Classifying numerical semigroups using polyhedral geometry

Christopher O'Neill

San Diego State University
cdoneill@sdsu.edu

Joint with (i) Winfred Bruns, Pedro García-Sánchez, Dane Wilbourne; (ii) Nathan Kaplan;
(iii) J. Autry, *A. Ezell, *T. Gomes, *C. Preuss, *T. Saluja, *E. Torres Davila (iv) B. Braun, T. Gomes, E. Miller, C. O'Neill, and A. Sobieska

* $=$ undergraduate student

Slides available: https://cdoneill.sdsu.edu/

$$
\text { January 3, } 2024
$$

Numerical semigroups

Definition

A numerical semigroup $S \subseteq \mathbb{Z}_{\geq 0}$: closed under addition, $\left|\mathbb{Z}_{\geq 0} \backslash S\right|<\infty$.

Numerical semigroups

Definition

A numerical semigroup $S \subseteq \mathbb{Z}_{\geq 0}$: closed under addition, $\left|\mathbb{Z}_{\geq 0} \backslash S\right|<\infty$.
Example:

$$
M c N=\langle 6,9,20\rangle=\left\{\begin{array}{l}
0,6,9,12,15,18,20,21,24, \ldots \\
\cdots, 36,38,39,40,41,42,44 \rightarrow
\end{array}\right\}
$$

Numerical semigroups

Definition

A numerical semigroup $S \subseteq \mathbb{Z}_{\geq 0}$: closed under addition, $\left|\mathbb{Z}_{\geq 0} \backslash S\right|<\infty$.
Example: "McNugget Semigroup"

$$
M c N=\langle 6,9,20\rangle=\left\{\begin{array}{l}
0,6,9,12,15,18,20,21,24, \ldots \\
\cdots, 36,38,39,40,41,42,44 \rightarrow
\end{array}\right\}
$$

Numerical semigroups

Definition

A numerical semigroup $S \subseteq \mathbb{Z}_{\geq 0}$: closed under addition, $\left|\mathbb{Z}_{\geq 0} \backslash S\right|<\infty$.
Example: "McNugget Semigroup"

$$
M c N=\langle 6,9,20\rangle=\left\{\begin{array}{l}
0,6,9,12,15,18,20,21,24, \ldots \\
\cdots, 36,38,39,40,41,42,44 \rightarrow
\end{array}\right\}
$$

Multiplicity: $\mathrm{m}(S)=$ smallest nonzero element

Apéry sets

Fix a numerical semigroup S with $m(S)=m$.

Apéry sets

Fix a numerical semigroup S with $\mathrm{m}(S)=m$.

Definition

The Apéry set of S is

$$
\operatorname{Ap}(S)=\{a \in S: a-m \notin S\}
$$

Apéry sets

Fix a numerical semigroup S with $\mathrm{m}(S)=m$.

Definition

The Apéry set of S is

$$
\operatorname{Ap}(S)=\{a \in S: a-m \notin S\}
$$

If $S=\langle 6,9,20\rangle$, then

$$
\operatorname{Ap}(S)=\{0,49,20,9,40,29\}
$$

Apéry sets

Fix a numerical semigroup S with $\mathrm{m}(S)=m$.

Definition

The Apéry set of S is

$$
\operatorname{Ap}(S)=\{a \in S: a-m \notin S\}
$$

If $S=\langle 6,9,20\rangle$, then

$$
\operatorname{Ap}(S)=\{0,49,20,9,40,29\}
$$

For $2 \bmod 6:\{2,8,14,20,26,32, \ldots\} \cap S=\{20,26,32, \ldots\}$
For $3 \bmod 6$:
$\{3,9,15,21, \ldots\} \cap S=\{9,15,21, \ldots\}$
For $4 \bmod 6$:

$$
\{4,10,16,22, \ldots\} \cap S=\{40,46,52, \ldots\}
$$

Apéry sets

Fix a numerical semigroup S with $\mathrm{m}(S)=m$.

Definition

The Apéry set of S is

$$
\operatorname{Ap}(S)=\{a \in S: a-m \notin S\}
$$

If $S=\langle 6,9,20\rangle$, then

$$
\operatorname{Ap}(S)=\{0,49,20,9,40,29\}
$$

For $2 \bmod 6:\{2,8,14,20,26,32, \ldots\} \cap S=\{20,26,32, \ldots\}$
For $3 \bmod 6$:
$\{3,9,15,21, \ldots\} \cap S=\{9,15,21, \ldots\}$
For $4 \bmod 6$:

$$
\{4,10,16,22, \ldots\} \cap S=\{40,46,52, \ldots\}
$$

Apéry sets

Fix a numerical semigroup S with $\mathrm{m}(S)=m$.

Definition

The Apéry set of S is

$$
\operatorname{Ap}(S)=\{a \in S: a-m \notin S\}
$$

If $S=\langle 6,9,20\rangle$, then

$$
\operatorname{Ap}(S)=\{0,49,20,9,40,29\}
$$

For $2 \bmod 6:\{2,8,14,20,26,32, \ldots\} \cap S=\{20,26,32, \ldots\}$
For $3 \bmod 6$:
$\{3,9,15,21, \ldots\} \cap S=\{9,15,21, \ldots\}$
For $4 \bmod 6$:

$$
\{4,10,16,22, \ldots\} \cap S=\{40,46,52, \ldots\}
$$

Apéry sets

Fix a numerical semigroup S with $\mathrm{m}(S)=m$.

Definition

The Apéry set of S is

$$
\operatorname{Ap}(S)=\{a \in S: a-m \notin S\}
$$

If $S=\langle 6,9,20\rangle$, then

$$
\operatorname{Ap}(S)=\{0,49,20,9,40,29\}
$$

For $2 \bmod 6:\{2,8,14,20,26,32, \ldots\} \cap S=\{20,26,32, \ldots\}$
For $3 \bmod 6$:
$\{3,9,15,21, \ldots\} \cap S=\{9,15,21, \ldots\}$
For $4 \bmod 6$:

$$
\{4,10,16,22, \ldots\} \cap S=\{40,46,52, \ldots\}
$$

Observations:

Apéry sets

Fix a numerical semigroup S with $\mathrm{m}(S)=m$.

Definition

The Apéry set of S is

$$
\operatorname{Ap}(S)=\{a \in S: a-m \notin S\}
$$

If $S=\langle 6,9,20\rangle$, then

$$
\operatorname{Ap}(S)=\{0,49,20,9,40,29\}
$$

For $2 \bmod 6:\{2,8,14,20,26,32, \ldots\} \cap S=\{20,26,32, \ldots\}$
For $3 \bmod 6$:
$\{3,9,15,21, \ldots\} \cap S=\{9,15,21, \ldots\}$
For $4 \bmod 6$:

$$
\{4,10,16,22, \ldots\} \cap S=\{40,46,52, \ldots\}
$$

Observations:

- The elements of $\operatorname{Ap}(S)$ are distinct modulo m

Apéry sets

Fix a numerical semigroup S with $\mathrm{m}(S)=m$.

Definition

The Apéry set of S is

$$
\operatorname{Ap}(S)=\{a \in S: a-m \notin S\}
$$

If $S=\langle 6,9,20\rangle$, then

$$
\operatorname{Ap}(S)=\{0,49,20,9,40,29\}
$$

For $2 \bmod 6:\{2,8,14,20,26,32, \ldots\} \cap S=\{20,26,32, \ldots\}$
For $3 \bmod 6$:
$\{3,9,15,21, \ldots\} \cap S=\{9,15,21, \ldots\}$
For $4 \bmod 6: \quad\{4,10,16,22, \ldots\} \cap S=\{40,46,52, \ldots\}$
Observations:

- The elements of $\operatorname{Ap}(S)$ are distinct modulo m
- $|\operatorname{Ap}(S)|=m$

Apéry sets

$$
\text { Is } A=\{0,11,7,23,19\} \text { the Apéry set of some numerical semigroup? }
$$

Apéry sets

Is $A=\{0,11,7,23,19\}$ the Apéry set of some numerical semigroup?

$$
m=|A|=5, \quad a_{1}=11, a_{2}=7, a_{3}=23, a_{4}=19
$$

Apéry sets

Is $A=\{0,11,7,23,19\}$ the Apéry set of some numerical semigroup? $m=|A|=5, \quad a_{1}=11, a_{2}=7, a_{3}=23, a_{4}=19$
but $a_{1}+a_{2} \equiv 3 \bmod 5$ and $a_{1}+a_{2}<a_{3}$.

Apéry sets

Is $A=\{0,11,7,23,19\}$ the Apéry set of some numerical semigroup? $m=|A|=5, \quad a_{1}=11, a_{2}=7, a_{3}=23, a_{4}=19$
but $a_{1}+a_{2} \equiv 3 \bmod 5$ and $a_{1}+a_{2}<a_{3}$.
Is $\{0,13,14,27,10,11\}$ the Apéry set of some numerical semigroup? $m=|A|=6, \quad a_{1}=13, a_{2}=14, a_{3}=27, a_{4}=10, a_{5}=11$

Apéry sets

Is $A=\{0,11,7,23,19\}$ the Apéry set of some numerical semigroup? $m=|A|=5, \quad a_{1}=11, a_{2}=7, a_{3}=23, a_{4}=19$
but $a_{1}+a_{2} \equiv 3 \bmod 5$ and $a_{1}+a_{2}<a_{3}$.
Is $\{0,13,14,27,10,11\}$ the Apéry set of some numerical semigroup?

$$
m=|A|=6, \quad a_{1}=13, a_{2}=14, a_{3}=27, a_{4}=10, a_{5}=11
$$

but $a_{4}+a_{5} \equiv 3 \bmod 6$ and $a_{4}+a_{5}<a_{3}$.

Apéry sets

Is $A=\{0,11,7,23,19\}$ the Apéry set of some numerical semigroup?

$$
m=|A|=5, \quad a_{1}=11, a_{2}=7, a_{3}=23, a_{4}=19
$$

but $a_{1}+a_{2} \equiv 3 \bmod 5$ and $a_{1}+a_{2}<a_{3}$.
Is $\{0,13,14,27,10,11\}$ the Apéry set of some numerical semigroup?

$$
m=|A|=6, \quad a_{1}=13, a_{2}=14, a_{3}=27, a_{4}=10, a_{5}=11
$$

but $a_{4}+a_{5} \equiv 3 \bmod 6$ and $a_{4}+a_{5}<a_{3}$.

Theorem

If $A=\left\{0, a_{1}, \ldots, a_{m-1}\right\}$ with each $a_{i}>m$ and $a_{i} \equiv i \bmod m$, then there exists a numerical semigroup S with $\operatorname{Ap}(S)=A$ if and only if

$$
a_{i}+a_{j} \geq a_{i+j} \quad \text { whenever } \quad i+j \neq 0
$$

Apéry sets

Is $A=\{0,11,7,23,19\}$ the Apéry set of some numerical semigroup?

$$
m=|A|=5, \quad a_{1}=11, a_{2}=7, a_{3}=23, a_{4}=19
$$

but $a_{1}+a_{2} \equiv 3 \bmod 5$ and $a_{1}+a_{2}<a_{3}$.
Is $\{0,13,14,27,10,11\}$ the Apéry set of some numerical semigroup?

$$
m=|A|=6, \quad a_{1}=13, a_{2}=14, a_{3}=27, a_{4}=10, a_{5}=11
$$

but $a_{4}+a_{5} \equiv 3 \bmod 6$ and $a_{4}+a_{5}<a_{3}$.

Theorem

If $A=\left\{0, a_{1}, \ldots, a_{m-1}\right\}$ with each $a_{i}>m$ and $a_{i} \equiv i \bmod m$, then there exists a numerical semigroup S with $\operatorname{Ap}(S)=A$ if and only if

$$
a_{i}+a_{j} \geq a_{i+j} \quad \text { whenever } \quad i+j \neq 0
$$

Big idea: the inequalities " $a_{i}+a_{j} \geq a_{i+j}$ " to define a cone C_{m}.

Kunz cone

Definition

The Kunz cone $C_{m} \subseteq \mathbb{R}^{m-1}$ is a pointed cone with defining inequalities $a_{i}+a_{j} \geq a_{i+j} \quad$ whenever $\quad i+j \neq 0$.

$$
\begin{aligned}
\left\{S \subseteq \mathbb{Z}_{\geq 0}: m(S)=m\right\} & \longrightarrow C_{m} \\
\operatorname{Ap}(S)=\left\{0, a_{1}, \ldots, a_{m-1}\right\} & \longmapsto\left(a_{1}, \ldots, a_{m-1}\right)
\end{aligned}
$$

Kunz cone

Definition

The Kunz cone $C_{m} \subseteq \mathbb{R}^{m-1}$ is a pointed cone with defining inequalities $a_{i}+a_{j} \geq a_{i+j} \quad$ whenever $\quad i+j \neq 0$.

$$
\begin{aligned}
&\left\{S \subseteq \mathbb{Z}_{\geq 0}: m(S)=m\right\} \longrightarrow C_{m} \\
& \operatorname{Ap}(S)=\left\{0, a_{1}, \ldots, a_{m-1}\right\} \longmapsto \\
&\left(a_{1}, \ldots, a_{m-1}\right)
\end{aligned}
$$

Example: C_{3}

Kunz cone

Definition

The Kunz cone $C_{m} \subseteq \mathbb{R}^{m-1}$ is a pointed cone with defining inequalities $a_{i}+a_{j} \geq a_{i+j} \quad$ whenever $\quad i+j \neq 0$.

$$
\begin{array}{rll}
\left\{S \subseteq \mathbb{Z}_{\geq 0}: m(S)=m\right\} & \longrightarrow C_{m} \\
\operatorname{Ap}(S)=\left\{0, a_{1}, \ldots, a_{m-1}\right\} & \longmapsto & \left(a_{1}, \ldots, a_{m-1}\right)
\end{array}
$$

Example: C_{3}

$$
\begin{aligned}
& S=\langle 3,5,7\rangle \\
& \operatorname{Ap}(S)=\{0,7,5\}
\end{aligned}
$$

Kunz cone

Definition

The Kunz cone $C_{m} \subseteq \mathbb{R}^{m-1}$ is a pointed cone with defining inequalities $a_{i}+a_{j} \geq a_{i+j} \quad$ whenever $\quad i+j \neq 0$.

$$
\begin{array}{rll}
\left\{S \subseteq \mathbb{Z}_{\geq 0}: m(S)=m\right\} & \longrightarrow C_{m} \\
\operatorname{Ap}(S)=\left\{0, a_{1}, \ldots, a_{m-1}\right\} & \longmapsto & \left(a_{1}, \ldots, a_{m-1}\right)
\end{array}
$$

Example: C_{3}

$$
\begin{aligned}
& S=\langle 3,5,7\rangle \\
& \operatorname{Ap}(S)=\{0,7,5\} \\
& S=\langle 3,4\rangle \\
& \operatorname{Ap}(S)=\{0,4,8\}
\end{aligned}
$$

Kunz cone

Definition

The Kunz cone $C_{m} \subseteq \mathbb{R}^{m-1}$ is a pointed cone with defining inequalities $a_{i}+a_{j} \geq a_{i+j} \quad$ whenever $\quad i+j \neq 0$.

$$
\begin{aligned}
\left\{S \subseteq \mathbb{Z}_{\geq 0}: m(S)=m\right\} & \longrightarrow C_{m} \\
\operatorname{Ap}(S)=\left\{0, a_{1}, \ldots, a_{m-1}\right\} & \longmapsto\left(a_{1}, \ldots, a_{m-1}\right)
\end{aligned}
$$

Kunz cone

Definition

The Kunz cone $C_{m} \subseteq \mathbb{R}^{m-1}$ is a pointed cone with defining inequalities $a_{i}+a_{j} \geq a_{i+j} \quad$ whenever $\quad i+j \neq 0$.

$$
\begin{aligned}
\left\{S \subseteq \mathbb{Z}_{\geq 0}: m(S)=m\right\} & \longrightarrow C_{m} \\
\operatorname{Ap}(S)=\left\{0, a_{1}, \ldots, a_{m-1}\right\} & \longmapsto\left(a_{1}, \ldots, a_{m-1}\right)
\end{aligned}
$$

Example: C_{4}

Faces of the Kunz cone

Question

When are numerical semigroups in (the relative interior of) the same face?

Faces of the Kunz cone

Question

When are numerical semigroups in (the relative interior of) the same face?
Big picture: "moduli space" approach for studying $X Y Z$'s

- Define a space with $X Y Z$'s as points

Small changes to an $X Y Z \rightsquigarrow$ small movements in space

- Let geometric/topological structure inform study of $X Y Z$'s

Faces of the Kunz cone

Question

When are numerical semigroups in (the relative interior of) the same face?
Big picture: "moduli space" approach for studying $X Y Z$'s

- Define a space with $X Y Z$'s as points

Small changes to an $X Y Z \rightsquigarrow$ small movements in space

- Let geometric/topological structure inform study of $X Y Z$'s

Basic example: $\mathrm{GL}_{n}(\mathbb{R}) \hookrightarrow \mathbb{R}^{n^{2}}$

Faces of the Kunz cone

Question

When are numerical semigroups in (the relative interior of) the same face?
Big picture: "moduli space" approach for studying $X Y Z$'s

- Define a space with $X Y Z$'s as points Small changes to an $X Y Z \rightsquigarrow$ small movements in space
- Let geometric/topological structure inform study of $X Y Z$'s

Basic example: $\mathrm{GL}_{n}(\mathbb{R}) \hookrightarrow \mathbb{R}^{n^{2}}$
More interesting example: C_{m}

Faces of the Kunz cone

Question

When are numerical semigroups in (the relative interior of) the same face?

Faces of the Kunz cone

Question

When are numerical semigroups in (the relative interior of) the same face?
Example: $S=\langle 4,10,11,13\rangle$

$$
\begin{gathered}
\operatorname{Ap}(S)=\{0,13,10,11\} \\
a_{1}=13, \quad a_{2}=10, \quad a_{3}=11
\end{gathered}
$$

$$
\begin{array}{ll}
2 a_{1}>a_{2} & a_{1}+a_{2}>a_{3} \\
2 a_{3}>a_{2} & a_{2}+a_{3}>a_{1}
\end{array}
$$

Faces of the Kunz cone

Question

When are numerical semigroups in (the relative interior of) the same face?
Example: $S=\langle 4,10,11,13\rangle$

$$
\begin{array}{cll}
\operatorname{Ap}(S)=\{0,13,10,11\} & 2 a_{1}>a_{2} & a_{1}+a_{2}>a_{3} \\
a_{1}=13, \quad a_{2}=10, \quad a_{3}=11 & 2 a_{3}>a_{2} & a_{2}+a_{3}>a_{1}
\end{array}
$$

Example: $S=\langle 4,10,13\rangle$

$$
\begin{array}{cll}
\operatorname{Ap}(S)=\{0,13,10,23\} & 2 a_{1}>a_{2} & a_{1}+a_{2}=a_{3} \\
a_{1}=13, \quad a_{2}=10, \quad a_{3}=23 & 2 a_{3}>a_{2} & a_{2}+a_{3}>a_{1}
\end{array}
$$

Faces of the Kunz cone

Question

When are numerical semigroups in (the relative interior of) the same face?
Example: $S=\langle 4,10,11,13\rangle$

$$
\begin{array}{cll}
\operatorname{Ap}(S)=\{0,13,10,11\} & 2 a_{1}>a_{2} & a_{1}+a_{2}>a_{3} \\
a_{1}=13, \quad a_{2}=10, \quad a_{3}=11 & 2 a_{3}>a_{2} & a_{2}+a_{3}>a_{1}
\end{array}
$$

Example: $S=\langle 4,10,13\rangle$

$$
\begin{array}{cll}
\operatorname{Ap}(S)=\{0,13,10,23\} & 2 a_{1}>a_{2} & a_{1}+a_{2}=a_{3} \\
a_{1}=13, \quad a_{2}=10, \quad a_{3}=23 & 2 a_{3}>a_{2} & a_{2}+a_{3}>a_{1}
\end{array}
$$

Example: $S=\langle 4,13\rangle$

$$
\begin{array}{cll}
\operatorname{Ap}(S)=\{0,13,26,39\} & 2 a_{1}=a_{2} & a_{1}+a_{2}=a_{3} \\
a_{1}=13, \quad a_{2}=26, \quad a_{3}=39 & 2 a_{3}>a_{2} & a_{2}+a_{3}>a_{1}
\end{array}
$$

Faces of the Kunz cone

Question

When are numerical semigroups in (the relative interior of) the same face?

Faces of the Kunz cone

Question

When are numerical semigroups in (the relative interior of) the same face?

Definition

The Apéry poset of S : define $a \preceq a^{\prime}$ whenever $a^{\prime}-a \in S$.

$$
\operatorname{Ap}(S)=\{0,13,10,23\}
$$

$$
\operatorname{Ap}(S)=\{0,13,26,39\}
$$

$$
\left\{\begin{array}{l}
39 \\
26 \\
13 \\
0
\end{array}\right.
$$

Faces of the Kunz polyhedron

Question

When are numerical semigroups in (the relative interior of) the same face?

Faces of the Kunz polyhedron

Question

When are numerical semigroups in (the relative interior of) the same face?

$$
\begin{array}{cc}
S=\langle 6,9,20\rangle & S^{\prime}=\langle 6,26,27\rangle \\
\operatorname{Ap}(S)=\{0,49,20,9,40,29\} & \operatorname{Ap}\left(S^{\prime}\right)=\{0,79,26,27,52,53\}
\end{array}
$$

Faces of the Kunz polyhedron

Question

When are numerical semigroups in (the relative interior of) the same face?

$$
\begin{array}{cc}
S=\langle 6,9,20\rangle & S^{\prime}=\langle 6,26,27\rangle \\
\operatorname{Ap}(S)=\{0,49,20,9,40,29\} & \operatorname{Ap}\left(S^{\prime}\right)=\{0,79,26,27,52,53\}
\end{array}
$$

Faces of the Kunz polyhedron

Question

When are numerical semigroups in (the relative interior of) the same face?

Faces of the Kunz polyhedron

Question

When are numerical semigroups in (the relative interior of) the same face?

The Kunz poset of S : use ground set \mathbb{Z}_{m} instead of $\operatorname{Ap}(S)$.

Faces of the Kunz polyhedron

Question

When are numerical semigroups in (the relative interior of) the same face?

$$
\begin{gathered}
S=\langle 6,9,20\rangle \\
\operatorname{Ap}(S)=\{0,49,20,9,40,29\}
\end{gathered}
$$

$$
\begin{gathered}
S^{\prime}=\langle 6,26,27\rangle \\
\operatorname{Ap}\left(S^{\prime}\right)=\{0,7 \underset{1}{9}, \underset{2}{26}, 27,52,53
\end{gathered}
$$

The Kunz poset of S : use ground set \mathbb{Z}_{m} instead of $\operatorname{Ap}(S)$.

Theorem (Bruns-García-Sánchez-O.-Wilburne)

Numerical semigroups lie in the relative interior of the same face of C_{m} if and only if their Kunz posets are identical.

C_{3} and C_{4}

Shared properties within a face

What properties are determined by the Kunz poset P of $S=\left\langle n_{1}, \ldots, n_{k}\right\rangle$?

Shared properties within a face

What properties are determined by the Kunz poset P of $S=\left\langle n_{1}, \ldots, n_{k}\right\rangle$?

- $k=1+\#$ atoms of P

Shared properties within a face

What properties are determined by the Kunz poset P of $S=\left\langle n_{1}, \ldots, n_{k}\right\rangle$?

- $k=1+\#$ atoms of P

Shared properties within a face

What properties are determined by the Kunz poset P of $S=\left\langle n_{1}, \ldots, n_{k}\right\rangle$?

- $k=1+\#$ atoms of P
- $\mathrm{t}(S)=\#$ maximal elements
(Cohen-Macaulay type of S)

Shared properties within a face

What properties are determined by the Kunz poset P of $S=\left\langle n_{1}, \ldots, n_{k}\right\rangle$?

- $k=1+\#$ atoms of P
- $\mathrm{t}(S)=\#$ maximal elements
(Cohen-Macaulay type of S)
- Symmetric/Gorenstein?
- Complete intersection?
- Generalized arithmetical?

Shared properties within a face

What properties are determined by the Kunz poset P of $S=\left\langle n_{1}, \ldots, n_{k}\right\rangle$?

- $k=1+\#$ atoms of P
- $\mathrm{t}(S)=\#$ maximal elements (Cohen-Macaulay type of S)
- Symmetric/Gorenstein?
- Complete intersection?
- Generalized arithmetical?
- Minimal binomial generators of the defining toric ideal of S :

$$
\begin{aligned}
I_{S}=\operatorname{ker}(\mathbb{k}[\bar{x}] & \rightarrow \mathbb{k}[t]) \\
x_{i} & \mapsto t^{n_{i}}
\end{aligned}
$$

Shared properties within a face

What properties are determined by the Kunz poset P of $S=\left\langle n_{1}, \ldots, n_{k}\right\rangle$?

- $k=1+\#$ atoms of P
- $\mathrm{t}(S)=\#$ maximal elements (Cohen-Macaulay type of S)
- Symmetric/Gorenstein?
- Complete intersection?
- Generalized arithmetical?
- Minimal binomial generators of the defining toric ideal of S :

$$
\begin{aligned}
I_{S}=\operatorname{ker}(\mathbb{k}[\bar{x}] & \rightarrow \mathbb{k}[t]) \\
x_{i} & \mapsto t^{n_{i}}
\end{aligned}
$$

Shared properties within a face

What properties are determined by the Kunz poset P of $S=\left\langle n_{1}, \ldots, n_{k}\right\rangle$?

- $k=1+\#$ atoms of P
- $\mathrm{t}(S)=\#$ maximal elements (Cohen-Macaulay type of S)
- Symmetric/Gorenstein?
- Complete intersection?
- Generalized arithmetical?

$$
\begin{aligned}
& I_{S}=\left\langle x_{1}^{2}-y^{*} x_{3},\right. \\
& x_{1} x_{3}-x_{2}^{2}, \\
& x_{2}^{2} x_{3}-y^{*}, \\
&\left.\subseteq x_{3}^{3}-y^{*} x_{1}\right\rangle \\
& \subseteq \mathbb{k}\left[y, x_{1}, x_{2}, x_{3}\right]
\end{aligned}
$$

- Minimal binomial generators of the defining toric ideal of S :

$$
\begin{aligned}
I_{S}=\operatorname{ker}(\mathbb{k}[\bar{x}] & \rightarrow \mathbb{k}[t]) \\
x_{i} & \mapsto t^{n_{i}}
\end{aligned}
$$

Shared properties within a face

What properties are determined by the Kunz poset P of $S=\left\langle n_{1}, \ldots, n_{k}\right\rangle$?

- $k=1+\#$ atoms of P
- $\mathrm{t}(S)=\#$ maximal elements (Cohen-Macaulay type of S)
- Symmetric/Gorenstein?
- Complete intersection?
- Generalized arithmetical?
- Minimal binomial generators of the defining toric ideal of S :

$$
\begin{aligned}
I_{S}=\operatorname{ker}(\mathbb{k}[\bar{x}] & \rightarrow \mathbb{k}[t]) \\
x_{i} & \mapsto t^{n_{i}}
\end{aligned}
$$

- Betti numbers of I_{S} over $\mathbb{k}[\bar{x}]$

Shared properties within a face

What properties are determined by the Kunz poset P of $S=\left\langle n_{1}, \ldots, n_{k}\right\rangle$?

- $k=1+\#$ atoms of P
- $\mathrm{t}(S)=\#$ maximal elements (Cohen-Macaulay type of S)
- Symmetric/Gorenstein?
- Complete intersection?
- Generalized arithmetical?
- Minimal binomial generators of the defining toric ideal of S :

$$
\begin{aligned}
I_{S}=\operatorname{ker}(\mathbb{k}[\bar{x}] & \rightarrow \mathbb{k}[t]) \\
x_{i} & \mapsto t^{n_{i}}
\end{aligned}
$$

- Betti numbers of I_{S} over $\mathbb{k}[\bar{x}]$
- Betti numbers of \mathbb{k} over $\mathbb{k}[\bar{x}] / I_{S}$

$$
\longleftarrow R^{36} \longleftarrow R^{108} \longleftarrow R^{324} \longleftarrow R^{972} \longleftarrow R^{2916} \longleftarrow \ldots
$$

Gluing maps and complete intersections

Fact: for $x \in C_{m}$, the coordinates of 0 's form a subgroup of \mathbb{Z}_{m} Example: $\mathbb{Z}_{10}: \quad(*, *, *, *, 0, *, *, *, *) \quad(*, 0, *, 0, *, 0, *, 0, *)$

Gluing maps and complete intersections

Fact: for $x \in C_{m}$, the coordinates of 0 's form a subgroup of \mathbb{Z}_{m} Example: $\mathbb{Z}_{10}: \quad(*, *, *, *, 0, *, *, *, *) \quad(*, 0, *, 0, *, 0, *, 0, *)$
Theorem
If $d \mid m$, then there exists a map $C_{d} \hookrightarrow C_{m}$ that induces a dimension-preserving injection on face lattices.

Gluing maps and complete intersections

Fact: for $x \in C_{m}$, the coordinates of 0 's form a subgroup of \mathbb{Z}_{m} Example: $\mathbb{Z}_{10}: \quad(*, *, *, *, 0, *, *, *, *) \quad(*, 0, *, 0, *, 0, *, 0, *)$

Theorem

If $d \mid m$, then there exists a map $C_{d} \hookrightarrow C_{m}$ that induces a dimension-preserving injection on face lattices.
Rays of $C_{2} \subseteq \mathbb{R}^{1}$:
(1)

Rays of $C_{4} \subseteq \mathbb{R}^{3}$:
Rays of $C_{12} \subseteq \mathbb{R}^{11}$:
$(1,0,1)$
$(1,0,1,0,1,0,1,0,1,0,1)$
$(1,2,1)$
$(1,2,1,0,1,2,1,0,1,2,1)$
$(1,2,3)$
$(1,2,3,0,1,2,3,0,1,2,3)$
$(3,2,1)$
$(3,2,1,0,3,2,1,0,3,2,1)$

Rays of $C_{3} \subseteq \mathbb{R}^{2}$:
$(1,2)$
$(1,2,0,1,2,0,1,2,0,1,2)$
$(2,1)$
$(2,1,0,2,1,0,2,1,0,2,1)$

Gluing maps and complete intersections

Gluing maps and complete intersections

Complete intersections come from g/uings:

$$
\begin{aligned}
S & =\langle 4,10,21\rangle \\
& =2\langle 2,5\rangle+\langle 21\rangle
\end{aligned}
$$

$$
\begin{aligned}
S & =\langle 4,10,21\rangle \\
& =2\langle 2,5\rangle+\langle 21\rangle
\end{aligned}
$$

References

目 W. Bruns, P. García-Sánchez, C. O'Neill, D. Wilburne (2020)
Wilf's conjecture in fixed multiplicity
International Journal of Algebra and Computation 30 (2020), no. 4, 861-882. (arXiv:1903.04342)
N. Kaplan, C. O'Neill, (2021)

Numerical semigroups, polyhedra, and posets I: the group cone Combinatorial Theory 1 (2021), \#19. (arXiv:1912.03741)
J. Autry, A. Ezell, T. Gomes, C. O'Neill, C. Preuss, T. Saluja, E. Torres Davila (2022) Numerical semigroups, polyhedra, and posets II: locating certain families of semigroups. Advances in Geometry 22 (2022), no. 1, 33-48. (arXiv:1912.04460)
T. Gomes, C. O'Neill, E. Torres Davila (2023)

Numerical semigroups, polyhedra, and posets III: minimal presentations and face dimension.
Electronic Journal of Combinatorics 30 (2023), no. 2, \#P2.5. (arXiv:2009.05921)
B. Braun, T. Gomes, E. Miller, C. O'Neill, and A. Sobieska (2023) Minimal free resolutions of numerical semigroup algebras via Apéry specialization under review. (arXiv:2310.03612)

References

目 W. Bruns, P. García-Sánchez, C. O'Neill, D. Wilburne (2020)
Wilf's conjecture in fixed multiplicity
International Journal of Algebra and Computation 30 (2020), no. 4, 861-882. (arXiv:1903.04342)
N. Kaplan, C. O'Neill, (2021)

Numerical semigroups, polyhedra, and posets I: the group cone Combinatorial Theory 1 (2021), \#19. (arXiv:1912.03741)
J. Autry, A. Ezell, T. Gomes, C. O'Neill, C. Preuss, T. Saluja, E. Torres Davila (2022) Numerical semigroups, polyhedra, and posets II: locating certain families of semigroups. Advances in Geometry 22 (2022), no. 1, 33-48. (arXiv:1912.04460)
T. Gomes, C. O'Neill, E. Torres Davila (2023)

Numerical semigroups, polyhedra, and posets III: minimal presentations and face dimension.
Electronic Journal of Combinatorics 30 (2023), no. 2, \#P2.5. (arXiv:2009.05921)
B. Braun, T. Gomes, E. Miller, C. O'Neill, and A. Sobieska (2023) Minimal free resolutions of numerical semigroup algebras via Apéry specialization under review. (arXiv:2310.03612)

Thanks!

