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Numerical semigroups

Definition
A numerical semigroup S ⊂ Z≥0: closed under addition.

Example
McN = 〈6, 9, 20〉 = {0, 6, 9, 12, 15, 18, 20, . . .}. “McNugget Semigroup”
Factorizations:

60 = 7(6) + 2(9)
= 3(20)

 
 

(7, 2, 0)
(0, 0, 3)
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Factorization length
Fix a numerical semigroup S = 〈n1, . . . , nk〉 and an element n ∈ S.
A factorization a = (a1, . . . , ak) ∈ Zk

≥0 of n
n = a1n1 + · · ·+ aknk

has length
|a| = a1 + · · ·+ ak .

Example
All factorizations of 60 ∈ 〈6, 9, 20〉:

(10, 0, 0), (7, 2, 0), (4, 4, 0), (1, 6, 0), (0, 0, 3)
Lengths: 3, 7, 8, 9, 10.
All factorizations of 1000001:

︸ ︷︷ ︸
shortest

, . . . , ︸ ︷︷ ︸
longest
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Extremal factorization length
Let S = 〈n1, . . . , nk〉. For n ∈ S, let

L(n) = {a1 + · · ·+ ak : n = a1n1 + · · ·+ aknk}
denotes the length set of n, and

M(n) = max L(n) and
m(n) = min L(n)

denote the maximum and minimum factorization lengths of n.

Intuition
Max length factorization: lots of small generators
Min length factorization: lots of large generators

Example
S = 〈9, 10, 21〉:

M(30) = 3 with 30 = 3(10)
M(129) = 14 with 129 = 3(10) + 11(9)
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Extremal factorization length

Let S = 〈n1, . . . , nk〉. For n ∈ S,
M(n) = max L(n) and m(n) = min L(n).

Theorem (BOP, 2014)
Let S = 〈n1, . . . , nk〉. For n� 0 (i.e., for n sufficiently large),

M(n + n1) = 1 + M(n)
m(n + nk) = 1 + m(n)

Equivalently, M(n), m(n) are eventually quasilinear:
M(n) = 1

n1
n + a0(n)

m(n) = 1
nk

n + b0(n)
for periodic functions a0(n), b0(n).

M(n) =


1
n1

n + if n ≡ 0 mod n1
1
n1

n + if n ≡ 1 mod n1

· · ·
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Elasticity

Let S = 〈n1, . . . , nk〉. For n ∈ S,
ρ(n) = M(n)/m(n)

denotes the elasticity of n. Measures “spread” of factorization lengths.

Why this definition? Larger elasticity =⇒ “new” lengths
Example: S = 〈6, 9, 20〉

L(104) = { 7, . . . , 15} ρ = 15
7

L(104 + 104) = {14, . . . , 30} ρ = 15
7

L(104 + 104 + 104) = {17, . . . , 52} ρ = 52
17 >

15
7
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Elasticity

Let S = 〈n1, . . . , nk〉. For n ∈ S,
ρ(n) = M(n)/m(n)

denotes the elasticity of n. Measures “spread” of factorization lengths.

R(S) = {ρ(n) : n ∈ S} ρ(S) = sup R(S)
ρ(S): “largest length spread” in S

Theorem (CHM, 2006)
ρ(S) = ρ(n1nk) = nk/n1 (we say elasticity is accepted)
ρ(S) is the only accumulation point of R(S)

Theorem (BOP, 2017)
For n large,

ρ(n + n1nk) = M(n) + nk
m(n) + n1
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A new invariant: length density
Let S = 〈n1, . . . , nk〉. For n ∈ S with |L(n)| > 1,

LD(n) = |L(n)| − 1
M(n)−m(n)

denotes the length density of n. Measures “density” of the length set.

Why this definition? Larger density =⇒ “more filled-in” length set
0 ≤ LD(n) ≤ 1 (as density should be)
LD(n) = 1 =⇒ L(n) = [m(n),M(n)] ∩ Z (an interval)

Lastly, define
LD(S) = inf{LD(n) : n ∈ S with |L(n)| > 1}

Judgement calls:
Why “−1” in the numerator instead of “+1” in the denominator?
Why “inf” for LD(S)?
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A quick aside: the delta set
Let S = 〈n1, . . . , nk〉. For n ∈ S, write

L(n) = {`1 < · · · < `r}

Definition
The delta set of n ∈ S is ∆(n) = {`2 − `1, . . . , `r − `r−1}

Example: S = 〈6, 9, 20〉
L(142) = {10, 11, 12, 14, 15, 16, 17, 18, 19} ∆(142) = {1, 2}

Facts for large n ∈ S (the structure theorem for sets of length)
min ∆(n) is as small as possible for S
S = 〈3, 5, 7〉:

L(110) = {16, 18, . . . , 34, 36}, ∆(110) = {2}
L(n) is an arithmetic sequence with a few values removed near the ends
S = 〈42, 86, 245, 285, 365, 463〉:

L(3023) = {7, 9, 11, 12, . . . , 46, 47, 58, 62, 64}, ∆(3023) = {1, 2, 4, 9}
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L(n) = {`1 < · · · < `r}

Definition
The delta set of n ∈ S is ∆(n) = {`2 − `1, . . . , `r − `r−1}

Example: S = 〈6, 9, 20〉
L(142) = {10, 11, 12, 14, 15, 16, 17, 18, 19} ∆(142) = {1, 2}

Facts for large n ∈ S (the structure theorem for sets of length)
min ∆(n) is as small as possible for S
S = 〈3, 5, 7〉:

L(110) = {16, 18, . . . , 34, 36}, ∆(110) = {2}
L(n) is an arithmetic sequence with a few values removed near the ends
S = 〈42, 86, 245, 285, 365, 463〉:
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A new invariant: length density
Let S = 〈n1, . . . , nk〉. For n ∈ S with |L(n)| > 1,

LD(n) = |L(n)| − 1
M(n)−m(n)

denotes the length density of n. Measures “density” of the length set.

Judgement calls revisited:
Why “−1” in the numerator instead of “+1” in the denominator?
Letting ∆(S) =

⋃
n∈S ∆(n), we have

1
max ∆(S) ≤ LD(n) ≤ 1

min ∆(S)

Why “inf” for LD(S)?
Most L(n) “almost” arithmetic sequence, step size min ∆(S)

“least well-behaved” ⇐⇒ more missing lengths
Additionally,

LD(S) = 1/min ∆(S) ⇐⇒ |∆(S)| = 1
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Let S = 〈n1, . . . , nk〉. For n ∈ S with |L(n)| > 1,

LD(n) = |L(n)| − 1
M(n)−m(n)

denotes the length density of n. Measures “density” of the length set.

Example: S = 〈6, 9, 20〉
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A new invariant: length density
Let S = 〈n1, . . . , nk〉. For n ∈ S with |L(n)| > 1,

LD(n) = |L(n)| − 1
M(n)−m(n)

denotes the length density of n. Measures “density” of the length set.

Theorem (BCKMOPP, 2021)
sup{LD(n) : n ∈ S} = 1

δ , where δ = min ∆(S)
1
δ is the only limit point of {LD(n) : n ∈ S}
For large n ∈ S,

LD(n + n1nk) =
|L(n)| − 1 + 1

δ (nk − n1)
M(n)−m(n) + (nk − n1)

Example: S = 〈6, 9, 20〉
L(142) = {10, 11, 12, 13, 14, 15, . . . , 18, 19}

L(142 + 180) = {16, 17, 18, 19, 20, 21, . . . , 38, 39}
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A new invariant means new questions!

New invariant ⇒ many new questions!

When is LD(S) = 1/max ∆(S) (the smallest possible)?
LD(S) = 1/max ∆(S) ⇐⇒ some ∆(n) = {max ∆(S)}

In particular, this is determined by the Betti elements of S.
Can we (efficiently) compute LD(S) from n1, . . . , nk?
Known constant NS : for all n > NS , LD(n + n1nk) ≥ LD(n)
=⇒ LD(S) = LD(n) for some n ≤ NS

Can we improve this bound?
Do certain elements (e.g., higher Betti elements) attain LD(S)?
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Length density and Betti elements

LD(S) need not be achieved at a Betti element.

Example: S = 〈20, 28, 42, 73〉
Betti elements: 84, 140, 146
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