Enumerating numerical semigroups using polyhedral geometry

Christopher O'Neill

San Diego State University
cdoneill@sdsu.edu

Joint with Winfried Bruns, Pedro García Sánchez, and Dane Wilburne

$$
\text { May 4, } 2019
$$

Numerical semigroups

Definition

A numerical semigroup $S \subset \mathbb{Z}_{\geq 0}$: closed under addition, $\left|\mathbb{Z}_{\geq 0} \backslash S\right|<\infty$.

Numerical semigroups

Definition

A numerical semigroup $S \subset \mathbb{Z}_{\geq 0}$: closed under addition, $\left|\mathbb{Z}_{\geq 0} \backslash S\right|<\infty$.
Example:

$$
M c N=\langle 6,9,20\rangle=\left\{\begin{array}{l}
0,6,9,12,15,18,20,21,24, \ldots \\
\cdots, 36,38,39,40,41,42,44 \rightarrow
\end{array}\right\}
$$

Numerical semigroups

Definition

A numerical semigroup $S \subset \mathbb{Z}_{\geq 0}$: closed under addition, $\left|\mathbb{Z}_{\geq 0} \backslash S\right|<\infty$.
Example: "McNugget Semigroup"

$$
M c N=\langle 6,9,20\rangle=\left\{\begin{array}{l}
0,6,9,12,15,18,20,21,24, \ldots \\
\cdots, 36,38,39,40,41,42,44 \rightarrow
\end{array}\right\}
$$

Numerical semigroups

Definition

A numerical semigroup $S \subset \mathbb{Z}_{\geq 0}$: closed under addition, $\left|\mathbb{Z}_{\geq 0} \backslash S\right|<\infty$.
Example: "McNugget Semigroup"

$$
M c N=\langle 6,9,20\rangle=\left\{\begin{array}{l}
0,6,9,12,15,18,20,21,24, \ldots \\
\cdots, 36,38,39,40,41,42,44 \rightarrow
\end{array}\right\}
$$

Example: $S=\langle 6,9,18,20,32\rangle$

Numerical semigroups

Definition

A numerical semigroup $S \subset \mathbb{Z}_{\geq 0}$: closed under addition, $\left|\mathbb{Z}_{\geq 0} \backslash S\right|<\infty$.
Example: "McNugget Semigroup"

$$
M c N=\langle 6,9,20\rangle=\left\{\begin{array}{l}
0,6,9,12,15,18,20,21,24, \ldots \\
\ldots, 36,38,39,40,41,42,44 \rightarrow
\end{array}\right\}
$$

Example: $S=\langle 6,9,18,20,32\rangle$

Numerical semigroups

Definition

A numerical semigroup $S \subset \mathbb{Z}_{\geq 0}$: closed under addition, $\left|\mathbb{Z}_{\geq 0} \backslash S\right|<\infty$.
Example: "McNugget Semigroup"

$$
M c N=\langle 6,9,20\rangle=\left\{\begin{array}{l}
0,6,9,12,15,18,20,21,24, \ldots \\
\ldots, 36,38,39,40,41,42,44 \rightarrow
\end{array}\right\}
$$

Example: $S=\langle 6,9,10,20,32\rangle=M c N$

Numerical semigroups

Definition

A numerical semigroup $S \subset \mathbb{Z}_{\geq 0}$: closed under addition, $\left|\mathbb{Z}_{\geq 0} \backslash S\right|<\infty$.
Example: "McNugget Semigroup"

$$
M c N=\langle 6,9,20\rangle=\left\{\begin{array}{l}
0,6,9,12,15,18,20,21,24, \ldots \\
\cdots, 36,38,39,40,41,42,44 \rightarrow
\end{array}\right\}
$$

Example: $S=\langle 6,9,18,20,32\rangle=M c N$

Fact

Every numerical semigroup has a unique minimal generating set.

Numerical semigroups

Definition

A numerical semigroup $S \subset \mathbb{Z}_{\geq 0}$: closed under addition, $\left|\mathbb{Z}_{\geq 0} \backslash S\right|<\infty$.
Example: "McNugget Semigroup"

$$
M c N=\langle 6,9,20\rangle=\left\{\begin{array}{l}
0,6,9,12,15,18,20,21,24, \ldots \\
\cdots, 36,38,39,40,41,42,44 \rightarrow
\end{array}\right\}
$$

Example: $S=\langle 6,9,10,20,32\rangle=M c N$

Fact

Every numerical semigroup has a unique minimal generating set.
Embedding dimension: $\mathrm{e}(S)=\#$ minimal generators

Numerical semigroups

Definition

A numerical semigroup $S \subset \mathbb{Z}_{\geq 0}$: closed under addition, $\left|\mathbb{Z}_{\geq 0} \backslash S\right|<\infty$.
Example: "McNugget Semigroup"

$$
M c N=\langle 6,9,20\rangle=\left\{\begin{array}{l}
0,6,9,12,15,18,20,21,24, \ldots \\
\cdots, 36,38,39,40,41,42,44 \rightarrow
\end{array}\right\}
$$

Example: $S=\langle 6,9,18,20,32\rangle=M c N$

Fact

Every numerical semigroup has a unique minimal generating set.
Embedding dimension: $\mathrm{e}(S)=\#$ minimal generators Multiplicity: $\mathrm{m}(S)=$ smallest nonzero element

Frobenius number

Fix a numerical semigroup $S=\left\langle n_{1}, \ldots, n_{k}\right\rangle$.

Frobenius number

Fix a numerical semigroup $S=\left\langle n_{1}, \ldots, n_{k}\right\rangle$.

Definition

$\mathrm{F}(S)=\max (\mathbb{N} \backslash S)$ is the Frobenius number of S.

Frobenius number

Fix a numerical semigroup $S=\left\langle n_{1}, \ldots, n_{k}\right\rangle$.

Definition

$F(S)=\max (\mathbb{N} \backslash S)$ is the Frobenius number of S.

$$
\begin{aligned}
& \text { Example } \\
& \text { If } S=\langle 6,9,20\rangle \text {, then } \mathrm{F}(S)=43 \text { since } \\
& \qquad \mathbb{N} \backslash S=\{1,2,3,4,5,7,8,10,11,13, \ldots, 31,34,37,43\}
\end{aligned}
$$

Frobenius number

Fix a numerical semigroup $S=\left\langle n_{1}, \ldots, n_{k}\right\rangle$.

Definition

$\mathrm{F}(S)=\max (\mathbb{N} \backslash S)$ is the Frobenius number of S.

$$
\begin{aligned}
& \text { Example } \\
& \text { If } S=\langle 6,9,20\rangle \text {, then } \mathrm{F}(S)=43 \text { since } \\
& \qquad \mathbb{N} \backslash S=\{1,2,3,4,5,7,8,10,11,13, \ldots, 31,34,37,43\} .
\end{aligned}
$$

Computing the Frobenius number for general S is hard.

Frobenius number

Fix a numerical semigroup $S=\left\langle n_{1}, \ldots, n_{k}\right\rangle$.

Definition

$F(S)=\max (\mathbb{N} \backslash S)$ is the Frobenius number of S.

Example

If $S=\langle 6,9,20\rangle$, then $\mathrm{F}(S)=43$ since

$$
\mathbb{N} \backslash S=\{1,2,3,4,5,7,8,10,11,13, \ldots, 31,34,37,43\}
$$

Computing the Frobenius number for general S is hard.

- If $S=\left\langle n_{1}, n_{2}\right\rangle$, then $\mathrm{F}(S)=n_{1} n_{2}-\left(n_{1}+n_{2}\right)$.

Frobenius number

Fix a numerical semigroup $S=\left\langle n_{1}, \ldots, n_{k}\right\rangle$.

Definition

$\mathrm{F}(S)=\max (\mathbb{N} \backslash S)$ is the Frobenius number of S.

Example

If $S=\langle 6,9,20\rangle$, then $\mathrm{F}(S)=43$ since

$$
\mathbb{N} \backslash S=\{1,2,3,4,5,7,8,10,11,13, \ldots, 31,34,37,43\}
$$

Computing the Frobenius number for general S is hard.

- If $S=\left\langle n_{1}, n_{2}\right\rangle$, then $\mathrm{F}(S)=n_{1} n_{2}-\left(n_{1}+n_{2}\right)$.
- If $S=\left\langle n_{1}, n_{2}, n_{3}\right\rangle$, then there is a fast algorithm for $F(S)$.

Frobenius number

Fix a numerical semigroup $S=\left\langle n_{1}, \ldots, n_{k}\right\rangle$.

Definition

$F(S)=\max (\mathbb{N} \backslash S)$ is the Frobenius number of S.

Example

If $S=\langle 6,9,20\rangle$, then $\mathrm{F}(S)=43$ since

$$
\mathbb{N} \backslash S=\{1,2,3,4,5,7,8,10,11,13, \ldots, 31,34,37,43\}
$$

Computing the Frobenius number for general S is hard.

- If $S=\left\langle n_{1}, n_{2}\right\rangle$, then $\mathrm{F}(S)=n_{1} n_{2}-\left(n_{1}+n_{2}\right)$.
- If $S=\left\langle n_{1}, n_{2}, n_{3}\right\rangle$, then there is a fast algorithm for $F(S)$.
- Formulas in a few other special cases.

The Apéry set

Fix a numerical semigroup S with $\mathrm{m}(S)=m$.

The Apéry set

Fix a numerical semigroup S with $\mathrm{m}(S)=m$.

Definition

The Apéry set of S is

$$
\operatorname{Ap}(S)=\{a \in S: a-m \notin S\}
$$

The Apéry set

Fix a numerical semigroup S with $\mathrm{m}(S)=m$.

Definition

The Apéry set of S is

$$
\operatorname{Ap}(S)=\{a \in S: a-m \notin S\}
$$

If $S=\langle 6,9,20\rangle$, then

$$
\operatorname{Ap}(S)=\{0,49,20,9,40,29\}
$$

The Apéry set

Fix a numerical semigroup S with $\mathrm{m}(S)=m$.

Definition

The Apéry set of S is

$$
\operatorname{Ap}(S)=\{a \in S: a-m \notin S\}
$$

If $S=\langle 6,9,20\rangle$, then

$$
\operatorname{Ap}(S)=\{0,49,20,9,40,29\}
$$

For $2 \bmod 6:\{2,8,14,20,26,32, \ldots\} \cap S=\{20,26,32, \ldots\}$
For $3 \bmod 6$:
$\{3,9,15,21, \ldots\} \cap S=\{9,15,21, \ldots\}$
For $4 \bmod 6$:

$$
\{4,10,16,22, \ldots\} \cap S=\{40,46,52, \ldots\}
$$

The Apéry set

Fix a numerical semigroup S with $\mathrm{m}(S)=m$.

Definition

The Apéry set of S is

$$
\operatorname{Ap}(S)=\{a \in S: a-m \notin S\}
$$

If $S=\langle 6,9,20\rangle$, then

$$
\operatorname{Ap}(S)=\{0,49,20,9,40,29\}
$$

For $2 \bmod 6:\{2,8,14,20,26,32, \ldots\} \cap S=\{20,26,32, \ldots\}$
For $3 \bmod 6$:
$\{3,9,15,21, \ldots\} \cap S=\{9,15,21, \ldots\}$
For $4 \bmod 6$:

$$
\{4,10,16,22, \ldots\} \cap S=\{40,46,52, \ldots\}
$$

The Apéry set

Fix a numerical semigroup S with $\mathrm{m}(S)=m$.

Definition

The Apéry set of S is

$$
\operatorname{Ap}(S)=\{a \in S: a-m \notin S\}
$$

If $S=\langle 6,9,20\rangle$, then

$$
\operatorname{Ap}(S)=\{0,49,20,9,40,29\}
$$

For $2 \bmod 6:\{2,8,14,20,26,32, \ldots\} \cap S=\{20,26,32, \ldots\}$
For $3 \bmod 6$:
$\{3,9,15,21, \ldots\} \cap S=\{9,15,21, \ldots\}$
For $4 \bmod 6$:

$$
\{4,10,16,22, \ldots\} \cap S=\{40,46,52, \ldots\}
$$

The Apéry set

Fix a numerical semigroup S with $\mathrm{m}(S)=m$.

Definition

The Apéry set of S is

$$
\operatorname{Ap}(S)=\{a \in S: a-m \notin S\}
$$

If $S=\langle 6,9,20\rangle$, then

$$
\operatorname{Ap}(S)=\{0,49,20,9,40,29\}
$$

For $2 \bmod 6:\{2,8,14,20,26,32, \ldots\} \cap S=\{20,26,32, \ldots\}$
For $3 \bmod 6$:
$\{3,9,15,21, \ldots\} \cap S=\{9,15,21, \ldots\}$
For $4 \bmod 6$:

$$
\{4,10,16,22, \ldots\} \cap S=\{40,46,52, \ldots\}
$$

Observations:

The Apéry set

Fix a numerical semigroup S with $\mathrm{m}(S)=m$.

Definition

The Apéry set of S is

$$
\operatorname{Ap}(S)=\{a \in S: a-m \notin S\}
$$

If $S=\langle 6,9,20\rangle$, then

$$
\operatorname{Ap}(S)=\{0,49,20,9,40,29\}
$$

For $2 \bmod 6:\{2,8,14,20,26,32, \ldots\} \cap S=\{20,26,32, \ldots\}$
For $3 \bmod 6$:
$\{3,9,15,21, \ldots\} \cap S=\{9,15,21, \ldots\}$
$\{4,10,16,22, \ldots\} \cap S=\{40,46,52, \ldots\}$
Observations:

- The elements of $\operatorname{Ap}(S)$ are distinct modulo m

The Apéry set

Fix a numerical semigroup S with $\mathrm{m}(S)=m$.

Definition

The Apéry set of S is

$$
\operatorname{Ap}(S)=\{a \in S: a-m \notin S\}
$$

If $S=\langle 6,9,20\rangle$, then

$$
\operatorname{Ap}(S)=\{0,49,20,9,40,29\}
$$

For $2 \bmod 6:\{2,8,14,20,26,32, \ldots\} \cap S=\{20,26,32, \ldots\}$
For $3 \bmod 6$:
$\{3,9,15,21, \ldots\} \cap S=\{9,15,21, \ldots\}$
For $4 \bmod 6$:

$$
\{4,10,16,22, \ldots\} \cap S=\{40,46,52, \ldots\}
$$

Observations:

- The elements of $\operatorname{Ap}(S)$ are distinct modulo m
- $|\operatorname{Ap}(S)|=m$

The Apéry set

Fix a numerical semigroup S with $\mathrm{m}(S)=m$.

Definition

The Apéry set of S is

$$
\operatorname{Ap}(S)=\{a \in S: a-m \notin S\}
$$

The Apéry set

Fix a numerical semigroup S with $\mathrm{m}(S)=m$.

Definition

The Apéry set of S is

$$
\operatorname{Ap}(S)=\{a \in S: a-m \notin S\}
$$

Many things can be easily recovered from the Apéry set.

The Apéry set

Fix a numerical semigroup S with $\mathrm{m}(S)=m$.

Definition

The Apéry set of S is

$$
\operatorname{Ap}(S)=\{a \in S: a-m \notin S\}
$$

Many things can be easily recovered from the Apéry set.

- Fast membership test:

$$
n \in S \text { if } n \geq a \text { for } a \in \operatorname{Ap}(S) \text { with } a \equiv n \bmod m
$$

The Apéry set

Fix a numerical semigroup S with $\mathrm{m}(S)=m$.

Definition

The Apéry set of S is

$$
\operatorname{Ap}(S)=\{a \in S: a-m \notin S\}
$$

Many things can be easily recovered from the Apéry set.

- Fast membership test:

$$
n \in S \text { if } n \geq a \text { for } a \in \operatorname{Ap}(S) \text { with } a \equiv n \bmod m
$$

- Frobenius number: $\mathrm{F}(S)=\max (\operatorname{Ap}(S))-m$

The Apéry set

Fix a numerical semigroup S with $\mathrm{m}(S)=m$.

Definition

The Apéry set of S is

$$
\operatorname{Ap}(S)=\{a \in S: a-m \notin S\}
$$

Many things can be easily recovered from the Apéry set.

- Fast membership test:

$$
n \in S \text { if } n \geq a \text { for } a \in \operatorname{Ap}(S) \text { with } a \equiv n \bmod m
$$

- Frobenius number: $F(S)=\max (\operatorname{Ap}(S))-m$
- Number of gaps (the genus):

$$
\mathrm{g}(S)=|\mathbb{N} \backslash S|=\sum_{a \in \operatorname{Ap}(S)}\left\lfloor\frac{a}{m}\right\rfloor
$$

The Apéry set

Fix a numerical semigroup S with $\mathrm{m}(S)=m$.

Definition

The Apéry set of S is

$$
\operatorname{Ap}(S)=\{a \in S: a-m \notin S\}
$$

Many things can be easily recovered from the Apéry set.

- Fast membership test:

$$
n \in S \text { if } n \geq a \text { for } a \in \operatorname{Ap}(S) \text { with } a \equiv n \bmod m
$$

- Frobenius number: $F(S)=\max (\operatorname{Ap}(S))-m$
- Number of gaps (the genus):

$$
\mathrm{g}(S)=|\mathbb{N} \backslash S|=\sum_{a \in \operatorname{Ap}(S)}\left\lfloor\frac{a}{m}\right\rfloor
$$

The Apéry set is a "one stop shop" for computation.

The Apéry poset

Fix a numerical semigroup S with $\mathrm{m}(S)=m$.

Definition

The Apéry set of S is

$$
\operatorname{Ap}(S)=\{a \in S: a-m \notin S\}
$$

The Apéry poset

Fix a numerical semigroup S with $\mathrm{m}(S)=m$.

Definition

The Apéry set of S is

$$
\operatorname{Ap}(S)=\{a \in S: a-m \notin S\}
$$

If $S=\langle 6,9,20\rangle$, then $\operatorname{Ap}(S)=\{0,49,20,9,40,29\}$.

The Apéry poset

Fix a numerical semigroup S with $\mathrm{m}(S)=m$.

Definition

The Apéry set of S is

$$
\operatorname{Ap}(S)=\{a \in S: a-m \notin S\}
$$

If $S=\langle 6,9,20\rangle$, then $\operatorname{Ap}(S)=\{0,49,20,9,40,29\}$.
The Apéry poset of S : define $a \preceq b$ whenever $b-a \in S$.

The Apéry poset

Fix a numerical semigroup S with $\mathrm{m}(S)=m$.

Definition

The Apéry set of S is

$$
\operatorname{Ap}(S)=\{a \in S: a-m \notin S\}
$$

If $S=\langle 6,9,20\rangle$, then $\operatorname{Ap}(S)=\{0,49,20,9,40,29\}$.
The Apéry poset of S : define $a \preceq b$ whenever $b-a \in S$.

The Apéry poset

Fix a numerical semigroup S with $\mathrm{m}(S)=m$.

Definition

The Apéry set of S is

$$
\operatorname{Ap}(S)=\{a \in S: a-m \notin S\}
$$

If $S=\langle 6,9,20\rangle$, then $\operatorname{Ap}(S)=\{0,49,20,9,40,29\}$.
The Apéry poset of S : define $a \preceq b$ whenever $b-a \in S$.

$$
\mathrm{e}(S)=\# \text { min elements }+1
$$

A tantalizing conjecture

Wilf's Conjecture

For any numerical semigroup $S, \mathrm{~F}(S)+1 \leq \mathrm{e}(S)(\mathrm{F}(S)+1-\mathrm{g}(S))$.

A tantalizing conjecture

Wilf's Conjecture

For any numerical semigroup $S, \mathrm{~F}(S)+1 \leq \mathrm{e}(S)(\mathrm{F}(S)+1-\mathrm{g}(S))$.
Equivalently,

$$
\frac{1}{\mathrm{e}(S)} \leq \underbrace{\frac{\mathrm{F}(S)+1-\mathrm{g}(S)}{\mathrm{F}(S)+1}}_{\% \text { of }[0, F(S)] \text { in } S}
$$

A tantalizing conjecture

Wilf's Conjecture

For any numerical semigroup $S, \mathrm{~F}(S)+1 \leq \mathrm{e}(S)(\mathrm{F}(S)+1-\mathrm{g}(S))$.
Equivalently,

$$
\frac{1}{\mathrm{e}(S)} \leq \underbrace{\frac{\mathrm{F}(S)+1-\mathrm{g}(S)}{\mathrm{F}(S)+1}}_{\% \text { of }[0, F(S)] \text { in } S}
$$

A tantalizing conjecture

Wilf's Conjecture

For any numerical semigroup $S, \mathrm{~F}(S)+1 \leq \mathrm{e}(S)(\mathrm{F}(S)+1-\mathrm{g}(S))$.
Equivalently,

$$
\frac{1}{\mathrm{e}(S)} \leq \underbrace{\frac{\mathrm{F}(S)+1-\mathrm{g}(S)}{\mathrm{F}(S)+1}}_{\% \text { of }[0, F(S)] \text { in } S}
$$

Equality holds when:

A tantalizing conjecture

Wilf's Conjecture

For any numerical semigroup $S, \mathrm{~F}(S)+1 \leq \mathrm{e}(S)(\mathrm{F}(S)+1-\mathrm{g}(S))$.
Equivalently,

$$
\frac{1}{\mathrm{e}(S)} \leq \underbrace{\frac{\mathrm{F}(S)+1-\mathrm{g}(S)}{\mathrm{F}(S)+1}}_{\% \text { of }[0, F(S)] \text { in } S}
$$

Equality holds when:

- $S=\langle a, b\rangle$

A tantalizing conjecture

Wilf's Conjecture

For any numerical semigroup $S, \mathrm{~F}(S)+1 \leq \mathrm{e}(S)(\mathrm{F}(S)+1-\mathrm{g}(S))$.
Equivalently,

$$
\frac{1}{\mathrm{e}(S)} \leq \underbrace{\frac{\mathrm{F}(S)+1-\mathrm{g}(S)}{\mathrm{F}(S)+1}}_{\% \text { of }[0, F(S)] \text { in } S}
$$

Equality holds when:

- $S=\langle a, b\rangle$

- $S=\langle m, m+1, \ldots, 2 m-1\rangle$ (maximal embedding dimension)

A tantalizing conjecture

Wilf's Conjecture

For any numerical semigroup $S, \mathrm{~F}(S)+1 \leq \mathrm{e}(S)(\mathrm{F}(S)+1-\mathrm{g}(S))$.
Equivalently,

$$
\frac{1}{\mathrm{e}(S)} \leq \underbrace{\frac{\mathrm{F}(S)+1-\mathrm{g}(S)}{\mathrm{F}(S)+1}}_{\% \text { of }[0, F(S)] \text { in } S}
$$

Equality holds when:

- $S=\langle a, b\rangle$

- $S=\langle m, m+1, \ldots, 2 m-1\rangle$ (maximal embedding dimension)

Proved in many special cases, including $\mathrm{g}(S) \leq 60$.

Polyhedral geometry enters the picture

Fix a numerical semigroup S with $\mathrm{m}(S)=m$, and write

$$
\operatorname{Ap}(S)=\left\{0, a_{1}, \ldots, a_{m-1}\right\} \quad \text { with } \quad a_{i}=m x_{i}+i .
$$

Polyhedral geometry enters the picture

Fix a numerical semigroup S with $\mathrm{m}(S)=m$, and write

$$
\operatorname{Ap}(S)=\left\{0, a_{1}, \ldots, a_{m-1}\right\} \quad \text { with } \quad a_{i}=m x_{i}+i
$$

The Kunz coordinates of $S:\left(x_{1}, \ldots, x_{m-1}\right) \in \mathbb{Z}_{\geq 1}$.

Polyhedral geometry enters the picture

Fix a numerical semigroup S with $\mathrm{m}(S)=m$, and write

$$
\operatorname{Ap}(S)=\left\{0, a_{1}, \ldots, a_{m-1}\right\} \quad \text { with } \quad a_{i}=m x_{i}+i
$$

The Kunz coordinates of $S:\left(x_{1}, \ldots, x_{m-1}\right) \in \mathbb{Z}_{\geq 1}$.
Key observation: $a_{i}+a_{j} \geq a_{i+j}$

Polyhedral geometry enters the picture

Fix a numerical semigroup S with $\mathrm{m}(S)=m$, and write

$$
\operatorname{Ap}(S)=\left\{0, a_{1}, \ldots, a_{m-1}\right\} \quad \text { with } \quad a_{i}=m x_{i}+i
$$

The Kunz coordinates of $S:\left(x_{1}, \ldots, x_{m-1}\right) \in \mathbb{Z}_{\geq 1}$.
Key observation: $a_{i}+a_{j} \geq a_{i+j}$

Theorem (Kunz)

A point $\left(x_{1}, \ldots, x_{m-1}\right) \in \mathbb{Z}^{m-1}$ is the Kunz coordinates of a numerical semigroup if and only if for $1 \leq i, j \leq m-1$,

$$
\begin{array}{rlrlr}
x_{i} & \geq 1 & & & \\
x_{i}+x_{j} & \geq x_{i+j} & & \text { for } & \\
i+j<m \\
1+x_{i}+x_{j} & \geq x_{i+j-m} & & \text { for } & \\
i+j>m
\end{array}
$$

Polyhedral geometry enters the picture

Fix a numerical semigroup S with $\mathrm{m}(S)=m$, and write

$$
\operatorname{Ap}(S)=\left\{0, a_{1}, \ldots, a_{m-1}\right\} \quad \text { with } \quad a_{i}=m x_{i}+i
$$

The Kunz coordinates of $S:\left(x_{1}, \ldots, x_{m-1}\right) \in \mathbb{Z}_{\geq 1}$.
Key observation: $a_{i}+a_{j} \geq a_{i+j}$

Theorem (Kunz)

A point $\left(x_{1}, \ldots, x_{m-1}\right) \in \mathbb{Z}^{m-1}$ is the Kunz coordinates of a numerical semigroup if and only if for $1 \leq i, j \leq m-1$,

$$
\begin{array}{rlrlr}
x_{i} & \geq 1 & & & \\
x_{i}+x_{j} & \geq x_{i+j} & & \text { for } & \\
i+j<m \\
1+x_{i}+x_{j} & \geq x_{i+j-m} & & \text { for } & \\
i+j>m
\end{array}
$$

Numerical semigroups \longleftrightarrow integer points in rational polyhedra!

Kunz polyhedra

Kunz polyhedron $P_{3} \subset \mathbb{R}^{2}$

Kunz polyhedra

Kunz Polyhedron $P_{4} \subset \mathbb{R}^{3}$ (boundary only)

Faces of the Kunz polyhedron

Question

When are 2 numerical semigroups in the relative interior of the same face?

Faces of the Kunz polyhedron

Question

When are 2 numerical semigroups in the relative interior of the same face?

$$
\begin{array}{cc}
S=\langle 6,9,20\rangle & S=\langle 6,26,27\rangle \\
\operatorname{Ap}(S)=\{0,49,20,9,40,29\} & \operatorname{Ap}(S)=\{0,79,26,27,52,53\}
\end{array}
$$

Faces of the Kunz polyhedron

Question

When are 2 numerical semigroups in the relative interior of the same face?

$$
\begin{array}{cc}
S=\langle 6,9,20\rangle & S=\langle 6,26,27\rangle \\
\operatorname{Ap}(S)=\{0,49,20,9,40,29\} & \operatorname{Ap}(S)=\{0,79,26,27,52,53\}
\end{array}
$$

Faces of the Kunz polyhedron

Question

When are 2 numerical semigroups in the relative interior of the same face?

$$
\begin{aligned}
& S=\langle 6,9,20\rangle \\
& \operatorname{Ap}(S)=\left\{\begin{aligned}
0,49,20, & 9,40,29
\end{aligned}\right\} \\
& S=\langle 6,26,27\rangle \\
& \operatorname{Ap}(S)=\{\underset{1}{0} \underset{2}{79}, 26,27,52,53\}
\end{aligned}
$$

Faces of the Kunz polyhedron

Question

When are 2 numerical semigroups in the relative interior of the same face?

$$
\begin{aligned}
& S=\langle 6,9,20\rangle \\
& \operatorname{Ap}(S)=\left\{\begin{array}{rrrr}
0,49,20, & 9,40,29 \\
1 & 2 & 3 & 4
\end{array}\right\}
\end{aligned}
$$

The Kunz poset of S : use ground set $\mathbb{Z}_{m} \backslash\{0\}$ instead of $\operatorname{Ap}(S) \backslash\{0\}$.

Faces of the Kunz polyhedron

Question

When are 2 numerical semigroups in the relative interior of the same face?

$$
\begin{array}{cc}
S=\langle 6,9,20\rangle & S=\langle 6,26,27\rangle \\
\operatorname{Ap}(S)=\begin{array}{rlr}
20,49,20, & 9,40,29\} \\
1
\end{array} & \mathrm{Ap}(S)=\{0,79,26,27,52,53\} \\
\hline
\end{array}
$$

The Kunz poset of S : use ground set $\mathbb{Z}_{m} \backslash\{0\}$ instead of $\operatorname{Ap}(S) \backslash\{0\}$.
Theorem (Bruns, García-Sánchez, O., Wilburne)
Two numerical semigroups lie in the relative interior of the same face of P_{m} if and only if their Kunz posets are identical.

Faces of the Kunz polyhedron

Question

When are 2 numerical semigroups in the relative interior of the same face?

$$
\begin{gathered}
S=\langle 6,9,20\rangle \\
\operatorname{Ap}(S)=\left\{\begin{array}{rrr}
0,49,20, & 9,40,29 \\
1 & 2 & 3
\end{array}\right)
\end{gathered}
$$

The Kunz poset of S : use ground set $\mathbb{Z}_{m} \backslash\{0\}$ instead of $\operatorname{Ap}(S) \backslash\{0\}$.

Theorem (Bruns, García-Sánchez, O., Wilburne)

If two numerical semigroups lie in the relative interior of the same face of P_{m}, then their Kunz posets are identical.

Faces of the Kunz polyhedron

Question

When are 2 numerical semigroups in the relative interior of the same face?

$$
S=\langle 6,9,20\rangle \quad \text { Defining facet equations: }
$$

$$
\operatorname{Ap}(S)=\left\{\begin{array}{r}
0,49,20, \\
9
\end{array}, \underset{4}{9}, 40,29\right\}
$$

$$
\begin{aligned}
2 x_{2} & =x_{4} \\
x_{2}+x_{3} & =x_{5} \\
x_{2}+x_{5} & =x_{1}-1 \\
x_{3}+x_{4} & =x_{1}-1
\end{aligned}
$$

The Kunz poset of S : use ground set $\mathbb{Z}_{m} \backslash\{0\}$ instead of $\operatorname{Ap}(S) \backslash\{0\}$.

Theorem (Bruns, García-Sánchez, O., Wilburne)

If two numerical semigroups lie in the relative interior of the same face of P_{m}, then their Kunz posets are identical.

Faces of the Kunz polyhedron

Question

When are 2 numerical semigroups in the relative interior of the same face？

$$
\begin{aligned}
& S=\langle 6,9,20\rangle \\
& \operatorname{Ap}(S)=\left\{\begin{aligned}
0,49,20, & 9,40,29
\end{aligned}\right\} \\
& \text { <eses } \\
& \text { Defining facet equations: } \\
& 2 x_{2}=x_{4} \\
& 2 \text { 亿 } 4 \\
& x_{2}+x_{3}=x_{5} \quad 2 \preceq 5 \\
& 3 \text { 々 } 5 \\
& x_{2}+x_{5}=x_{1}-1 \\
& 2 \text { 々 } 1 \\
& 5 \text { 〔 } 1 \\
& x_{3}+x_{4}=x_{1}-1 \\
& 3 \preceq 1 \\
& 4 \preceq 1
\end{aligned}
$$

The Kunz poset of S ：use ground set $\mathbb{Z}_{m} \backslash\{0\}$ instead of $\operatorname{Ap}(S) \backslash\{0\}$ ．

Theorem（Bruns，García－Sánchez，O．，Wilburne）

If two numerical semigroups lie in the relative interior of the same face of P_{m} ，then their Kunz posets are identical．

Faces of the Kunz polyhedron

Question

When are 2 numerical semigroups in the relative interior of the same face?

Faces of the Kunz polyhedron

Question

When are 2 numerical semigroups in the relative interior of the same face?

Faces of the Kunz polyhedron

Question

When are 2 numerical semigroups in the relative interior of the same face?

$\begin{cases}2 & S=\langle 3,7\rangle \\ 1 & \\ 1 & S=\langle 3,8\rangle \\ 2 & \\ 1 & 2\end{cases}$

Faces of the Kunz polyhedron

Question

When are 2 numerical semigroups in the relative interior of the same face?

$\begin{cases}2 & S=\langle 3,7\rangle \\ 1 & \\ 1 & S=\langle 3,8\rangle \\ 2 & \\ 1 & 2\end{cases}$

Faces of the Kunz polyhedron

Question

When are 2 numerical semigroups in the relative interior of the same face?

$\begin{cases}2 & S=\langle 3,7\rangle \\ 1 & \\ 1 & S=\langle 3,8\rangle \\ 2 & \\ 1 & 2\end{cases}$

Faces of the Kunz polyhedron

Question

When are 2 numerical semigroups in the relative interior of the same face?

$$
S=\langle 3,7\rangle
$$

$$
S=\langle 3,8\rangle
$$

2

$$
S=\langle 3,5,7\rangle
$$

Faces of the Kunz polyhedron

Question

When are 2 numerical semigroups in the relative interior of the same face?

$\begin{cases}2 & S=\langle 3,7\rangle \\ 1 & \\ 1 & S=\langle 3,8\rangle \\ 2 & \\ 1 & 2\end{cases}$

Faces of the Kunz polyhedron

Question

When are 2 numerical semigroups in the relative interior of the same face?

Faces of the Kunz polyhedron

Question

When are 2 numerical semigroups in the relative interior of the same face?

Faces of the Kunz polyhedron

Question

When are 2 numerical semigroups in the relative interior of the same face?

Faces of the Kunz polyhedron

Question

When are 2 numerical semigroups in the relative interior of the same face?

Faces of the Kunz polyhedron

Question

When are 2 numerical semigroups in the relative interior of the same face?

Faces of the Kunz polyhedron

Question

When are 2 numerical semigroups in the relative interior of the same face?

Faces of the Kunz polyhedron

Question

When are 2 numerical semigroups in the relative interior of the same face?

Faces of the Kunz polyhedron

Question

When are 2 numerical semigroups in the relative interior of the same face?

Faces of the Kunz polyhedron

Question

When are 2 numerical semigroups in the relative interior of the same face?

Verifying Wilf's conjecture in fixed multiplicity

Wilf's Conjecture

For any numerical semigroup $S, F(S)+1 \leq e(S)(F(S)+1-g(S))$.

Verifying Wilf's conjecture in fixed multiplicity

Wilf's Conjecture

For any numerical semigroup $S, \mathrm{~F}(S)+1 \leq \mathrm{e}(S)(\mathrm{F}(S)+1-\mathrm{g}(S))$.
Ingredients to Wilf's inequality:

- $\mathrm{g}(S)=x_{1}+\cdots+x_{m-1}$, linear in x_{1}, \ldots, x_{m-1};

Verifying Wilf's conjecture in fixed multiplicity

Wilf's Conjecture

For any numerical semigroup $S, \mathrm{~F}(S)+1 \leq \mathrm{e}(S)(\mathrm{F}(S)+1-\mathrm{g}(S))$.
Ingredients to Wilf's inequality:

- $\mathrm{g}(S)=x_{1}+\cdots+x_{m-1}$, linear in x_{1}, \ldots, x_{m-1};
- $F(S)=\max \left\{m x_{i}+i\right\}-m$, linear after checking some inequalities;

Verifying Wilf's conjecture in fixed multiplicity

Wilf's Conjecture

For any numerical semigroup $S, \mathrm{~F}(S)+1 \leq \mathrm{e}(S)(\mathrm{F}(S)+1-\mathrm{g}(S))$.
Ingredients to Wilf's inequality:

- $\mathrm{g}(S)=x_{1}+\cdots+x_{m-1}$, linear in x_{1}, \ldots, x_{m-1};
- $F(S)=\max \left\{m x_{i}+i\right\}-m$, linear after checking some inequalities;
- e (S), fixed on interior of each face.

Verifying Wilf's conjecture in fixed multiplicity

Wilf's Conjecture

For any numerical semigroup $S, \mathrm{~F}(S)+1 \leq \mathrm{e}(S)(\mathrm{F}(S)+1-\mathrm{g}(S))$.
Ingredients to Wilf's inequality:

- $\mathrm{g}(S)=x_{1}+\cdots+x_{m-1}$, linear in x_{1}, \ldots, x_{m-1};
- $F(S)=\max \left\{m x_{i}+i\right\}-m$, linear after checking some inequalities;
- e(S), fixed on interior of each face.

The point: Wilf's inequality is linear in the interior of a given face $F \subset P_{m}$.

Verifying Wilf's conjecture in fixed multiplicity

Wilf's Conjecture

For any numerical semigroup $S, \mathrm{~F}(S)+1 \leq \mathrm{e}(S)(\mathrm{F}(S)+1-\mathrm{g}(S))$.
Ingredients to Wilf's inequality:

- $\mathrm{g}(S)=x_{1}+\cdots+x_{m-1}$, linear in x_{1}, \ldots, x_{m-1};
- $F(S)=\max \left\{m x_{i}+i\right\}-m$, linear after checking some inequalities;
- e(S), fixed on interior of each face.

The point: Wilf's inequality is linear in the interior of a given face $F \subset P_{m}$. In particular, counterexamples to Wilf's conjecture in the interior of F are precisely the set of integer solutions to a system of linear inequalities.

Verifying Wilf's conjecture in fixed multiplicity

Wilf's Conjecture

For any numerical semigroup $S, \mathrm{~F}(S)+1 \leq \mathrm{e}(S)(\mathrm{F}(S)+1-\mathrm{g}(S))$.
Ingredients to Wilf's inequality:

- $\mathrm{g}(S)=x_{1}+\cdots+x_{m-1}$, linear in x_{1}, \ldots, x_{m-1};
- $F(S)=\max \left\{m x_{i}+i\right\}-m$, linear after checking some inequalities;
- e(S), fixed on interior of each face.

The point: Wilf's inequality is linear in the interior of a given face $F \subset P_{m}$. In particular, counterexamples to Wilf's conjecture in the interior of F are precisely the set of integer solutions to a system of linear inequalities.

Example: $S=\langle 6,9,20\rangle$ is a counterexample to Wilf's conjecture iff

$$
\begin{array}{rrrr}
2 x_{2} & =x_{4} & 2 x_{1}>x_{2} & 2 x_{4}+1>x_{2} \\
x_{2}+x_{3} & =x_{5} & x_{1}+x_{2}>x_{3} & x_{1}-x_{2} \geq 1 \\
x_{2}+x_{5} & =x_{1}-1 & x_{1}+x_{3}>x_{4} & x_{3}+x_{5}+1>x_{2} \\
x_{3}+x_{4} & =x_{1}-1 & x_{1}+x_{4}>x_{5} & x_{4}+x_{5}+1>x_{3} \\
-11 x_{1}+3 x_{2}+3 x_{3}+3 x_{4}+3 x_{5}>-7 & x_{1}-x_{4} \geq 1 \\
&
\end{array}
$$

Verifying Wilf's conjecture in fixed multiplicity

Wilf's Conjecture

For any numerical semigroup $S, F(S)+1 \leq e(S)(F(S)+1-g(S))$.

Verifying Wilf's conjecture in fixed multiplicity

Wilf's Conjecture

For any numerical semigroup $S, F(S)+1 \leq e(S)(F(S)+1-g(S))$.
Algorithm for checking Wilf's conjecture in multiplicity m :

- For each face $F \subset P_{m}$ and each $f \in[1, m-1]$, search region
- defining equalities for F,
- remaining inequalities for P_{m} (strict),
- Frobenius inequalities ensuring x_{f} is maximal, and
- negation of Wilf's inequality
for positive integer points.
- Any integer points found are counterexamples to Wilf's conjecture.

Verifying Wilf's conjecture in fixed multiplicity

Wilf's Conjecture

For any numerical semigroup $S, \mathrm{~F}(S)+1 \leq \mathrm{e}(S)(\mathrm{F}(S)+1-\mathrm{g}(S))$.
Algorithm for checking Wilf's conjecture in multiplicity m :

- For each face $F \subset P_{m}$ and each $f \in[1, m-1]$, search region
- defining equalities for F,
- remaining inequalities for P_{m} (strict),
- Frobenius inequalities ensuring x_{f} is maximal, and
- negation of Wilf's inequality
for positive integer points.
- Any integer points found are counterexamples to Wilf's conjecture.

Theorem

Wilf's conjecture holds for all numerical semigroups S with $\mathrm{m}(S) \leq 18$.

Runtimes

m	\# ineqs	\# extremal rays	faces	total time	$\approx \mathrm{RAM}$
11	50	812	155,944	0.7 s	6 MB
12	60	1,864	669,794	2.5 s	35 MB
13	72	7,005	$4,389,234$	23 s	80 MB
14	84	15,585	$21,038,016$	$1: 19 \mathrm{~m}$	603 MB
15	98	67,262	$137,672,474$	$19: 43 \mathrm{~m}$	2.6 GB
16	112	184,025	$751,497,188$	$1: 35 \mathrm{~h}$	12 GB
17	128	851,890	$5,342,388,604$	$38: 46 \mathrm{~h}$	48 GB
18	144	$2,158,379$	$28,275,375,292$	$29: 05 \mathrm{~d}$	720 GB
19	162	$11,665,781$	$? ?$	$? ?$	$? ?$

References

直 W．Bruns，P．García－Sánchez，C．O＇Neill，and D．Wilburne（2019）
Wiff＇s conjecture in fixed multiplicity preprint，available at［arXiv：1903．04342］
國 W．Bruns，B．Ichim，T．Römer，R．Sieg and C．Söger（2019） Normaliz：algorithms for rational cones and affine monoids available at http：／／normaliz．uos．de
围 M．Delgado（2019）
Conjecture of Wilf：a survey
preprint，available at［arXiv：1902．03461］
E．Kunz（1987）
Über die Klassifikation numerischer Halbgruppen
Regensburger Mathematische Schriften 11， 1987.
國 H．Wilf（1978）
A circle－of－lights algorithm for the money－changing problem American Mathematics Monthly， 85 （1978）562－565．

References

直 W．Bruns，P．García－Sánchez，C．O＇Neill，and D．Wilburne（2019）
Wiff＇s conjecture in fixed multiplicity preprint，available at［arXiv：1903．04342］
國 W．Bruns，B．Ichim，T．Römer，R．Sieg and C．Söger（2019） Normaliz：algorithms for rational cones and affine monoids available at http：／／normaliz．uos．de
围 M．Delgado（2019）
Conjecture of Wilf：a survey
preprint，available at［arXiv：1902．03461］
E．Kunz（1987）
Über die Klassifikation numerischer Halbgruppen
Regensburger Mathematische Schriften 11， 1987.
圊 H．Wilf（1978）
A circle－of－lights algorithm for the money－changing problem American Mathematics Monthly， 85 （1978）562－565．

Thanks！

