose F6 is a field with exactly 6 elements. Can 1 2 F6 have order 6?

(f) It turns out the order of an element of a finite ring must divide the size of the ring.
With this in mind, for each possible order of 1 2 F6, try writing out the addition and
multiplication tables. When are you able to fill both tables?

(g) Fill in the addition and multiplication tables for a field F5 = {0, 1, a, b, c} with exactly
5 elements (this is tricky, but a fun challenge!). What ring(s) do you get?

(D2) Constructing finite fields.

(a) Compare within your group the polynomials you found in Z2[z] in problem (P2).

(b) For any finite field F , the set F \ {0} is a cyclic group under multiplication (you
proved this on your homework last week for F = Z13). Verify this fact for F4 (from
the preliminary problems) by finding a cyclic generator (i.e. an element a 2 F4 such
that every nonzero element of F4 is a power of a).

(c) A nonzero element of Fpr is primitive if it generates Fpr \ {0} as a group under multi-
plication. Find a primitive element in F7, F11 and F41.

(d) Using the methods we have developed so far, construct a finite field F9 with exactly 9
elements. Find a primitive element in F9 \ {0}.

(e) Determine which elements of F32 are primitive. Hint: no excessive calculations needed!

(D3) Factoring over finite fields. Let q = pr for p prime and r � 1.

(a) Factor the polynomial x5 � x over F5. Do the same for x7 � x over F7.

(b) Factor the polynomial x4 � x over F4. Hint: use a variable other than x (such as z)
when writing elements of F4.

(c) Formulate a conjecture for how xq � x factors over Fq (you don’t have to prove it!).

(d) Factor x4 �x and x8 �x over Z2. Hint: look at your answer to problem (D2) part (a).

(e) Factor x9 � x over Z3. Hint: find some low-degree irreducible polynomials over Z3.

(f) Formulate a conjecture about how xpn � x factors over Zp (proof not required!).

(g) Factor x8 �x over F4. Does this hint at an extension of your conjecture from part (f)?

1

+ 0 1 a
0 0 1 a
1 1
a a

× 0 1 a
0 0 0 0
1 0 1 a
a 0 a 1

Christopher O’Neill (SDSU) Discovery learning on finite fields and applications August 4, 2018 8 / 13



Sample discussion: finite fields

Winter 2018, Math 148: Week 4 Problem Set
Due: Friday, February 9th, 2018

Finite Fields

Discussion problems. The problems below should be completed in class.

(D1) Finite fields. The goal of this problem is to systematically build “small” finite fields.

(a) Suppose F3 = {0, 1, a} is a field with exactly 3 elements. Fill in as much of the addition
and multiplication table as you can using only the field axioms.

(b) How many entries in your answer to part (a) remain? Which field(s) can F3 be?

(c) Do the same for a field F4 = {0, 1, a, b} with exactly 4 elements.

(d) What is the order of each element of F4? What familiar additive group did you obtain?
With this in mind, is the multiplication structure what you expected it to be?

(e) Suppose F6 is a field with exactly 6 elements. Can 1 2 F6 have order 6?

(f) It turns out the order of an element of a finite ring must divide the size of the ring.
With this in mind, for each possible order of 1 2 F6, try writing out the addition and
multiplication tables. When are you able to fill both tables?

(g) Fill in the addition and multiplication tables for a field F5 = {0, 1, a, b, c} with exactly
5 elements (this is tricky, but a fun challenge!). What ring(s) do you get?

(D2) Constructing finite fields.

(a) Compare within your group the polynomials you found in Z2[z] in problem (P2).

(b) For any finite field F , the set F \ {0} is a cyclic group under multiplication (you
proved this on your homework last week for F = Z13). Verify this fact for F4 (from
the preliminary problems) by finding a cyclic generator (i.e. an element a 2 F4 such
that every nonzero element of F4 is a power of a).

(c) A nonzero element of Fpr is primitive if it generates Fpr \ {0} as a group under multi-
plication. Find a primitive element in F7, F11 and F41.

(d) Using the methods we have developed so far, construct a finite field F9 with exactly 9
elements. Find a primitive element in F9 \ {0}.

(e) Determine which elements of F32 are primitive. Hint: no excessive calculations needed!

(D3) Factoring over finite fields. Let q = pr for p prime and r � 1.

(a) Factor the polynomial x5 � x over F5. Do the same for x7 � x over F7.

(b) Factor the polynomial x4 � x over F4. Hint: use a variable other than x (such as z)
when writing elements of F4.

(c) Formulate a conjecture for how xq � x factors over Fq (you don’t have to prove it!).

(d) Factor x4 �x and x8 �x over Z2. Hint: look at your answer to problem (D2) part (a).

(e) Factor x9 � x over Z3. Hint: find some low-degree irreducible polynomials over Z3.

(f) Formulate a conjecture about how xpn � x factors over Zp (proof not required!).

(g) Factor x8 �x over F4. Does this hint at an extension of your conjecture from part (f)?

1

+ 0 1 a
0 0 1 a
1 1 a 0
a a 0 1

× 0 1 a
0 0 0 0
1 0 1 a
a 0 a 1

Christopher O’Neill (SDSU) Discovery learning on finite fields and applications August 4, 2018 8 / 13



Sample discussion: projective plane

Winter 2018, Math 148: Week 8 Problem Set
Due: Wednesday, March 7th, 2018

Constructing More and More t-designs

Discussion problems. The problems below should be completed in class.

(D1) Designs from di↵erence sets. A subset A ⇢ Zn is a di↵erence set if each nonzero element
of Zn occurs the same number of times as x � y for distinct x, y 2 A.

(a) Determine whether each of the following is a di↵erence set. You may find it useful to
divide the work here!

{0, 2, 3, 4, 8} ⇢ Z11 {0, 1, 3, 11} ⇢ Z12

(b) For each set A ⇢ Zn in part (a) above, determine for which t the collection of sets
A + i = {i + x : x 2 A} for i 2 Zn form a t-design.

(c) Our goal for this discussion problem is to prove the following theorem.

Theorem. Given a di↵erence set A ⇢ Zn, the sets A + i for i 2 Zn form a 2-design.

Assuming the theorem holds, find the parameters v, k, and r1 (i.e. the number of
blocks each j 2 Zn appears in), each in terms of |A| and n. Using general facts about
2-designs, find b and r2 (i.e. the number of blocks in which each pair j, j0 2 Zn appear
together) in terms of |A| and n. Can you find a di↵erence set that produces a 2-design
with parameters (v, k, r2) = (7, 3, 2)? What about (v, k, r2) = (7, 3, 1)?

(d) Argue that each block A + i is distinct. Prove that each j 2 Zn occurs in r1 blocks.

(e) Given distinct j, j0 2 Zn, argue that j � j0 = x � y has r2 solutions (x, y) for distinct
x, y 2 A. For each solution (x, y), find a value of i so that j, j0 2 A + i.

(f) Conclude that the above theorem holds.

(g) If we replace Zn in both the definition of di↵erence set and the theorem above with Fq

for q a prime power, does the theorem still hold? In particular, does your proof break,
and if so, can you amend your argument to avoid this?

(D2) The projective plane over a finite field. The goal of this problem is to construct spaces in
which any 2 distinct lines intersect in exactly 1 point.

(a) (i) Draw the a�ne plane F2
2. List all of the lines in F2

2.

(ii) For each pair L1, L2 of parallel lines, draw a new point “o↵ the edge of the plane”
and extend L1 and L2 to contain the new point. They might not be “straight”!

(iii) How many points does your space have? How many points does each line have?

(iv) Does every pair of distinct points still determine a line? Is there an easy way to
fix this while preserving your answers in part (c)?

(v) Using t-designs, what can you conclude about the lines in the resulting space?

(b) (i) Draw the a�ne plane F2
3. What is the maximum number of non-parallel lines?

(ii) As in problem (D1), for each triple L1, L2, L3 of parallel lines, draw a new point
“o↵ the edge of the plane” and extend each line to contain the new point.

(iii) How many lines do you need to add in order to ensure every 2 points determine
a line? Do all of your lines contain the same number of points?

(iv) Using t-designs, what can you conclude about the lines in the resulting space?

(c) Pick a representation for F4 using polynomials. Repeat the construction from parts (a)
and (b) using the a�ne plane F2

4. Do the set of lines form a t-design?

(d) Conjecture a general construction for the projective plane of Fq. Viewing the set of
lines in this space as blocks in a 2-design, what will the parameters (v, k, r) be?
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fix this while preserving your answers in part (c)?

(v) Using t-designs, what can you conclude about the lines in the resulting space?

(b) (i) Draw the a�ne plane F2
3. What is the maximum number of non-parallel lines?

(ii) As in problem (D1), for each triple L1, L2, L3 of parallel lines, draw a new point
“o↵ the edge of the plane” and extend each line to contain the new point.

(iii) How many lines do you need to add in order to ensure every 2 points determine
a line? Do all of your lines contain the same number of points?

(iv) Using t-designs, what can you conclude about the lines in the resulting space?

(c) Pick a representation for F4 using polynomials. Repeat the construction from parts (a)
and (b) using the a�ne plane F2

4. Do the set of lines form a t-design?

(d) Conjecture a general construction for the projective plane of Fq. Viewing the set of
lines in this space as blocks in a 2-design, what will the parameters (v, k, r) be?
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(g) If we replace Zn in both the definition of di↵erence set and the theorem above with Fq
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which any 2 distinct lines intersect in exactly 1 point.

(a) (i) Draw the a�ne plane F2
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and extend L1 and L2 to contain the new point. They might not be “straight”!
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(iv) Does every pair of distinct points still determine a line? Is there an easy way to
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(ii) For each pair L1, L2 of parallel lines, draw a new point “o↵ the edge of the plane”
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Sample homework: modular arithmetic (week 1)
Required problems: computational, “1-line” proofs
Selection problems: proof-based, combine several ideas
Challenge problems: optional, requiring sizeable generalization

Required problems. As the name suggests, you must submit all required problems with this
homework set in order to receive full credit.

(R1) Write the addition and multiplication tables for Z6. You can leave o↵ the [ ]6 notation
and simply denote the elements by 0, 1, 2, 3, 4, 5 2 Z6.

(R2) Determine whether each of the following statements is true or false. Justify your answer
(you are not required to give a formal proof). You may not use a calculator.

(a) 14323341327 is prime.

(b) There exists x 2 Z such that x2 + 1 = 123456789.

(R3) Find all x, y 2 Z7 that are solutions to both of the equations

x + 2y = [4]7 and 4x + 3y = [4]7

in Z7. Do the same for x, y 2 Z6 (where [4]7 is replaced with [4]6).

(R4) Prove that an integer x is divisible by 4 if and only if the last two digits of x in base 10
form a 2-digit number that is divisible by 4.

Selection problems. You are required to submit all parts of one selection problem with this
problem set. You may submit additional selection problems if you wish, but please indicate what
you want graded. Although I am happy to provide written feedback on all submitted work, no
extra credit will be awarded for completing additional selection problems.

(S1) (a) Suppose (xn · · · x1x0)10 expresses x in base 10. Prove that

x ⌘ x0 � x1 + x2 � x3 + · · · + (�1)nxn mod 11.

(b) Use part (a) to decide whether 1213141516171819 is divisible by 11.

(S2) The goal of this question is to prove that the “freshman’s dream” equation

(x + y)p = xp + yp

holds for any x, y 2 Zp when p is prime.

(a) Recall that for any n, k � 0, ✓
n

k

◆
=

n!

k!(n � k)!

is an integer. Prove that if p is prime and 1  k  p � 1, then p divides
�

p
k

�
.

(b) Recall that for any x, y 2 R,

(x + y)n =
nX

k=0

✓
n

k

◆
xkyn�k.

Use this to prove the Freshman’s Dream equation for x, y 2 Zp.

Challenge problems. Challenge problems are not required for submission, but bonus points
will be awarded for submitting a partial attempt or a complete solution.

(C1) We saw in class that an integer x is divisible by 9 if and only if the sum of the digits
(base 10) of x is divisibile by 9, and you proved in discussion that the same holds for
divisibility by 3. Fix a base b. State and prove a characterization of the n for which the
following holds: an integer x is divisible by n if and only if the sum of the digits (base b)
of x is divisible by n. As an example, for b = 10, this only holds for n = 3 and n = 9.
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extra credit will be awarded for completing additional selection problems.

(S1) (a) Suppose (xn · · · x1x0)10 expresses x in base 10. Prove that

x ⌘ x0 � x1 + x2 � x3 + · · · + (�1)nxn mod 11.

(b) Use part (a) to decide whether 1213141516171819 is divisible by 11.

(S2) The goal of this question is to prove that the “freshman’s dream” equation

(x + y)p = xp + yp

holds for any x, y 2 Zp when p is prime.

(a) Recall that for any n, k � 0, ✓
n

k

◆
=

n!

k!(n � k)!

is an integer. Prove that if p is prime and 1  k  p � 1, then p divides
�

p
k

�
.

(b) Recall that for any x, y 2 R,

(x + y)n =
nX

k=0

✓
n

k

◆
xkyn�k.

Use this to prove the Freshman’s Dream equation for x, y 2 Zp.

Challenge problems. Challenge problems are not required for submission, but bonus points
will be awarded for submitting a partial attempt or a complete solution.

(C1) We saw in class that an integer x is divisible by 9 if and only if the sum of the digits
(base 10) of x is divisibile by 9, and you proved in discussion that the same holds for
divisibility by 3. Fix a base b. State and prove a characterization of the n for which the
following holds: an integer x is divisible by n if and only if the sum of the digits (base b)
of x is divisible by n. As an example, for b = 10, this only holds for n = 3 and n = 9.
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Sample homework: modular arithmetic (week 1)
Required problems: computational, “1-line” proofs
Selection problems: proof-based, combine several ideas
Challenge problems: optional, requiring sizeable generalization
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Sample homework: finite fields (week 4)
Required problems: computational, “1-line” proofs
Selection problems: proof-based, combine several ideas
Challenge problems: optional, requiring sizeable generalization

Required problems. As the name suggests, you must submit all required problem with this
homework set in order to receive full credit.

(R1) Factor f(x) = x5 + x4 + 1 over F2, F4, and F8.

(R2) Multiply all of the nonzero elements of F5 together. Do the same for F11 and F4. Find a
formula for the product of all nonzero elements of Fpr .

(R3) For p prime, find a formula for the number of irreducible polynomials of degree at most 3
in Zp[x]. You are not required to prove your formula holds.

(R4) Provide a proof for either (R2) or (R3). Bonus points will be awarded if you prove both.
Hint: use the theorem about how xq � x factors over Fq.

Selection problems. You are required to submit all parts of one selection problem with this
problem set. You may submit additional selection problems if you wish, but please indicate what
you want graded. Although I am happy to provide written feedback on all submitted work, no
extra credit will be awarded for completing additional selection problems.

(S1) (a) Let a(n) denote the number of degree-n irreducible polynomials over F2. Prove that

2n =
X

d|n
d·a(d).

Hint: use the theorem about how x2d � x factors over F2.

(b) Find the number of irreducible polynomials over F2 with degree exactly 31.

(c) Find the number of irreducible polynomials over F2 with degree exactly 21.

(S2) A field F is algebraically closed if every polynomial in F [x] has a root in F . For example,
C is algebraically closed, but R is not since x2 + 1 has no roots in R. Prove that no finite
field Fpr is algebraically closed.

Challenge problems. Challenge problems are not required for submission, but bonus points
will be awarded for submitting a partial attempt or a complete solution.

(C1) By the fundamental theorem of finite fields,

F = Z2[z]/hz3 + z + 1i and F 0 = Z2[z]/hz3 + z2 + 1i

are both fields with 8 elements and thus must be the same. Find an explicit bijection
F ! F 0 that preserves both addition and multiplication.
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Verdict (based on exit interviews & course evalutations)

Overall very positive feedback

Students develop “just try it and see what happens” attitude

Many students initially dread discussion, later look forward to it

Many liked seeing nonstandard topics (projective geometry, latin squares)

Some found it helpful later in abstract algebra

A few said is was too theoretical

A few said it wasn’t rigorous enough
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