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Joint with (i) Winfred Bruns, Pedro Garćıa-Sánchez, Dane Wilbourne; (ii) Nathan Kaplan;
(iii) J. Autry, *A. Ezell, *T. Gomes, *C. Preuss, *T. Saluja, *E. Torres Davila

(iv) B. Braun, T. Gomes, E. Miller, C. O’Neill, and A. Sobieska

* = undergraduate student

Slides available: https://cdoneill.sdsu.edu/

January 3, 2024

Christopher O’Neill (SDSU) Classifying numerical semigroups using polyhedral geometryJanuary 3, 2024 1 / 15

https://cdoneill.sdsu.edu/


Numerical semigroups

Definition
A numerical semigroup S ⊆ Z≥0: closed under addition, |Z≥0 \ S| <∞.

Example:

McN = ⟨6, 9, 20⟩ =
{

0, 6, 9, 12, 15, 18, 20, 21, 24, . . .
. . . , 36, 38, 39, 40, 41, 42, 44→

}

Multiplicity: m(S) = smallest nonzero element
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Apéry sets

Fix a numerical semigroup S with m(S) = m.

Definition
The Apéry set of S is

Ap(S) = {a ∈ S : a −m /∈ S}

If S = ⟨6, 9, 20⟩, then
Ap(S) = {0, 49, 20, 9, 40, 29}

For 2 mod 6: {2, 8, 14, 20, 26, 32, . . .} ∩ S = {20, 26, 32, . . .}
For 3 mod 6: {3, 9, 15, 21, . . .} ∩ S = {9, 15, 21, . . .}
For 4 mod 6: {4, 10, 16, 22, . . .} ∩ S = {40, 46, 52, . . .}

Observations:
The elements of Ap(S) are distinct modulo m
|Ap(S)| = m
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Apéry sets

Is A = {0, 11, 7, 23, 19} the Apéry set of some numerical semigroup?

m = |A| = 5, a1 = 11, a2 = 7, a3 = 23, a4 = 19
but a1 + a2 ≡ 3 mod 5 and a1 + a2 < a3.

Is {0, 13, 14, 27, 10, 11} the Apéry set of some numerical semigroup?
m = |A| = 6, a1 = 13, a2 = 14, a3 = 27, a4 = 10, a5 = 11

but a4 + a5 ≡ 3 mod 6 and a4 + a5 < a3.

Theorem
If A = {0, a1, . . . , am−1} with each ai > m and ai ≡ i mod m, then
there exists a numerical semigroup S with Ap(S) = A if and only if

ai + aj ≥ ai+j whenever i + j ̸= 0.

Big idea: the inequalities “ai + aj ≥ ai+j” to define a cone Cm.
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Kunz cone

Definition
The Kunz cone Cm ⊆ Rm−1 is a pointed cone with defining inequalities

ai + aj ≥ ai+j whenever i + j ̸= 0.

{S ⊆ Z≥0 : m(S) = m} −→ Cm
Ap(S) = {0, a1, . . . , am−1} 7−→ (a1, . . . , am−1)

Example: C3
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ai + aj ≥ ai+j whenever i + j ̸= 0.

{S ⊆ Z≥0 : m(S) = m} −→ Cm
Ap(S) = {0, a1, . . . , am−1} 7−→ (a1, . . . , am−1)

Example: C3

S = ⟨3, 5, 7⟩
Ap(S) = {0, 7, 5}
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Kunz cone

Definition
The Kunz cone Cm ⊆ Rm−1 is a pointed cone with defining inequalities

ai + aj ≥ ai+j whenever i + j ̸= 0.

{S ⊆ Z≥0 : m(S) = m} −→ Cm
Ap(S) = {0, a1, . . . , am−1} 7−→ (a1, . . . , am−1)

Example: C3

S = ⟨3, 5, 7⟩
Ap(S) = {0, 7, 5}

S = ⟨3, 4⟩
Ap(S) = {0, 4, 8}
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Kunz cone

Definition
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Faces of the Kunz cone

Question
When are numerical semigroups in (the relative interior of) the same face?

Big picture: “moduli space” approach for studying XYZ ’s
Define a space with XYZ ’s as points
Small changes to an XYZ ⇝ small movements in space
Let geometric/topological structure inform study of XYZ ’s

Basic example: GLn(R) ↪→ Rn2

More interesting example: Cm
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Faces of the Kunz cone

Question
When are numerical semigroups in (the relative interior of) the same face?

Example: S = ⟨4, 10, 11, 13⟩
Ap(S) = {0, 13, 10, 11}

a1 = 13, a2 = 10, a3 = 11
2a1 > a2 a1 + a2 > a3
2a3 > a2 a2 + a3 > a1

Example: S = ⟨4, 10, 13⟩
Ap(S) = {0, 13, 10, 23}

a1 = 13, a2 = 10, a3 = 23
2a1 > a2 a1 + a2 = a3
2a3 > a2 a2 + a3 > a1

Example: S = ⟨4, 13⟩
Ap(S) = {0, 13, 26, 39}

a1 = 13, a2 = 26, a3 = 39
2a1 = a2 a1 + a2 = a3
2a3 > a2 a2 + a3 > a1
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Faces of the Kunz cone

Question
When are numerical semigroups in (the relative interior of) the same face?

Definition
The Apéry poset of S: define a ⪯ a′ whenever a′ − a ∈ S.

Ap(S) = {0, 13, 10, 23} Ap(S) = {0, 13, 26, 39}
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Faces of the Kunz polyhedron
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C3 and C4

Christopher O’Neill (SDSU) Classifying numerical semigroups using polyhedral geometryJanuary 3, 2024 11 / 15



Shared properties within a face
What properties are determined by the Kunz poset P of S = ⟨n1, . . . , nk⟩?

k = 1 + # atoms of P
t(S) = # maximal elements
(Cohen-Macaulay type of S)
Symmetric/Gorenstein?
Complete intersection?
Generalized arithmetical?

Minimal binomial generators of
the defining toric ideal of S:

IS = ker
(
k[x ]→ k[t]

)
xi 7→ tni

Betti numbers of IS over k[x ]
Betti numbers of k over k[x ]/IS
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IS = ⟨ x2
1 − y∗x3, x1x3 − x2

2 ,
x2

2 x3 − y∗, x3
3 − y∗x1 ⟩

⊆ k[y , x1, x2, x3]
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Shared properties within a face
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t(S) = # maximal elements
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Symmetric/Gorenstein?
Complete intersection?
Generalized arithmetical?

Minimal binomial generators of
the defining toric ideal of S:

IS = ker
(
k[x ]→ k[t]

)
xi 7→ tni

Betti numbers of IS over k[x ]

Betti numbers of k over k[x ]/IS

1,12 1,13 2,12 2,23 3,13 3,23 2,13 3,12



1,1 −x2 −x3 y∗ y∗

2,2 −y∗ x1 −x3 y∗

3,3 x1 x2 −y∗

2,1 x1 −x2 y∗ y∗ −x3
3,1 y∗ x1 −x3 −y∗ −x2
3,2 −y∗ −y∗ x2 −x3 x1 x1

1,[3] 2,[3] 3,[3]



1,12 x3 −y∗

1,13 −x2 y∗

2,12 x3 −y∗

2,23 −y∗ x1
3,13 y∗ −x2
3,23 −y∗ x1
2,13 x1 −x2
3,12 −x1 x3

0← R ← R6←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−R8←−−−−−−−−−−−−−−−R3← 0

Christopher O’Neill (SDSU) Classifying numerical semigroups using polyhedral geometryJanuary 3, 2024 12 / 15



Shared properties within a face
What properties are determined by the Kunz poset P of S = ⟨n1, . . . , nk⟩?

k = 1 + # atoms of P
t(S) = # maximal elements
(Cohen-Macaulay type of S)
Symmetric/Gorenstein?
Complete intersection?
Generalized arithmetical?

Minimal binomial generators of
the defining toric ideal of S:

IS = ker
(
k[x ]→ k[t]

)
xi 7→ tni

Betti numbers of IS over k[x ]
Betti numbers of k over k[x ]/IS

0 1 2 3
[ ]∅ y x1 x2 x3

01 02 03 11 12 13 21 22 23 31 32 33


0 x1 x2 x3 −y∗ −y∗ −y∗

1 −y x1 x2 x3 −y∗ −y∗

2 −y −y∗ x1 x2 x3 −y∗

3 −y −y∗ −y∗ x1 x2 x3
0← R ←−−−−−−−−−−−− R4←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− R12

←−−−−−− R36←−−−−−− R108←−−−−−− R324←−−−−−− R972←−−−−−− R2916←−−−−−− · · ·
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Gluing maps and complete intersections
Fact: for x ∈ Cm, the coordinates of 0’s form a subgroup of Zm
Example: Z10: (∗, ∗, ∗, ∗, 0, ∗, ∗, ∗, ∗) (∗, 0, ∗, 0, ∗, 0, ∗, 0, ∗)

Theorem
If d | m, then there exists a map Cd ↪→ Cm that induces a
dimension-preserving injection on face lattices.

Rays of C2 ⊆ R1:
(1)

Rays of C4 ⊆ R3:
(1, 0, 1)
(1, 2, 1)
(1, 2, 3)
(3, 2, 1)

Rays of C3 ⊆ R2:
(1, 2)
(2, 1)

Rays of C12 ⊆ R11:
(1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1)
(1, 2, 1, 0, 1, 2, 1, 0, 1, 2, 1)
(1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3)
(3, 2, 1, 0, 3, 2, 1, 0, 3, 2, 1)......
(1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2)
(2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1)...

Christopher O’Neill (SDSU) Classifying numerical semigroups using polyhedral geometryJanuary 3, 2024 13 / 15



Gluing maps and complete intersections
Fact: for x ∈ Cm, the coordinates of 0’s form a subgroup of Zm
Example: Z10: (∗, ∗, ∗, ∗, 0, ∗, ∗, ∗, ∗) (∗, 0, ∗, 0, ∗, 0, ∗, 0, ∗)

Theorem
If d | m, then there exists a map Cd ↪→ Cm that induces a
dimension-preserving injection on face lattices.

Rays of C2 ⊆ R1:
(1)

Rays of C4 ⊆ R3:
(1, 0, 1)
(1, 2, 1)
(1, 2, 3)
(3, 2, 1)

Rays of C3 ⊆ R2:
(1, 2)
(2, 1)

Rays of C12 ⊆ R11:
(1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1)
(1, 2, 1, 0, 1, 2, 1, 0, 1, 2, 1)
(1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3)
(3, 2, 1, 0, 3, 2, 1, 0, 3, 2, 1)......
(1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2)
(2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1)...

Christopher O’Neill (SDSU) Classifying numerical semigroups using polyhedral geometryJanuary 3, 2024 13 / 15



Gluing maps and complete intersections
Fact: for x ∈ Cm, the coordinates of 0’s form a subgroup of Zm
Example: Z10: (∗, ∗, ∗, ∗, 0, ∗, ∗, ∗, ∗) (∗, 0, ∗, 0, ∗, 0, ∗, 0, ∗)

Theorem
If d | m, then there exists a map Cd ↪→ Cm that induces a
dimension-preserving injection on face lattices.

Rays of C2 ⊆ R1:
(1)

Rays of C4 ⊆ R3:
(1, 0, 1)
(1, 2, 1)
(1, 2, 3)
(3, 2, 1)

Rays of C3 ⊆ R2:
(1, 2)
(2, 1)

Rays of C12 ⊆ R11:
(1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1)
(1, 2, 1, 0, 1, 2, 1, 0, 1, 2, 1)
(1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3)
(3, 2, 1, 0, 3, 2, 1, 0, 3, 2, 1)......
(1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2)
(2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1)...

Christopher O’Neill (SDSU) Classifying numerical semigroups using polyhedral geometryJanuary 3, 2024 13 / 15



Gluing maps and complete intersections

Complete intersections come from gluings:

S = ⟨4, 10, 21⟩
= 2⟨2, 5⟩+ ⟨21⟩

S = ⟨4, 10, 21⟩
= 2⟨2, 5⟩+ ⟨21⟩
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