Numerical semigroups: a sales pitch

Christopher O'Neill

San Diego State University
cdoneill@sdsu.edu

Slides available: https://cdoneill.sdsu.edu/
November 12, 2022

Numerical semigroups

Definition

A numerical semigroup $S \subset \mathbb{Z}_{\geq 0}$: closed under addition.

Numerical semigroups

Definition

A numerical semigroup $S \subset \mathbb{Z}_{\geq 0}$: closed under addition.

$$
\begin{aligned}
& \text { Example } \\
& M c N=\langle 6,9,20\rangle=\{0,6,9,12,15,18,20, \ldots\} \text {. }
\end{aligned}
$$

Numerical semigroups

Definition

A numerical semigroup $S \subset \mathbb{Z}_{\geq 0}$: closed under addition.

$$
\begin{aligned}
& \text { Example } \\
& M c N=\langle 6,9,20\rangle=\{0,6,9,12,15,18,20, \ldots\} \text {. "McNugget Semigroup" }
\end{aligned}
$$

Numerical semigroups

Definition

A numerical semigroup $S \subset \mathbb{Z}_{\geq 0}$: closed under addition.

Example

$\operatorname{McN}=\langle 6,9,20\rangle=\{0,6,9,12,15,18,20, \ldots\}$. "McNugget Semigroup" Factorizations:
$60=$

Numerical semigroups

Definition

A numerical semigroup $S \subset \mathbb{Z}_{\geq 0}$: closed under addition.

Example

$\operatorname{McN}=\langle 6,9,20\rangle=\{0,6,9,12,15,18,20, \ldots\}$. "McNugget Semigroup" Factorizations:

$$
60=7(6)+2(9)
$$

Numerical semigroups

Definition

A numerical semigroup $S \subset \mathbb{Z}_{\geq 0}$: closed under addition.

Example

$\operatorname{McN}=\langle 6,9,20\rangle=\{0,6,9,12,15,18,20, \ldots\}$. "McNugget Semigroup" Factorizations:

$$
\begin{aligned}
60 & =7(6)+2(9) \\
& =3(20)
\end{aligned}
$$

Numerical semigroups

Definition

A numerical semigroup $S \subset \mathbb{Z}_{\geq 0}$: closed under addition.

Example

McN $=\langle 6,9,20\rangle=\{0,6,9,12,15,18,20, \ldots\}$. "McNugget Semigroup" Factorizations:

$$
\begin{aligned}
60 & =7(6)+2(9) & & \rightsquigarrow \\
& = & 3(20) & \rightsquigarrow
\end{aligned} \quad(7,2,0)
$$

Extremal factorization length

Fix a numerical semigroup $S=\left\langle n_{1}, \ldots, n_{k}\right\rangle$ and an element $n \in S$.

Extremal factorization length

Fix a numerical semigroup $S=\left\langle n_{1}, \ldots, n_{k}\right\rangle$ and an element $n \in S$.
A factorization $\mathbf{a}=\left(a_{1}, \ldots, a_{k}\right) \in \mathbb{Z}_{\geq 0}^{k}$ of n

$$
n=a_{1} n_{1}+\cdots+a_{k} n_{k}
$$

has length

$$
|\mathbf{a}|=a_{1}+\cdots+a_{k} .
$$

Extremal factorization length

Fix a numerical semigroup $S=\left\langle n_{1}, \ldots, n_{k}\right\rangle$ and an element $n \in S$.
A factorization $\mathbf{a}=\left(a_{1}, \ldots, a_{k}\right) \in \mathbb{Z}_{\geq 0}^{k}$ of n

$$
n=a_{1} n_{1}+\cdots+a_{k} n_{k}
$$

has length

$$
|\mathbf{a}|=a_{1}+\cdots+a_{k} .
$$

Example

All factorizations of $60 \in\langle 6,9,20\rangle$:

$$
(10,0,0),(7,2,0),(4,4,0),(1,6,0),(0,0,3)
$$

Extremal factorization length

Fix a numerical semigroup $S=\left\langle n_{1}, \ldots, n_{k}\right\rangle$ and an element $n \in S$.
A factorization $\mathbf{a}=\left(a_{1}, \ldots, a_{k}\right) \in \mathbb{Z}_{\geq 0}^{k}$ of n

$$
n=a_{1} n_{1}+\cdots+a_{k} n_{k}
$$

has length

$$
|\mathbf{a}|=a_{1}+\cdots+a_{k} .
$$

Example

All factorizations of $60 \in\langle 6,9,20\rangle$:
$(10,0,0),(7,2,0),(4,4,0),(1,6,0),(0,0,3)$
Lengths: $3,7,8,9,10$.

Extremal factorization length

Fix a numerical semigroup $S=\left\langle n_{1}, \ldots, n_{k}\right\rangle$ and an element $n \in S$.
A factorization $\mathbf{a}=\left(a_{1}, \ldots, a_{k}\right) \in \mathbb{Z}_{\geq 0}^{k}$ of n

$$
n=a_{1} n_{1}+\cdots+a_{k} n_{k}
$$

has length

$$
|\mathbf{a}|=a_{1}+\cdots+a_{k} .
$$

Example

All factorizations of $60 \in\langle 6,9,20\rangle$: $(10,0,0),(7,2,0),(4,4,0),(1,6,0),(0,0,3)$
Lengths: $3,7,8,9,10$.
All factorizations of 1000001 :

Extremal factorization length

Fix a numerical semigroup $S=\left\langle n_{1}, \ldots, n_{k}\right\rangle$ and an element $n \in S$.
A factorization $\mathbf{a}=\left(a_{1}, \ldots, a_{k}\right) \in \mathbb{Z}_{\geq 0}^{k}$ of n

$$
n=a_{1} n_{1}+\cdots+a_{k} n_{k}
$$

has length

$$
|\mathbf{a}|=a_{1}+\cdots+a_{k} .
$$

Example

All factorizations of $60 \in\langle 6,9,20\rangle$:

$$
(10,0,0),(7,2,0),(4,4,0),(1,6,0),(0,0,3)
$$

Lengths: $3,7,8,9,10$.
All factorizations of 1000001 :

Extremal factorization length

Fix a numerical semigroup $S=\left\langle n_{1}, \ldots, n_{k}\right\rangle$ and an element $n \in S$.
A factorization $\mathbf{a}=\left(a_{1}, \ldots, a_{k}\right) \in \mathbb{Z}_{\geq 0}^{k}$ of n

$$
n=a_{1} n_{1}+\cdots+a_{k} n_{k}
$$

has length

$$
|\mathbf{a}|=a_{1}+\cdots+a_{k} .
$$

Example

All factorizations of $60 \in\langle 6,9,20\rangle$:

$$
(10,0,0),(7,2,0),(4,4,0),(1,6,0),(0,0,3)
$$

Lengths: $3,7,8,9,10$.
All factorizations of 1000001 :

Extremal factorization length

Fix a numerical semigroup $S=\left\langle n_{1}, \ldots, n_{k}\right\rangle$ and an element $n \in S$.
A factorization $\mathbf{a}=\left(a_{1}, \ldots, a_{k}\right) \in \mathbb{Z}_{\geq 0}^{k}$ of n

$$
n=a_{1} n_{1}+\cdots+a_{k} n_{k}
$$

has length

$$
|\mathbf{a}|=a_{1}+\cdots+a_{k} .
$$

Example

All factorizations of $60 \in\langle 6,9,20\rangle$:

$$
(10,0,0),(7,2,0),(4,4,0),(1,6,0),(0,0,3)
$$

Lengths: $3,7,8,9,10$.
All factorizations of 1000001 :

$$
\underbrace{(2,1,49999)}_{\text {shortest }}, \cdots, \underbrace{(166662,1,1)}_{\text {longest }}
$$

Extremal factorization length

Let $S=\left\langle n_{1}, \ldots, n_{k}\right\rangle$. For $n \in S$, let

$$
\mathrm{L}(n)=\left\{a_{1}+\cdots+a_{k}: n=a_{1} n_{1}+\cdots+a_{k} n_{k}\right\}
$$

denotes the length set of n

Extremal factorization length

Let $S=\left\langle n_{1}, \ldots, n_{k}\right\rangle$. For $n \in S$, let

$$
\mathrm{L}(n)=\left\{a_{1}+\cdots+a_{k}: n=a_{1} n_{1}+\cdots+a_{k} n_{k}\right\}
$$

denotes the length set of n, and

$$
\begin{aligned}
\mathrm{M}(n) & =\max \mathrm{L}(n) \quad \text { and } \\
\mathrm{m}(n) & =\min \mathrm{L}(n)
\end{aligned}
$$

denote the maximum and minimum factorization lengths of n.

Extremal factorization length

Let $S=\left\langle n_{1}, \ldots, n_{k}\right\rangle$. For $n \in S$, let

$$
\mathrm{L}(n)=\left\{a_{1}+\cdots+a_{k}: n=a_{1} n_{1}+\cdots+a_{k} n_{k}\right\}
$$

denotes the length set of n, and

$$
\begin{aligned}
\mathrm{M}(n) & =\max \mathrm{L}(n) \quad \text { and } \\
\mathrm{m}(n) & =\min \mathrm{L}(n)
\end{aligned}
$$

denote the maximum and minimum factorization lengths of n.

Observations

- Max length factorization: lots of small generators
- Min length factorization: lots of large generators

Extremal factorization length

Let $S=\left\langle n_{1}, \ldots, n_{k}\right\rangle$. For $n \in S$, let

$$
\mathrm{L}(n)=\left\{a_{1}+\cdots+a_{k}: n=a_{1} n_{1}+\cdots+a_{k} n_{k}\right\}
$$

denotes the length set of n, and

$$
\begin{aligned}
\mathrm{M}(n) & =\max \mathrm{L}(n) \quad \text { and } \\
\mathrm{m}(n) & =\min \mathrm{L}(n)
\end{aligned}
$$

denote the maximum and minimum factorization lengths of n.

Observations

- Max length factorization: lots of small generators
- Min length factorization: lots of large generators

Example

$S=\langle 5,16,17,18,19\rangle:$

Extremal factorization length

Let $S=\left\langle n_{1}, \ldots, n_{k}\right\rangle$. For $n \in S$, let

$$
\mathrm{L}(n)=\left\{a_{1}+\cdots+a_{k}: n=a_{1} n_{1}+\cdots+a_{k} n_{k}\right\}
$$

denotes the length set of n, and

$$
\begin{aligned}
\mathrm{M}(n) & =\max \mathrm{L}(n) \quad \text { and } \\
\mathrm{m}(n) & =\min \mathrm{L}(n)
\end{aligned}
$$

denote the maximum and minimum factorization lengths of n.

Observations

- Max length factorization: lots of small generators
- Min length factorization: lots of large generators

Example

$$
\begin{array}{rlrl}
S=\langle 5,16,17,18,19\rangle: & & \\
m(82)=5 & \text { with } & 82 & =3(16)+2(17) \\
m(462)=25 & \text { with } & 462 & =3(16)+2(17)+20(19)
\end{array}
$$

Extremal factorization length

Let $S=\left\langle n_{1}, \ldots, n_{k}\right\rangle$. For $n \in S$, let

$$
\mathrm{M}(n)=\max \mathrm{L}(n) \quad \text { and } \quad \mathrm{m}(n)=\min \mathrm{L}(n) .
$$

Extremal factorization length

Let $S=\left\langle n_{1}, \ldots, n_{k}\right\rangle$. For $n \in S$, let

$$
\mathrm{M}(n)=\max \mathrm{L}(n) \quad \text { and } \quad \mathrm{m}(n)=\min \mathrm{L}(n)
$$

Example: max length in $S=\langle 6,9,20\rangle$

Extremal factorization length

Let $S=\left\langle n_{1}, \ldots, n_{k}\right\rangle$. For $n \in S$, let

$$
\mathrm{M}(n)=\max \mathrm{L}(n) \quad \text { and } \quad \mathrm{m}(n)=\min \mathrm{L}(n)
$$

Example: max length in $S=\langle 6,9,20\rangle$

Extremal factorization length

Let $S=\left\langle n_{1}, \ldots, n_{k}\right\rangle$. For $n \in S$, let

$$
\mathrm{M}(n)=\max \mathrm{L}(n) \quad \text { and } \quad \mathrm{m}(n)=\min \mathrm{L}(n)
$$

Example: max length in $S=\langle 6,9,20\rangle$
For $n \geq 49$,

$$
M(n)= \begin{cases}\frac{1}{6} n & \text { if } n \equiv 0 \bmod 6 \\ \frac{1}{6} n-\frac{31}{6} & \text { if } n \equiv 1 \bmod 6 \\ \frac{1}{6} n-\frac{7}{3} & \text { if } n \equiv 2 \bmod 6 \\ \frac{1}{6} n-\frac{1}{2} & \text { if } n \equiv 3 \bmod 6 \\ \frac{1}{6} n-\frac{14}{3} & \text { if } n \equiv 4 \bmod 6 \\ \frac{1}{6} n-\frac{17}{6} & \text { if } n \equiv 5 \bmod 6\end{cases}
$$

Extremal factorization length

Let $S=\left\langle n_{1}, \ldots, n_{k}\right\rangle$. For $n \in S$, let

$$
\mathrm{M}(n)=\max \mathrm{L}(n) \quad \text { and } \quad \mathrm{m}(n)=\min \mathrm{L}(n)
$$

Example: max length in $S=\langle 6,9,20\rangle$

$$
\text { For } n \geq 49
$$

$$
M(n)= \begin{cases}\frac{1}{6} n & \text { if } n \equiv 0 \bmod 6 \\ \frac{1}{6} n-\frac{31}{6} & \text { if } n \equiv 1 \bmod 6 \\ \frac{1}{6} n-\frac{7}{3} & \text { if } n \equiv 2 \bmod 6 \\ \frac{1}{6} n-\frac{1}{2} & \text { if } n \equiv 3 \bmod 6 \\ \frac{1}{6} n-\frac{14}{3} & \text { if } n \equiv 4 \bmod 6 \\ \frac{1}{6} n-\frac{17}{6} & \text { if } n \equiv 5 \bmod 6\end{cases}
$$

We say $\mathrm{M}(n)$ is (eventually) quasilinear: linear with periodic coefficients.

Extremal factorization length

Let $S=\left\langle n_{1}, \ldots, n_{k}\right\rangle$. For $n \in S$, let

$$
\mathrm{M}(n)=\max \mathrm{L}(n) \quad \text { and } \quad \mathrm{m}(n)=\min \mathrm{L}(n)
$$

Example: max length in $S=\langle 6,9,20\rangle$

$$
\text { For } n \geq 49
$$

$$
M(n)= \begin{cases}\frac{1}{6} n & \text { if } n \equiv 0 \bmod 6 \\ \frac{1}{6} n-\frac{31}{6} & \text { if } n \equiv 1 \bmod 6 \\ \frac{1}{6} n-\frac{7}{3} & \text { if } n \equiv 2 \bmod 6 \\ \frac{1}{6} n-\frac{1}{2} & \text { if } n \equiv 3 \bmod 6 \\ \frac{1}{6} n-\frac{14}{3} & \text { if } n \equiv 4 \bmod 6 \\ \frac{1}{6} n-\frac{17}{6} & \text { if } n \equiv 5 \bmod 6\end{cases}
$$

We say $\mathrm{M}(n)$ is (eventually) quasilinear: linear with periodic coefficients. $M(n)=\frac{1}{6} n+a_{0}(n) \quad$ for some periodic function $a_{0}(n)$

Extremal factorization length

Let $S=\left\langle n_{1}, \ldots, n_{k}\right\rangle$. For $n \in S$, let

$$
\mathrm{M}(n)=\max \mathrm{L}(n) \quad \text { and } \quad \mathrm{m}(n)=\min \mathrm{L}(n) .
$$

Extremal factorization length

Let $S=\left\langle n_{1}, \ldots, n_{k}\right\rangle$. For $n \in S$, let

$$
M(n)=\max L(n) \quad \text { and } \quad m(n)=\min L(n)
$$

Example: min length in $S=\langle 5,16,17,18,19\rangle$

Extremal factorization length

Let $S=\left\langle n_{1}, \ldots, n_{k}\right\rangle$. For $n \in S$, let

$$
M(n)=\max L(n) \quad \text { and } \quad m(n)=\min L(n)
$$

Example: min length in $S=\langle 5,16,17,18,19\rangle$

Conclusion: $\mathrm{m}(n)$ is quasilinear for $n \geq 64$, with period 19 .

Extremal factorization length

Let $S=\left\langle n_{1}, \ldots, n_{k}\right\rangle$. For $n \in S$, let

$$
\mathrm{M}(n)=\max \mathrm{L}(n) \quad \text { and } \quad \mathrm{m}(n)=\min \mathrm{L}(n) .
$$

Extremal factorization length

Let $S=\left\langle n_{1}, \ldots, n_{k}\right\rangle$. For $n \in S$, let

$$
M(n)=\max L(n) \quad \text { and } \quad m(n)=\min L(n)
$$

Theorem

Let $S=\left\langle n_{1}, \ldots, n_{k}\right\rangle$. For $n \gg 0$ (i.e., for n sufficiently large),

$$
\begin{aligned}
& \mathrm{M}\left(n+n_{1}\right)=1+\mathrm{M}(n) \\
& \mathrm{m}\left(n+n_{k}\right)=1+\mathrm{m}(n)
\end{aligned}
$$

Extremal factorization length

Let $S=\left\langle n_{1}, \ldots, n_{k}\right\rangle$. For $n \in S$, let

$$
M(n)=\max L(n) \quad \text { and } \quad m(n)=\min L(n)
$$

Theorem

Let $S=\left\langle n_{1}, \ldots, n_{k}\right\rangle$. For $n \gg 0$ (i.e., for n sufficiently large),

$$
\begin{aligned}
\mathrm{M}\left(n+n_{1}\right) & =1+\mathrm{M}(n) \\
\mathrm{m}\left(n+n_{k}\right) & =1+\mathrm{m}(n)
\end{aligned}
$$

Equivalently, $\mathrm{M}(n), \mathrm{m}(n)$ are eventually quasilinear:

$$
\begin{aligned}
& \mathrm{M}(n)=\frac{1}{n_{1}} n+a_{0}(n) \\
& \mathrm{m}(n)=\frac{1}{n_{k}} n+b_{0}(n)
\end{aligned}
$$

for periodic functions $a_{0}(n), b_{0}(n)$.

Extremal factorization length

Let $S=\left\langle n_{1}, \ldots, n_{k}\right\rangle$. For $n \in S$, let

$$
M(n)=\max L(n) \quad \text { and } \quad m(n)=\min L(n)
$$

Theorem

Let $S=\left\langle n_{1}, \ldots, n_{k}\right\rangle$. For $n \gg 0$ (i.e., for n sufficiently large),

$$
\begin{aligned}
& \mathrm{M}\left(n+n_{1}\right)=1+\mathrm{M}(n) \\
& \mathrm{m}\left(n+n_{k}\right)=1+\mathrm{m}(n)
\end{aligned}
$$

Equivalently, $\mathrm{M}(n), \mathrm{m}(n)$ are eventually quasilinear:

$$
\begin{aligned}
& \mathrm{M}(n)=\frac{1}{n_{1}} n+a_{0}(n) \\
& \mathrm{m}(n)=\frac{1}{n_{k}} n+b_{0}(n)
\end{aligned}
$$

for periodic functions $a_{0}(n), b_{0}(n)$.

$$
\mathrm{M}(n)= \begin{cases}\frac{1}{n_{1}} n+\ldots & \text { if } n \equiv 0 \bmod n_{1} \\ \frac{1}{n_{1}} n+\ldots & \text { if } n \equiv 1 \bmod n_{1} \\ \cdots & \end{cases}
$$

Plenty more where that came from!

Let $S=\left\langle n_{1}, \ldots, n_{k}\right\rangle \subset \mathbb{Z}_{\geq 0}$. For $n \gg 0$, we have

Plenty more where that came from!

Let $S=\left\langle n_{1}, \ldots, n_{k}\right\rangle \subset \mathbb{Z}_{\geq 0}$. For $n \gg 0$, we have

- $\mathrm{M}(n)=\frac{1}{n_{1}} n+\binom{$ periodic }{ func'n $n}$ and $\mathrm{m}(n)=\frac{1}{n_{k}} n+\binom{$ periodic }{ func' $n}$
T. Barron, C. O'Neill, and R. Pelayo,

On the set of elasticities in numerical monoids,
Semigroup Forum 94 (2017), no. 1, 37-50. [arXiv:1409.3425]

- $|L(n)|=\frac{n_{k}-n_{1}}{\delta n_{1} n_{k}} n+\binom{$ periodic }{ func' n}
C. O'Neill,

On factorization invariants and Hilbert functions,
J. Pure and Applied Algebra 221 (2017), no. 12, 3069-3088. [arXiv:1503.08351]

- the delta set invariant is periodic in $n: \Delta(n)=\Delta\left(n+n_{1} n_{k}\right)$
S. Chapman, R. Hoyer, and N. Kaplan,

Delta sets of numerical monoids are eventually periodic,
Aequationes mathematicae 773 (2009) 273-279. [doi]

- the ω-primality invariant $\omega(n)=\frac{1}{n_{1}} n+\binom{$ periodic }{ func' $n}$
C. O'Neill and R. Pelayo,

On the linearity of ω-primality in numerical monoids,
J. Pure and Applied Algebra 218 (2014) 1620-1627. [arXiv:1309.7476]

- the catenary degree invariant $\mathrm{c}(n)$ is periodic in n
S. Chapman, M. Corrales, A. Miller, C. Miller, and D. Patel,

The catenary and tame degrees on a numerical monoid are eventually periodic,
J. Aust. Math. Soc. 97 (2014), no. 3, 289-300. [doi]

Plenty more where that came from!

Let $S=\left\langle n_{1}, \ldots, n_{k}\right\rangle \subset \mathbb{Z}_{\geq 0}$. For $n \gg 0$, we have

- $\mathrm{M}(n)=\frac{1}{n_{1}} n+\binom{$ periodic }{ func'n $n}$ and $\mathrm{m}(n)=\frac{1}{n_{k}} n+\binom{$ periodic }{ func' $n}$
T. Barron, C. O'Neill, and R. Pelayo,

On the set of elasticities in numerical monoids,
Semigroup Forum 94 (2017), no. 1, 37-50. [arXiv:1409.3425]

- $|L(n)|=\frac{n_{k}-n_{1}}{\delta n_{1} n_{k}} n+\binom{$ periodic }{ func' n}
C. O'Neill,

On factorization invariants and Hilbert functions,
J. Pure and Applied Algebra 221 (2017), no. 12, 3069-3088. [arXiv:1503.08351]

- the delta set invariant is periodic in $n: \Delta(n)=\Delta\left(n+n_{1} n_{k}\right)$
S. Chapman, R. Hoyer, and N. Kaplan,

Delta sets of numerical monoids are eventually periodic,
Aequationes mathematicae 773 (2009) 273-279. [doi]

- the ω-primality invariant $\omega(n)=\frac{1}{n_{1}} n+\binom{$ periodic }{ func' $n}$
C. O'Neill and R. Pelayo,

On the linearity of ω-primality in numerical monoids,
J. Pure and Applied Algebra 218 (2014) 1620-1627. [arXiv:1309.7476]

- the catenary degree invariant $\mathrm{c}(n)$ is periodic in n
S. Chapman, M. Corrales, A. Miller, C. Miller, and D. Patel,

The catenary and tame degrees on a numerical monoid are eventually periodic,
J. Aust. Math. Soc. 97 (2014), no. 3, 289-300. [doi]

Parametrized families of numerical semigroups

Fix $r_{1}<\cdots<r_{k} \in \mathbb{Z}_{\geq 1}$, and consider the parametrized family

$$
j \quad \rightsquigarrow \quad M_{j}=\left\langle j, j+r_{1}, \ldots, j+r_{k}\right\rangle .
$$

Parametrized families of numerical semigroups

Fix $r_{1}<\cdots<r_{k} \in \mathbb{Z}_{\geq 1}$, and consider the parametrized family

$$
j \quad \rightsquigarrow \quad M_{j}=\left\langle j, j+r_{1}, \ldots, j+r_{k}\right\rangle .
$$

Frobenius number $F\left(M_{j}\right)=\max \left(\mathbb{Z}_{\geq 0} \backslash M_{j}\right)$: maximum "gap" of M_{j}.

Parametrized families of numerical semigroups

Fix $r_{1}<\cdots<r_{k} \in \mathbb{Z}_{\geq 1}$, and consider the parametrized family

$$
j \quad \rightsquigarrow \quad M_{j}=\left\langle j, j+r_{1}, \ldots, j+r_{k}\right\rangle .
$$

Frobenius number $F\left(M_{j}\right)=\max \left(\mathbb{Z}_{\geq 0} \backslash M_{j}\right)$: maximum "gap" of M_{j}.

Theorem

For $j \gg 0$, we have $F\left(M_{j}\right)=\frac{1}{r_{k}} j^{2}+\binom{$ periodic }{ func'n }$j+\binom{$ periodic }{ func'n } .

Parametrized families of numerical semigroups

Fix $r_{1}<\cdots<r_{k} \in \mathbb{Z}_{\geq 1}$, and consider the parametrized family

$$
j \quad \rightsquigarrow \quad M_{j}=\left\langle j, j+r_{1}, \ldots, j+r_{k}\right\rangle .
$$

Frobenius number $F\left(M_{j}\right)=\max \left(\mathbb{Z}_{\geq 0} \backslash M_{j}\right)$: maximum "gap" of M_{j}.

Theorem

For $j \gg 0$, we have $F\left(M_{j}\right)=\frac{1}{r_{k}} j^{2}+\binom{$ periodic }{ func'n }$j+\binom{$ periodic }{ func'n } .

$$
M_{j}=\langle j, j+6, j+9, j+20\rangle: \quad \mathrm{F}\left(M_{j}\right)=\frac{1}{20} j^{2}+\cdots \text { for } j \geq 44 .
$$

Parametrized families of numerical semigroups

Fix $r_{1}<\cdots<r_{k} \in \mathbb{Z}_{\geq 1}$, and consider the parametrized family

$$
j \quad \rightsquigarrow \quad M_{j}=\left\langle j, j+r_{1}, \ldots, j+r_{k}\right\rangle .
$$

Frobenius number $F\left(M_{j}\right)=\max \left(\mathbb{Z}_{\geq 0} \backslash M_{j}\right)$: maximum "gap" of M_{j}.

Theorem

For $j \gg 0$, we have $\mathrm{F}\left(M_{j}\right)=\frac{1}{r_{k}} j^{2}+\binom{$ periodic }{ func' $n} j+\binom{$ periodic }{ func' $n}$.

$$
M_{j}=\langle j, j+6, j+9, j+20\rangle: \quad \mathrm{F}\left(M_{j}\right)=\frac{1}{20} j^{2}+\cdots \text { for } j \geq 44
$$

Parametrized families of numerical semigroups

Fix $r_{1}<\cdots<r_{k} \in \mathbb{Z}_{\geq 1}$, and consider the parametrized family

$$
j \quad \rightsquigarrow \quad M_{j}=\left\langle j, j+r_{1}, \ldots, j+r_{k}\right\rangle .
$$

Frobenius number $F\left(M_{j}\right)=\max \left(\mathbb{Z}_{\geq 0} \backslash M_{j}\right)$: maximum "gap" of M_{j}.

Theorem

For $j \gg 0$, we have $\mathrm{F}\left(M_{j}\right)=\frac{1}{r_{k}} j^{2}+\binom{$ periodic }{ func' $n} j+\binom{$ periodic }{ func' $n}$.

$$
M_{j}=\langle j, j+6, j+9, j+20\rangle: \quad \mathrm{F}\left(M_{j}\right)=\frac{1}{20} j^{2}+\cdots \text { for } j \geq 44
$$

Parametrized families of numerical semigroups

Within a parametrized family $j \rightsquigarrow M_{j}=\left\langle f_{1}(j), \ldots, f_{k}(j)\right\rangle$,

- Frobenius number $F\left(M_{j}\right)$
- genus $\mathrm{g}\left(M_{j}\right)=\left|\mathbb{Z}_{\geq 0} \backslash M_{j}\right|$
- type $\mathrm{t}\left(M_{j}\right)$

Parametrized families of numerical semigroups

Within a parametrized family $j \rightsquigarrow M_{j}=\left\langle f_{1}(j), \ldots, f_{k}(j)\right\rangle$,

- Frobenius number $F\left(M_{j}\right)$
- genus $g\left(M_{j}\right)=\left|\mathbb{Z}_{\geq 0} \backslash M_{j}\right|$
- type $\mathrm{t}\left(M_{j}\right)$
are quasipolynomials in $j \gg 0$ for shifted families $M_{j}=\left\langle j, j+r_{1}, \ldots, j+r_{k}\right\rangle$
S. Chapman, N. Kaplan, T. Lemburg, A. Niles, and C. Zlogar,

Shifts of generators and delta sets of numerical monoids,
International Journal of Algebra and Computation 24 (2014), no. 5, 655-669. [doi]
C. O'Neill and R. Pelayo,

Apéry sets of shifted numerical monoids,
Advances in Applied Mathematics 97 (2018), 27-35. [arXiv:1708.09527]
R. Conaway, F. Gotti, J. Horton, C. O'Neill, R. Pelayo, M. Williams, and B.Wissman, Minimal presentations of shifted numerical monoids,
Int'l Journal of Algebra and Computation 28 (2018), no. 1, 53-68. [arXiv:1701.08555]

Parametrized families of numerical semigroups

Within a parametrized family $j \rightsquigarrow M_{j}=\left\langle f_{1}(j), \ldots, f_{k}(j)\right\rangle$,

- Frobenius number $F\left(M_{j}\right)$
- genus $g\left(M_{j}\right)=\left|\mathbb{Z}_{\geq 0} \backslash M_{j}\right|$
- type $\mathrm{t}\left(M_{j}\right)$
are quasipolynomials in $j \gg 0$ for shifted families $M_{j}=\left\langle j, j+r_{1}, \ldots, j+r_{k}\right\rangle$
S. Chapman, N. Kaplan, T. Lemburg, A. Niles, and C. Zlogar,

Shifts of generators and delta sets of numerical monoids,
International Journal of Algebra and Computation 24 (2014), no. 5, 655-669. [doi]
C. O'Neill and R. Pelayo,

Apéry sets of shifted numerical monoids,
Advances in Applied Mathematics 97 (2018), 27-35. [arXiv:1708.09527]
R. Conaway, F. Gotti, J. Horton, C. O'Neill, R. Pelayo, M. Williams, and B.Wissman,

Minimal presentations of shifted numerical monoids,
Int'l Journal of Algebra and Computation 28 (2018), no. 1, 53-68. [arXiv:1701.08555]
and more generally when $f_{1}(j), \ldots, f_{k}(j)$ are polynomials
B. Shen,

The parametric Frobenius problem and parametric exclusion, preprint. [arXiv:1510.01349]
F. Kerstetter and C. O'Neill,

On parametrized families of numerical semigroups, preprint. [arXiv:1909.04281]
T. Bogart, J. Goodrick, and K. Woods,

Periodic behavior in families of numerical and affine semigroups via parametric Presburger arithmetic, preprint. [arXiv:1911.09136]

Parametrized families of numerical semigroups

Within a parametrized family $j \rightsquigarrow M_{j}=\left\langle f_{1}(j), \ldots, f_{k}(j)\right\rangle$,

- Frobenius number $F\left(M_{j}\right)$
- genus $g\left(M_{j}\right)=\left|\mathbb{Z}_{\geq 0} \backslash M_{j}\right|$
- type $\mathrm{t}\left(M_{j}\right)$
are quasipolynomials in $j \gg 0$ for shifted families $M_{j}=\left\langle j, j+r_{1}, \ldots, j+r_{k}\right\rangle$
S. Chapman, N. Kaplan, T. Lemburg, A. Niles, and C. Zlogar,

Shifts of generators and delta sets of numerical monoids,
International Journal of Algebra and Computation 24 (2014), no. 5, 655-669. [doi]
C. O'Neill and R. Pelayo,

Apéry sets of shifted numerical monoids,
Advances in Applied Mathematics 97 (2018), 27-35. [arXiv:1708.09527]
R. Conaway, F. Gotti, J. Horton, C. O'Neill, R. Pelayo, M. Williams, and B.Wissman,

Minimal presentations of shifted numerical monoids,
Int'l Journal of Algebra and Computation 28 (2018), no. 1, 53-68. [arXiv:1701.08555]
and more generally when $f_{1}(j), \ldots, f_{k}(j)$ are polynomials
B. Shen,

The parametric Frobenius problem and parametric exclusion, preprint. [arXiv:1510.01349]
F. Kerstetter and C. O'Neill,

On parametrized families of numerical semigroups, preprint. [arXiv:1909.04281]
T. Bogart, J. Goodrick, and K. Woods,

Periodic behavior in families of numerical and affine semigroups via parametric Presburger arithmetic, preprint. [arXiv:1911.09136]

A couple of long-standing (hard) conjectures

Fix a numerical semigroup $S \subset \mathbb{Z}_{\geq 0}$.

A couple of long-standing (hard) conjectures

Fix a numerical semigroup $S \subset \mathbb{Z}_{\geq 0}$. Genus $g=\mathrm{g}(S)=\left|\mathbb{Z}_{\geq 0} \backslash S\right|:$ number of "gaps" of S.

A couple of long-standing (hard) conjectures

Fix a numerical semigroup $S \subset \mathbb{Z}_{\geq 0}$.
Genus $g=\mathrm{g}(S)=\left|\mathbb{Z}_{\geq 0} \backslash S\right|$: number of "gaps" of S. $n_{g}=\#$ of numerical semigroups with genus g.

A couple of long-standing (hard) conjectures

Fix a numerical semigroup $S \subset \mathbb{Z}_{\geq 0}$.
Genus $g=\mathrm{g}(S)=\left|\mathbb{Z}_{\geq 0} \backslash S\right|$: number of "gaps" of S.
$n_{g}=\#$ of numerical semigroups with genus g.
Example: $n_{3}=4$

$$
\begin{aligned}
\langle 2,7\rangle & =\{0, \quad 2, \quad 4, \quad 6,7,8, \ldots\} \\
\langle 3,4\rangle & =\{0, \quad 3,4, \quad 6,7,8, \ldots\} \\
\langle 3,5,7\rangle & =\{0, \quad 3, \quad 5,6,7,8, \ldots\} \\
\langle 4,5,6,7\rangle & =\{0, \quad 4,5,6,7,8, \ldots\}
\end{aligned}
$$

A couple of long-standing (hard) conjectures

Fix a numerical semigroup $S \subset \mathbb{Z}_{\geq 0}$.
Genus $g=\mathrm{g}(S)=\left|\mathbb{Z}_{\geq 0} \backslash S\right|$: number of "gaps" of S.
$n_{g}=\#$ of numerical semigroups with genus g.
Example: $n_{3}=4$

$$
\left.\left.\begin{array}{rl}
\langle 2,7\rangle & =\left\{\begin{array}{ll}
0, & 2, \quad 4, \quad 6,7,8, \ldots
\end{array}\right\} \\
\langle 3,4\rangle & =\{0, \quad 3,4, \quad 6,7,8, \ldots\} \\
\langle 3,5,7\rangle & =\{0, \quad 3, \quad 5,6,7,8, \ldots\} \\
\langle 4,5,6,7\rangle & =\{0,
\end{array} \quad 4,5,6,7,8, \ldots\right\}\right\}
$$

Suspected: $n_{g} \geq n_{g-1}+n_{g-2}$ for all g (verified for $\left.g \leq 60\right)$

A couple of long-standing (hard) conjectures

Fix a numerical semigroup $S \subset \mathbb{Z}_{\geq 0}$.
Genus $g=\mathrm{g}(S)=\left|\mathbb{Z}_{\geq 0} \backslash S\right|$: number of "gaps" of S.
$n_{g}=\#$ of numerical semigroups with genus g.
Example: $n_{3}=4$

$$
\begin{aligned}
&\langle 2,7\rangle=\left\{\begin{array}{l}
0, \\
\langle 3,4\rangle
\end{array}\right)=\left\{\begin{array}{ll}
0, & 3,4,7,8, \ldots
\end{array}\right\} \\
&\langle 3,5,7\rangle=\{0,7, \ldots\} \\
&\langle 4,5,6,7\rangle=\left\{\begin{array}{ll}
0,6,7,8, \ldots\}
\end{array}\right\} \\
&\hline 0,5,6,7,8, \ldots\}
\end{aligned}
$$

Suspected: $n_{g} \geq n_{g-1}+n_{g-2}$ for all g (verified for $g \leq 60$) Known: $\lim _{g \rightarrow \infty} \frac{n_{g+1}}{n_{g}}=$ (the golden ratio)

A couple of long-standing (hard) conjectures

Fix a numerical semigroup $S \subset \mathbb{Z}_{\geq 0}$.
Genus $g=g(S)=\left|\mathbb{Z}_{\geq 0} \backslash S\right|$: number of "gaps" of S.
$n_{g}=\#$ of numerical semigroups with genus g.
Example: $n_{3}=4$

$$
\left.\left.\begin{array}{rl}
\langle 2,7\rangle & =\{0, \quad 2, \quad 4, \quad 6,7,8, \ldots\} \\
\langle 3,4\rangle & =\{0, \quad 3,4, \quad 6,7,8, \ldots\} \\
\langle 3,5,7\rangle & =\{0, \quad 3, \quad 5,6,7,8, \ldots\} \\
\langle 4,5,6,7\rangle & =\{0,
\end{array} \quad 4,5,6,7,8, \ldots\right\}\right\}
$$

Suspected: $n_{g} \geq n_{g-1}+n_{g-2}$ for all g (verified for $g \leq 60$) Known: $\lim _{g \rightarrow \infty} \frac{n_{g+1}}{n_{g}}=$ (the golden ratio)

Conjecture (Bras-Amoros, 2008)

For all g, we have $n_{g} \geq n_{g-1}$.

A couple of long-standing (hard) conjectures

Fix a numerical semigroup $S \subset \mathbb{Z}_{\geq 0}$.
Genus $g=g(S)=\left|\mathbb{Z}_{\geq 0} \backslash S\right|$: number of "gaps" of S.
$n_{g}=\#$ of numerical semigroups with genus g.
Example: $n_{3}=4$

$$
\left.\left.\begin{array}{rl}
\langle 2,7\rangle & =\left\{\begin{array}{lr}
0, & 2, \quad 4, \quad 6,7,8, \ldots
\end{array}\right\} \\
\langle 3,4\rangle & =\{0, \quad 3,4, \quad 6,7,8, \ldots\} \\
\langle 3,5,7\rangle & =\{0, \quad 3,5,6,7,8, \ldots\} \\
\langle 4,5,6,7\rangle & =\{0,
\end{array} \quad 4,5,6,7,8, \ldots\right\}\right\}
$$

Suspected: $n_{g} \geq n_{g-1}+n_{g-2}$ for all g (verified for $g \leq 60$) Known: $\lim _{g \rightarrow \infty} \frac{n_{g+1}}{n_{g}}=$ (the golden ratio)

Conjecture (Bras-Amoros, 2008)

For all g, we have $n_{g} \geq n_{g-1}$.
Not true for $m_{f}=\#$ of numerical semigroups with Frobenius number f

$$
m_{11}=51 \quad m_{12}=40 \quad m_{13}=106
$$

A couple of long-standing (hard) conjectures

Wilf's Conjecture
 For any $S=\left\langle n_{1}, \ldots, n_{k}\right\rangle$, we have $\mathrm{F}(S)+1 \leq k(\mathrm{~F}(S)+1-\mathrm{g}(S))$.

A couple of long-standing (hard) conjectures

Wilf's Conjecture

For any $S=\left\langle n_{1}, \ldots, n_{k}\right\rangle$, we have $\mathrm{F}(S)+1 \leq k(\mathrm{~F}(S)+1-\mathrm{g}(S))$.
Equivalently,

$$
\frac{1}{k} \leq \underbrace{\frac{\mathrm{F}(S)+1-\mathrm{g}(S)}{\mathrm{F}(S)+1}}_{\% \text { of }[0, F(S)] \text { in } S}
$$

A couple of long-standing (hard) conjectures

Wilf's Conjecture

For any $S=\left\langle n_{1}, \ldots, n_{k}\right\rangle$, we have $\mathrm{F}(S)+1 \leq k(\mathrm{~F}(S)+1-\mathrm{g}(S))$.
Equivalently,

$$
\frac{1}{k} \leq \underbrace{\frac{F(S)+1-g(S)}{F(S)+1}}_{\% \text { of }[0, F(S)] \text { in } S}
$$

A couple of long-standing (hard) conjectures

Wilf's Conjecture
 For any $S=\left\langle n_{1}, \ldots, n_{k}\right\rangle$, we have $\mathrm{F}(S)+1 \leq k(\mathrm{~F}(S)+1-\mathrm{g}(S))$.

Equivalently,

$$
\frac{1}{k} \leq \underbrace{\frac{\mathrm{F}(S)+1-\mathrm{g}(S)}{\mathrm{F}(S)+1}}_{\% \text { of }[0, F(S)] \text { in } S}
$$

Equality holds when:

A couple of long-standing (hard) conjectures

Wilf's Conjecture

For any $S=\left\langle n_{1}, \ldots, n_{k}\right\rangle$, we have $\mathrm{F}(S)+1 \leq k(\mathrm{~F}(S)+1-\mathrm{g}(S))$.
Equivalently,

$$
\frac{1}{k} \leq \underbrace{\frac{\mathrm{F}(S)+1-\mathrm{g}(S)}{\mathrm{F}(S)+1}}_{\% \text { of }[0, F(S)] \text { in } S}
$$

Equality holds when:

- $S=\langle a, b\rangle$

A couple of long-standing (hard) conjectures

Wilf's Conjecture

For any $S=\left\langle n_{1}, \ldots, n_{k}\right\rangle$, we have $\mathrm{F}(S)+1 \leq k(\mathrm{~F}(S)+1-\mathrm{g}(S))$.
Equivalently,

$$
\frac{1}{k} \leq \underbrace{\frac{\mathrm{F}(S)+1-\mathrm{g}(S)}{\mathrm{F}(S)+1}}_{\% \text { of }[0, F(S)] \text { in } S}
$$

Equality holds when:

- $S=\langle a, b\rangle$

- $S=\langle m, m+1, \ldots, 2 m-1\rangle$ ϕ

A couple of long-standing (hard) conjectures

Wilf's Conjecture

For any $S=\left\langle n_{1}, \ldots, n_{k}\right\rangle$, we have $\mathrm{F}(S)+1 \leq k(\mathrm{~F}(S)+1-\mathrm{g}(S))$.
Equivalently,

$$
\frac{1}{k} \leq \underbrace{\frac{F(S)+1-g(S)}{F(S)+1}}_{\% \text { of }[0, F(S)] \text { in } S}
$$

Equality holds when:

- $S=\langle a, b\rangle$

- $S=\langle m, m+1, \ldots, 2 m-1\rangle$ Proved in many special cases, including $g(S) \leq 60$.

So much more out there!

So much more out there!

- Computation/algorithms

D. Anderson, S. Chapman, N. Kaplan, and D. Torkornoo, An algorithm to compute ω-primality in a numerical monoid, Semigroup Forum 82 (2011), no. 1, 96-108. [doi]
T. Barron, C. O'Neill, and R. Pelayo,

On dynamic algorithms for factorization invariants in numerical monoids, Mathematics of Computation 86 (2017), 2429-2447. [arXiv:1507.07435] P. García-Sánchez, C. O'Neill, and G. Webb, On the computation of factorization invariants for affine semigroups,
J. Algebra and its Applications 18 (2019), no. 1, 1950019, 21 pp. [arXiv:1504.02998]

So much more out there!

- Computation/algorithms
D. Anderson, S. Chapman, N. Kaplan, and D. Torkornoo, An algorithm to compute ω-primality in a numerical monoid, Semigroup Forum 82 (2011), no. 1, 96-108. [doi]
T. Barron, C. O'Neill, and R. Pelayo,

On dynamic algorithms for factorization invariants in numerical monoids,
Mathematics of Computation 86 (2017), 2429-2447. [arXiv:1507.07435]
P. García-Sánchez, C. O'Neill, and G. Webb,

On the computation of factorization invariants for affine semigroups,
J. Algebra and its Applications 18 (2019), no. 1, 1950019, 21 pp. [arXiv:1504.02998]

- Lattice point enumeration and Ehrhart theory (Kunz polyhedra)
J. Autry, A. Ezell, T. Gomes, C. O'Neill, C. Preuss, T. Saluja, and E. Torres-Davila, Numerical semigroups and polyhedra faces II: locating certain families of semigroups, preprint. [arXiv:1912.04460]

So much more out there!

- Computation/algorithms
D. Anderson, S. Chapman, N. Kaplan, and D. Torkornoo, An algorithm to compute ω-primality in a numerical monoid, Semigroup Forum 82 (2011), no. 1, 96-108. [doi]
T. Barron, C. O'Neill, and R. Pelayo,

On dynamic algorithms for factorization invariants in numerical monoids,
Mathematics of Computation 86 (2017), 2429-2447. [arXiv:1507.07435]
P. García-Sánchez, C. O'Neill, and G. Webb,

On the computation of factorization invariants for affine semigroups,
J. Algebra and its Applications 18 (2019), no. 1, 1950019, 21 pp. [arXiv:1504.02998]

- Lattice point enumeration and Ehrhart theory (Kunz polyhedra)
J. Autry, A. Ezell, T. Gomes, C. O'Neill, C. Preuss, T. Saluja, and E. Torres-Davila, Numerical semigroups and polyhedra faces II: locating certain families of semigroups, preprint. [arXiv:1912.04460]
- Factorization theory
C. Bowles, S. Chapman, N. Kaplan, D. Reiser, On delta sets of numerical monoids, J. Algebra Appl. 5 (2006) 1-24. [doi] J. Amos, S. Chapman, N. Hine, J. Paixão, Sets of lengths do not characterize numerical monoids, Integers 7 (2007), \#A50. [link]

So much more out there!

- Computation/algorithms
D. Anderson, S. Chapman, N. Kaplan, and D. Torkornoo, An algorithm to compute ω-primality in a numerical monoid, Semigroup Forum 82 (2011), no. 1, 96-108. [doi]
T. Barron, C. O'Neill, and R. Pelayo,

On dynamic algorithms for factorization invariants in numerical monoids,
Mathematics of Computation 86 (2017), 2429-2447. [arXiv:1507.07435]
P. García-Sánchez, C. O'Neill, and G. Webb,

On the computation of factorization invariants for affine semigroups,
J. Algebra and its Applications 18 (2019), no. 1, 1950019, 21 pp. [arXiv:1504.02998]

- Lattice point enumeration and Ehrhart theory (Kunz polyhedra)
J. Autry, A. Ezell, T. Gomes, C. O'Neill, C. Preuss, T. Saluja, and E. Torres-Davila, Numerical semigroups and polyhedra faces II: locating certain families of semigroups, preprint. [arXiv:1912.04460]
- Factorization theory
C. Bowles, S. Chapman, N. Kaplan, D. Reiser, On delta sets of numerical monoids, J. Algebra Appl. 5 (2006) 1-24. [doi] J. Amos, S. Chapman, N. Hine, J. Paixão, Sets of lengths do not characterize numerical monoids, Integers 7 (2007), \#A50. [link]
- Enumerative combinatorics
J. Glenn, C. O'Neill, V. Ponomarenko, and B. Sepanski, Augmented Hilbert series of numerical semigroups, Integers 19 (2019), \#A32. [arXiv:1806.11148]

So much more out there!

- Computation/algorithms
D. Anderson, S. Chapman, N. Kaplan, and D. Torkornoo, An algorithm to compute ω-primality in a numerical monoid, Semigroup Forum 82 (2011), no. 1, 96-108. [doi]
T. Barron, C. O'Neill, and R. Pelayo,

On dynamic algorithms for factorization invariants in numerical monoids,
Mathematics of Computation 86 (2017), 2429-2447. [arXiv:1507.07435]
P. García-Sánchez, C. O'Neill, and G. Webb,

On the computation of factorization invariants for affine semigroups,
J. Algebra and its Applications 18 (2019), no. 1, 1950019, 21 pp. [arXiv:1504.02998]

- Lattice point enumeration and Ehrhart theory (Kunz polyhedra)
J. Autry, A. Ezell, T. Gomes, C. O'Neill, C. Preuss, T. Saluja, and E. Torres-Davila, Numerical semigroups and polyhedra faces II: locating certain families of semigroups, preprint. [arXiv:1912.04460]
- Factorization theory
C. Bowles, S. Chapman, N. Kaplan, D. Reiser, On delta sets of numerical monoids, J. Algebra Appl. 5 (2006) 1-24. [doi] J. Amos, S. Chapman, N. Hine, J. Paixão, Sets of lengths do not characterize numerical monoids, Integers 7 (2007), \#A50. [link]
- Enumerative combinatorics
J. Glenn, C. O'Neill, V. Ponomarenko, and B. Sepanski, Augmented Hilbert series of numerical semigroups, Integers 19 (2019), \#A32. [arXiv:1806.11148]
- Error-correcting codes (Arf numerical semigroups)

So much more out there!

- Computation/algorithms
D. Anderson, S. Chapman, N. Kaplan, and D. Torkornoo, An algorithm to compute ω-primality in a numerical monoid, Semigroup Forum 82 (2011), no. 1, 96-108. [doi]
T. Barron, C. O'Neill, and R. Pelayo,

On dynamic algorithms for factorization invariants in numerical monoids,
Mathematics of Computation 86 (2017), 2429-2447. [arXiv:1507.07435]
P. García-Sánchez, C. O'Neill, and G. Webb,

On the computation of factorization invariants for affine semigroups,
J. Algebra and its Applications 18 (2019), no. 1, 1950019, 21 pp. [arXiv:1504.02998]

- Lattice point enumeration and Ehrhart theory (Kunz polyhedra)
J. Autry, A. Ezell, T. Gomes, C. O'Neill, C. Preuss, T. Saluja, and E. Torres-Davila, Numerical semigroups and polyhedra faces II: locating certain families of semigroups, preprint. [arXiv:1912.04460]
- Factorization theory
C. Bowles, S. Chapman, N. Kaplan, D. Reiser, On delta sets of numerical monoids, J. Algebra Appl. 5 (2006) 1-24. [doi] J. Amos, S. Chapman, N. Hine, J. Paixão, Sets of lengths do not characterize numerical monoids, Integers 7 (2007), \#A50. [link]
- Enumerative combinatorics
J. Glenn, C. O'Neill, V. Ponomarenko, and B. Sepanski, Augmented Hilbert series of numerical semigroups, Integers 19 (2019), \#A32. [arXiv:1806.11148]
- Error-correcting codes (Arf numerical semigroups)
- Music theory

Diving in headfirst

How can a talented undergraduate I know get started?

Diving in headfirst

How can a talented undergraduate I know get started?

- Survey papers (several include open problems)
C. O'Neill and R. Pelayo,

How do you measure primality?,
American Mathematical Monthly 122 (2015), no. 2, 121-137. [arXiv:1405.1714]
C. O'Neill and R. Pelayo,

Factorization invariants in numerical monoids,
Contemporary Mathematics 685 (2017), 231-249. [arXiv:1508.00128]
S. Chapman and C. O'Neill,

Factoring in the Chicken McNugget monoid,
Mathematics Magazine 91 (2018), no. 5, 323-336. [arXiv:1709.01606]
S. Chapman, R. Garcia, and C. O'Neill,

Beyond coins, stamps, and Chicken McNuggets: an invitation to numerical semigroups, to appear, FURM Volume 3 (Springer). [arXiv:1902.05848]

Diving in headfirst. . . and a shameless plug

How can a talented undergraduate I know get started?

- Survey papers (several include open problems)
C. O'Neill and R. Pelayo,

How do you measure primality?,
American Mathematical Monthly 122 (2015), no. 2, 121-137. [arXiv:1405.1714]
C. O'Neill and R. Pelayo,

Factorization invariants in numerical monoids,
Contemporary Mathematics 685 (2017), 231-249. [arXiv:1508.00128]
S. Chapman and C. O'Neill,

Factoring in the Chicken McNugget monoid,
Mathematics Magazine 91 (2018), no. 5, 323-336. [arXiv:1709.01606]
S. Chapman, R. Garcia, and C. O'Neill,

Beyond coins, stamps, and Chicken McNuggets: an invitation to numerical semigroups,
to appear, FURM Volume 3 (Springer). [arXiv:1902.05848]

- Apply to the San Diego State University summer REU!!!!

Codirectors: Christopher O'Neill
Vadim Ponomarenko
Apply: http://www.sci.sdsu.edu/math-reu/
Deadline: March 1st, 2023

