Classifying numerical semigroups using polyhedral geometry

Christopher O'Neill

San Diego State University

cdoneill@sdsu.edu

Joint with (i) Winfred Bruns, Pedro García-Sánchez, Dane Wilbourne; (ii) Nathan Kaplan;
(iii) J. Autry, *A. Ezell, *T. Gomes, *C. Preuss, *T. Saluja, *E. Torres Davila
(iv) B. Braun, T. Gomes, E. Miller, C. O'Neill, and A. Sobieska

* = undergraduate student

Slides available: https://cdoneill.sdsu.edu/

March 12, 2024

A numerical semigroup $S \subseteq \mathbb{Z}_{\geq 0}$: closed under addition, $|\mathbb{Z}_{\geq 0} \setminus S| < \infty$.

A numerical semigroup $S \subseteq \mathbb{Z}_{\geq 0}$: closed under addition, $|\mathbb{Z}_{\geq 0} \setminus S| < \infty$.

Example:

$$McN = \langle 6, 9, 20 \rangle = \begin{cases} 0, 6, 9, 12, 15, 18, 20, 21, 24, \dots \\ \dots, 36, 38, 39, 40, 41, 42, 44 \rightarrow \end{cases}$$

A numerical semigroup $S \subseteq \mathbb{Z}_{\geq 0}$: closed under addition, $|\mathbb{Z}_{\geq 0} \setminus S| < \infty$.

Example: "McNugget Semigroup"

$$\mathit{McN} = \langle 6, 9, 20
angle = \left\{ egin{array}{c} 0, 6, 9, 12, 15, 18, 20, 21, 24, \ldots \ \ldots, 36, 38, 39, 40, 41, 42, 44
ightarrow
ight.$$

A numerical semigroup $S \subseteq \mathbb{Z}_{\geq 0}$: closed under addition, $|\mathbb{Z}_{\geq 0} \setminus S| < \infty$.

Example: "McNugget Semigroup"

$$McN = \langle 6, 9, 20 \rangle = \begin{cases} 0, 6, 9, 12, 15, 18, 20, 21, 24, \dots \\ \dots, 36, 38, 39, 40, 41, 42, 44 \end{cases}$$

Example: $S = \langle 6, 9, 18, 20, 32 \rangle$

A numerical semigroup $S \subseteq \mathbb{Z}_{\geq 0}$: closed under addition, $|\mathbb{Z}_{\geq 0} \setminus S| < \infty$.

Example: "McNugget Semigroup"

$$McN = \langle 6, 9, 20 \rangle = \begin{cases} 0, 6, 9, 12, 15, 18, 20, 21, 24, \dots \\ \dots, 36, 38, 39, 40, 41, 42, 44 \end{pmatrix}$$

Example: $S = \langle 6, 9, \frac{18}{20}, \frac{32}{20} \rangle$

A numerical semigroup $S \subseteq \mathbb{Z}_{\geq 0}$: closed under addition, $|\mathbb{Z}_{\geq 0} \setminus S| < \infty$.

Example: "McNugget Semigroup"

$$McN = \langle 6, 9, 20 \rangle = \begin{cases} 0, 6, 9, 12, 15, 18, 20, 21, 24, \dots \\ \dots, 36, 38, 39, 40, 41, 42, 44 \rightarrow \end{cases}$$

Example: $S = \langle 6, 9, \frac{18}{20}, \frac{32}{20} \rangle = McN$

A numerical semigroup $S \subseteq \mathbb{Z}_{\geq 0}$: closed under addition, $|\mathbb{Z}_{\geq 0} \setminus S| < \infty$.

Example: "McNugget Semigroup"

$$McN = \langle 6, 9, 20 \rangle = \begin{cases} 0, 6, 9, 12, 15, 18, 20, 21, 24, \dots \\ \dots, 36, 38, 39, 40, 41, 42, 44 \rightarrow \end{cases}$$

Example: $S = \langle 6, 9, \frac{18}{20}, \frac{32}{20} \rangle = McN$

Fact

Every numerical semigroup has a unique minimal generating set.

A numerical semigroup $S \subseteq \mathbb{Z}_{\geq 0}$: closed under addition, $|\mathbb{Z}_{\geq 0} \setminus S| < \infty$.

Example: "McNugget Semigroup"

$$McN = \langle 6, 9, 20
angle = \left\{ egin{array}{c} 0, 6, 9, 12, 15, 18, 20, 21, 24, \ldots \ \ldots, 36, 38, 39, 40, 41, 42, 44
ightarrow
ight.$$

Example: $S = \langle 6, 9, \frac{18}{20}, \frac{32}{20} \rangle = McN$

Fact

Every numerical semigroup has a unique minimal generating set.

Multiplicity: m(S) =smallest nonzero element

Fix a numerical semigroup S with m(S) = m.

Fix a numerical semigroup S with m(S) = m.

Definition

The Apéry set of S is

$$\mathsf{Ap}(S) = \{a \in S : a - m \notin S\}$$

Fix a numerical semigroup S with m(S) = m.

Definition

The Apéry set of S is

$$\mathsf{Ap}(S) = \{a \in S : a - m \notin S\}$$

If $S = \langle 6, 9, 20 \rangle$, then

$$\mathsf{Ap}(S) = \{0, 49, 20, 9, 40, 29\}$$

Fix a numerical semigroup S with m(S) = m.

Definition

The Apéry set of S is

$$\mathsf{Ap}(S) = \{a \in S : a - m \notin S\}$$

If $S = \langle 6, 9, 20 \rangle$, then

$$\mathsf{Ap}(S) = \{0, 49, 20, 9, 40, 29\}$$

For 2 mod 6: $\{2, 8, 14, 20, 26, 32, \ldots\} \cap S = \{20, 26, 32, \ldots\}$ For 3 mod 6: $\{3, 9, 15, 21, \ldots\} \cap S = \{9, 15, 21, \ldots\}$ For 4 mod 6: $\{4, 10, 16, 22, \ldots\} \cap S = \{40, 46, 52, \ldots\}$

Fix a numerical semigroup S with m(S) = m.

Definition

The Apéry set of S is

$$\mathsf{Ap}(S) = \{a \in S : a - m \notin S\}$$

If $S = \langle 6, 9, 20 \rangle$, then

$$\mathsf{Ap}(S) = \{0, 49, 20, 9, 40, 29\}$$

For 2 mod 6: $\{2, 8, 14, 20, 26, 32, \ldots\} \cap S = \{20, 26, 32, \ldots\}$ For 3 mod 6: $\{3, 9, 15, 21, \ldots\} \cap S = \{9, 15, 21, \ldots\}$ For 4 mod 6: $\{4, 10, 16, 22, \ldots\} \cap S = \{40, 46, 52, \ldots\}$

Fix a numerical semigroup S with m(S) = m.

Definition

The Apéry set of S is

$$\mathsf{Ap}(S) = \{a \in S : a - m \notin S\}$$

If $S = \langle 6, 9, 20 \rangle$, then

$$\mathsf{Ap}(S) = \{0, 49, 20, 9, 40, 29\}$$

For 2 mod 6: $\{2, 8, 14, 20, 26, 32, \ldots\} \cap S = \{20, 26, 32, \ldots\}$ For 3 mod 6: $\{3, 9, 15, 21, \ldots\} \cap S = \{9, 15, 21, \ldots\}$ For 4 mod 6: $\{4, 10, 16, 22, \ldots\} \cap S = \{40, 46, 52, \ldots\}$

Fix a numerical semigroup S with m(S) = m.

Definition

The Apéry set of S is

$$\mathsf{Ap}(S) = \{a \in S : a - m \notin S\}$$

If $S = \langle 6, 9, 20 \rangle$, then

$$\mathsf{Ap}(S) = \{0, 49, 20, 9, 40, 29\}$$

For 2 mod 6: $\{2, 8, 14, 20, 26, 32, \ldots\} \cap S = \{20, 26, 32, \ldots\}$ For 3 mod 6: $\{3, 9, 15, 21, \ldots\} \cap S = \{9, 15, 21, \ldots\}$ For 4 mod 6: $\{4, 10, 16, 22, \ldots\} \cap S = \{40, 46, 52, \ldots\}$

Observations:

Fix a numerical semigroup S with m(S) = m.

Definition

The Apéry set of S is

$$\mathsf{Ap}(S) = \{a \in S : a - m \notin S\}$$

If $S = \langle 6, 9, 20 \rangle$, then

$$\mathsf{Ap}(S) = \{0, 49, 20, 9, 40, 29\}$$

For 2 mod 6: $\{2, 8, 14, 20, 26, 32, \ldots\} \cap S = \{20, 26, 32, \ldots\}$ For 3 mod 6: $\{3, 9, 15, 21, \ldots\} \cap S = \{9, 15, 21, \ldots\}$ For 4 mod 6: $\{4, 10, 16, 22, \ldots\} \cap S = \{40, 46, 52, \ldots\}$

Observations:

• The elements of Ap(S) are distinct modulo m

Fix a numerical semigroup S with m(S) = m.

Definition

The Apéry set of S is

$$\mathsf{Ap}(S) = \{a \in S : a - m \notin S\}$$

If $S = \langle 6, 9, 20 \rangle$, then

$$\mathsf{Ap}(S) = \{0, 49, 20, 9, 40, 29\}$$

For 2 mod 6: $\{2, 8, 14, 20, 26, 32, \ldots\} \cap S = \{20, 26, 32, \ldots\}$ For 3 mod 6: $\{3, 9, 15, 21, \ldots\} \cap S = \{9, 15, 21, \ldots\}$ For 4 mod 6: $\{4, 10, 16, 22, \ldots\} \cap S = \{40, 46, 52, \ldots\}$

Observations:

- The elements of Ap(S) are distinct modulo m
- $|\operatorname{Ap}(S)| = m$

Fix a numerical semigroup S with m(S) = m.

Definition

The Apéry set of S is

$$\mathsf{Ap}(S) = \{a \in S : a - m \notin S\}$$

Fix a numerical semigroup S with m(S) = m.

Definition

The Apéry set of S is

$$\mathsf{Ap}(S) = \{a \in S : a - m \notin S\}$$

Many things can be easily recovered from the Apéry set.

Fix a numerical semigroup S with m(S) = m.

Definition

The Apéry set of S is

$$\mathsf{Ap}(S) = \{a \in S : a - m \notin S\}$$

Many things can be easily recovered from the Apéry set.

• Fast membership test:

 $n \in S$ if $n \ge a$ for $a \in Ap(S)$ with $a \equiv n \mod m$

Fix a numerical semigroup S with m(S) = m.

Definition

The Apéry set of S is

$$\mathsf{Ap}(S) = \{a \in S : a - m \notin S\}$$

Many things can be easily recovered from the Apéry set.

• Fast membership test:

 $n \in S$ if $n \ge a$ for $a \in Ap(S)$ with $a \equiv n \mod m$

• Frobenius number: F(S) = max(Ap(S)) - m

Fix a numerical semigroup S with m(S) = m.

Definition

The Apéry set of S is

$$\mathsf{Ap}(S) = \{a \in S : a - m \notin S\}$$

Many things can be easily recovered from the Apéry set.

• Fast membership test:

 $n \in S$ if $n \ge a$ for $a \in Ap(S)$ with $a \equiv n \mod m$

- Frobenius number: F(S) = max(Ap(S)) m
- Number of gaps (the genus):

$$g(S) = |\mathbb{N} \setminus S| = \sum_{a \in Ap(S)} \left\lfloor \frac{a}{m} \right\rfloor$$

. .

Fix a numerical semigroup S with m(S) = m.

Definition

The Apéry set of S is

$$\mathsf{Ap}(S) = \{a \in S : a - m \notin S\}$$

Many things can be easily recovered from the Apéry set.

• Fast membership test:

 $n \in S$ if $n \ge a$ for $a \in Ap(S)$ with $a \equiv n \mod m$

• Frobenius number: F(S) = max(Ap(S)) - m

Number of gaps (the genus):

$$\mathsf{g}(S) = |\mathbb{N} \setminus S| = \sum_{a \in \mathsf{Ap}(S)} \left\lfloor \frac{a}{m} \right\rfloor$$

The Apéry set is a "one stop shop" for computation.

Is $A = \{0, 11, 7, 23, 19\}$ the Apéry set of some numerical semigroup?

Is $A = \{0, 11, 7, 23, 19\}$ the Apéry set of some numerical semigroup? m = |A| = 5, $a_1 = 11$, $a_2 = 7$, $a_3 = 23$, $a_4 = 19$

Is $\{0, 13, 14, 27, 10, 11\}$ the Apéry set of some numerical semigroup? m = |A| = 6, $a_1 = 13$, $a_2 = 14$, $a_3 = 27$, $a_4 = 10$, $a_5 = 11$

Is $\{0, 13, 14, 27, 10, 11\}$ the Apéry set of some numerical semigroup? m = |A| = 6, $a_1 = 13$, $a_2 = 14$, $a_3 = 27$, $a_4 = 10$, $a_5 = 11$ but $a_4 + a_5 \equiv 3 \mod 6$ and $a_4 + a_5 < a_3$.

Is $\{0, 13, 14, 27, 10, 11\}$ the Apéry set of some numerical semigroup? m = |A| = 6, $a_1 = 13$, $a_2 = 14$, $a_3 = 27$, $a_4 = 10$, $a_5 = 11$ but $a_4 + a_5 \equiv 3 \mod 6$ and $a_4 + a_5 < a_3$.

Theorem

If $A = \{0, a_1, \dots, a_{m-1}\}$ with each $a_i > m$ and $a_i \equiv i \mod m$, then there exists a numerical semigroup S with Ap(S) = A if and only if $a_i + a_j \ge a_{i+j}$ whenever $i + j \ne 0$.

Is $\{0, 13, 14, 27, 10, 11\}$ the Apéry set of some numerical semigroup? m = |A| = 6, $a_1 = 13$, $a_2 = 14$, $a_3 = 27$, $a_4 = 10$, $a_5 = 11$ but $a_4 + a_5 \equiv 3 \mod 6$ and $a_4 + a_5 < a_3$.

Theorem

If $A = \{0, a_1, \dots, a_{m-1}\}$ with each $a_i > m$ and $a_i \equiv i \mod m$, then there exists a numerical semigroup S with Ap(S) = A if and only if $a_i + a_j \ge a_{i+j}$ whenever $i + j \ne 0$.

Big idea: the inequalities " $a_i + a_j \ge a_{i+j}$ " to define a **cone** C_m .

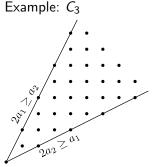
Definition

The Kunz cone $C_m \subseteq \mathbb{R}^{m-1}$ is a pointed cone with defining inequalities $a_i + a_j \ge a_{i+j}$ whenever $i + j \ne 0$.

$$\{S \subseteq \mathbb{Z}_{\geq 0} : \mathsf{m}(S) = m\} \longrightarrow C_m$$
$$\mathsf{Ap}(S) = \{0, a_1, \dots, a_{m-1}\} \longmapsto (a_1, \dots, a_{m-1})$$

Definition

The Kunz cone $C_m \subseteq \mathbb{R}^{m-1}$ is a pointed cone with defining inequalities $a_i + a_j \ge a_{i+j}$ whenever $i+j \ne 0$. $\{S \subseteq \mathbb{Z}_{\ge 0} : m(S) = m\} \longrightarrow C_m$ $Ap(S) = \{0, a_1, \dots, a_{m-1}\} \longmapsto (a_1, \dots, a_{m-1})$



Definition

The Kunz cone $C_m \subseteq \mathbb{R}^{m-1}$ is a pointed cone with defining inequalities $a_i + a_j \ge a_{i+j}$ whenever $i + j \ne 0$. $\{S \subseteq \mathbb{Z}_{\geq 0} : \mathsf{m}(S) = m\} \longrightarrow C_m$ $\mathsf{Ap}(S) = \{0, a_1, \dots, a_{m-1}\} \longmapsto (a_1, \dots, a_{m-1})$ Example: C_3 $S = \langle 3, 5, 7 \rangle$ $Ap(S) = \{0, 7, 5\}$ 50' 202 2 01

Definition

The Kunz cone $C_m \subseteq \mathbb{R}^{m-1}$ is a pointed cone with defining inequalities $a_i + a_i \ge a_{i+i}$ whenever $i + j \ne 0$. $\{S \subseteq \mathbb{Z}_{\geq 0} : \mathsf{m}(S) = m\} \longrightarrow C_m$ $Ap(S) = \{\overline{0}, a_1, \dots, a_{m-1}\} \mapsto (a_1, \dots, a_{m-1})$ Example: C_3 $S = \langle 3, 5, 7 \rangle$ $Ap(S) = \{0, 7, 5\}$ $S = \langle 3, 4 \rangle$ $Ap(S) = \{0, 4, 8\}$ 50' 202 2 01

Definition

The Kunz cone $C_m \subseteq \mathbb{R}^{m-1}$ is a pointed cone with defining inequalities $a_i + a_j \ge a_{i+j}$ whenever $i + j \ne 0$.

$$\{S \subseteq \mathbb{Z}_{\geq 0} : \mathsf{m}(S) = m\} \longrightarrow C_m$$
$$\mathsf{Ap}(S) = \{0, a_1, \dots, a_{m-1}\} \longmapsto (a_1, \dots, a_{m-1})$$

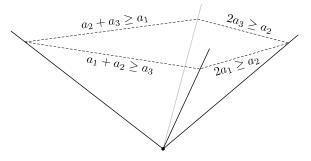
Kunz cone

Definition

The Kunz cone $C_m \subseteq \mathbb{R}^{m-1}$ is a pointed cone with defining inequalities $a_i + a_j \ge a_{i+j}$ whenever $i + j \ne 0$.

$$\begin{cases} S \subseteq \mathbb{Z}_{\geq 0} : \mathsf{m}(S) = m \} & \longrightarrow & C_m \\ \mathsf{Ap}(S) = \{0, a_1, \dots, a_{m-1}\} & \longmapsto & (a_1, \dots, a_{m-1}) \end{cases}$$

Example: C₄



Question

Question

When are numerical semigroups in (the relative interior of) the same face?

Big picture: "moduli space" approach for studying XYZ's

- Define a space with XYZ's as points
 Small changes to an XYZ → small movements in space
- Let geometric/topological structure inform study of XYZ's

Question

When are numerical semigroups in (the relative interior of) the same face?

Big picture: "moduli space" approach for studying XYZ's

- Define a space with XYZ's as points
 Small changes to an XYZ → small movements in space
- Let geometric/topological structure inform study of XYZ's

Basic example: $\operatorname{GL}_n(\mathbb{R}) \hookrightarrow \mathbb{R}^{n^2}$

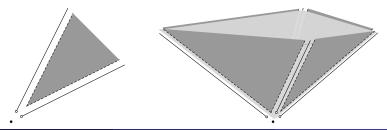
Question

When are numerical semigroups in (the relative interior of) the same face?

Big picture: "moduli space" approach for studying XYZ's

- Define a space with XYZ's as points
 Small changes to an XYZ → small movements in space
- Let geometric/topological structure inform study of XYZ's

Basic example: $GL_n(\mathbb{R}) \hookrightarrow \mathbb{R}^{n^2}$ More interesting example: C_m



Question

Question

When are numerical semigroups in (the relative interior of) the same face?

Motivation: $S \in Int(C_m)$ if and only if S has max embedding dimension

Question

When are numerical semigroups in (the relative interior of) the same face?

Motivation: $S \in Int(C_m)$ if and only if S has max embedding dimension If $S = \langle n_1, \dots, n_k \rangle$, then $n_i \not\equiv n_i \mod n_1 \implies k \le m(S)$

Question

When are numerical semigroups in (the relative interior of) the same face?

Motivation: $S \in Int(C_m)$ if and only if S has max embedding dimension If $S = \langle n_1, \ldots, n_k \rangle$, then $n_i \not\equiv n_j \mod n_1 \implies k \leq m(S)$

If k = m(S), then S has max embedding dimension

Question

When are numerical semigroups in (the relative interior of) the same face?

Motivation: $S \in Int(C_m)$ if and only if S has max embedding dimension If $S = \langle n_1, \dots, n_k \rangle$, then $n_i \not\equiv n_j \mod n_1 \implies k \le m(S)$ If k = m(S), then S has max embedding dimension $S = \langle m, a_1, \dots, a_{m-1} \rangle$ where $Ap(S) = \{0, a_1, \dots, a_{m-1}\}$

Question

When are numerical semigroups in (the relative interior of) the same face?

Motivation: $S \in Int(C_m)$ if and only if S has max embedding dimension If $S = \langle n_1, \dots, n_k \rangle$, then $n_i \not\equiv n_j \mod n_1 \implies k \le m(S)$ If k = m(S), then S has max embedding dimension $S = \langle m, a_1, \dots, a_{m-1} \rangle$ where $Ap(S) = \{0, a_1, \dots, a_{m-1}\}$

Geometrically: "most" numerical semigroups with m(S) = m are MED

Question

When are numerical semigroups in (the relative interior of) the same face?

Motivation: $S \in Int(C_m)$ if and only if S has max embedding dimension If $S = \langle n_1, \dots, n_k \rangle$, then $n_i \neq n_j \mod n_1 \implies k \leq m(S)$ If k = m(S), then S has max embedding dimension $S = \langle m, a_1, \dots, a_{m-1} \rangle$ where $Ap(S) = \{0, a_1, \dots, a_{m-1}\}$ Geometrically: "most" numerical semigroups with m(S) = m are MED What about the other faces?

9/27

Question

Question

Example:
$$S = \langle 4, 10, 11, 13 \rangle$$

 $Ap(S) = \{0, 13, 10, 11\}$
 $a_1 = 13, a_2 = 10, a_3 = 11$
 $2a_1 > a_2$
 $a_1 + a_2 > a_3$
 $a_2 + a_3 > a_1$

Question

Example:
$$S = \langle 4, 10, 11, 13 \rangle$$

 $Ap(S) = \{0, 13, 10, 11\}$
 $a_1 = 13, a_2 = 10, a_3 = 11$
Example: $S = \langle 4, 10, 13 \rangle$
 $Ap(S) = \{0, 13, 10, 23\}$
 $a_1 = 13, a_2 = 10, a_3 = 23$
 $2a_1 > a_2$
 $2a_1 > a_2$
 $a_1 + a_2 > a_3$
 $2a_1 > a_2$
 $a_1 + a_2 = a_3$
 $a_1 + a_2 = a_3$
 $a_2 + a_3 > a_1$

Question

When are numerical semigroups in (the relative interior of) the same face?

Example:
$$S = \langle 4, 10, 11, 13 \rangle$$

Ap $(S) = \{0, 13, 10, 11\}$
 $a_1 = 13, a_2 = 10, a_3 = 11$
Example: $S = \langle 4, 10, 13 \rangle$
Ap $(S) = \{0, 13, 10, 23\}$
 $a_1 = 13, a_2 = 10, a_3 = 23$
Example: $S = \langle 4, 13 \rangle$
Ap $(S) = \{0, 13, 26, 39\}$
 $a_1 = 13, a_2 = 26, a_3 = 39$
 $2a_1 > a_2$
 $a_1 + a_2 = a_3$
 $a_2 + a_3 > a_1$
 $2a_1 > a_2$
 $a_1 + a_2 = a_3$
 $a_2 + a_3 > a_1$

10 / 27

Question

Question

When are numerical semigroups in (the relative interior of) the same face?

Definition

The *Apéry poset* of *S*: define $a \leq a'$ whenever $a' - a \in S$.

Question

Question

$$S = \langle 6, 9, 20 \rangle$$

Ap(S) = {0,49,20, 9,40,29}

$$S' = \langle 6, 26, 27
angle$$

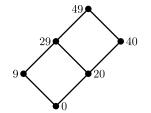
Ap $(S') = \{0, 79, 26, 27, 52, 53\}$

Question

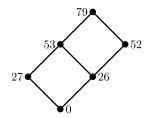
When are numerical semigroups in (the relative interior of) the same face?

$$S = \langle 6, 9, 20
angle$$

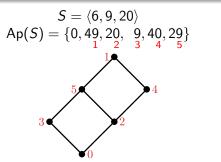
Ap $(S) = \{0, 49, 20, 9, 40, 29\}$

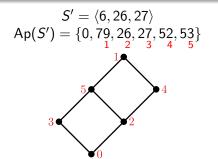


 $\begin{array}{l} S' = \langle 6, 26, 27 \rangle \\ \mathsf{Ap}(S') = \{0, 79, 26, 27, 52, 53\} \end{array}$



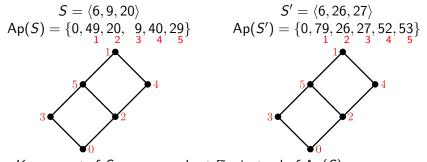
Question





Question

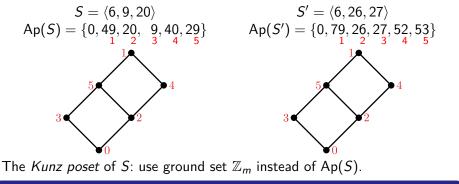
When are numerical semigroups in (the relative interior of) the same face?



The *Kunz poset* of *S*: use ground set \mathbb{Z}_m instead of Ap(*S*).

Question

When are numerical semigroups in (the relative interior of) the same face?

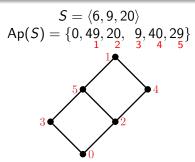


Theorem (Bruns–García-Sánchez–O.–Wilburne)

Numerical semigroups lie in the relative interior of the same face of C_m if and only if their Kunz posets are identical.

Question

When are numerical semigroups in (the relative interior of) the same face?



The *Kunz poset* of *S*: use ground set \mathbb{Z}_m instead of Ap(*S*).

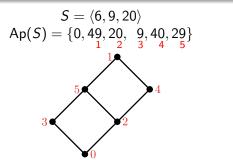
Theorem (Bruns–García-Sánchez–O.–Wilburne)

Numerical semigroups lie in the relative interior of the same face of C_m if and only if their Kunz posets are identical.

Christopher O'Neill (SDSU) Classifying numerical semigroups using polyhe March 12, 2024

Question

When are numerical semigroups in (the relative interior of) the same face?



Defining facet equations:

13 / 27

$$2a_2 = a_4$$

$$a_2 + a_3 = a_5$$

$$a_2 + a_5 = a_1$$

 $a_3 + a_4 = a_1$

The *Kunz poset* of *S*: use ground set \mathbb{Z}_m instead of Ap(*S*).

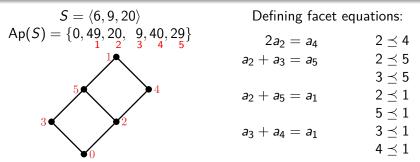
Theorem (Bruns–García-Sánchez–O.–Wilburne)

Numerical semigroups lie in the relative interior of the same face of C_m if and only if their Kunz posets are identical.

Christopher O'Neill (SDSU) Classifying numerical semigroups using polyhe March 12, 2024

Question

When are numerical semigroups in (the relative interior of) the same face?

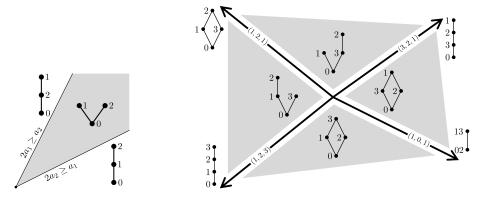


The *Kunz poset* of *S*: use ground set \mathbb{Z}_m instead of Ap(*S*).

Theorem (Bruns–García-Sánchez–O.–Wilburne)

Numerical semigroups lie in the relative interior of the same face of C_m if and only if their Kunz posets are identical.

 C_3 and C_4



Genus $g = g(S) = |\mathbb{Z}_{\geq 0} \setminus S|$: number of "gaps" of S.

Genus $g = g(S) = |\mathbb{Z}_{\geq 0} \setminus S|$: number of "gaps" of S. $n_g = \#$ of numerical semigroups with genus g.

Genus $g = g(S) = |\mathbb{Z}_{\geq 0} \setminus S|$: number of "gaps" of *S*. $n_g = \#$ of numerical semigroups with genus *g*. Example: $n_3 = 4$

$\langle 2,7 angle = \{0,$	2, 4,	$6,7,8,\ldots\}$
$\langle {\bf 3}, {\bf 4} \rangle = \{ {\bf 0},$	3,4,	$6,7,8,\ldots\}$
$\langle 3,5,7\rangle = \{0,$	3, 5,	$6,7,8,\ldots\}$
$\langle 4,5,6,7\rangle = \{0,$	4, 5,	6,7,8,}

Genus $g = g(S) = |\mathbb{Z}_{\geq 0} \setminus S|$: number of "gaps" of S. $n_g = \#$ of numerical semigroups with genus g. Example: $n_3 = 4$

$$\begin{array}{ll} \langle 2,7\rangle = \{0, \ 2, \ 4, \ 6,7,8,\ldots\} \\ \langle 3,4\rangle = \{0, \ 3,4, \ 6,7,8,\ldots\} \\ \langle 3,5,7\rangle = \{0, \ 3, \ 5,6,7,8,\ldots\} \\ \langle 4,5,6,7\rangle = \{0, \ 4,5,6,7,8,\ldots\} \end{array}$$

Suspected: $n_g \ge n_{g-1} + n_{g-2}$ for all g (verified for $g \le 70$)

Genus $g = g(S) = |\mathbb{Z}_{\geq 0} \setminus S|$: number of "gaps" of S. $n_g = \#$ of numerical semigroups with genus g. Example: $n_3 = 4$

$$\begin{array}{l} \langle 2,7\rangle = \{0, \ 2, \ 4, \ 6,7,8,\ldots\} \\ \langle 3,4\rangle = \{0, \ 3,4, \ 6,7,8,\ldots\} \\ \langle 3,5,7\rangle = \{0, \ 3, \ 5,6,7,8,\ldots\} \\ \langle 4,5,6,7\rangle = \{0, \ 4,5,6,7,8,\ldots\} \end{array}$$

Suspected: $n_g \ge n_{g-1} + n_{g-2}$ for all g (verified for $g \le 70$) Known: $\lim_{g\to\infty} \frac{n_{g+1}}{n_g}$ = the golden ratio

15 / 27

Genus $g = g(S) = |\mathbb{Z}_{\geq 0} \setminus S|$: number of "gaps" of S. $n_g = \#$ of numerical semigroups with genus g. Example: $n_3 = 4$

$\langle 2,7 angle = \{0,$	2, 4, 6	i, 7, 8, }
$\langle {\bf 3}, {\bf 4} \rangle = \{ {\bf 0},$	3,4, 6	6,7,8,}
$\langle 3,5,7\rangle = \{0,$	3, 5,6	6,7,8,}
$\langle 4,5,6,7\rangle = \{0,$	4, 5, 6	⁵ ,7,8,}

Suspected: $n_g \ge n_{g-1} + n_{g-2}$ for all g (verified for $g \le 70$) Known: $\lim_{g\to\infty} \frac{n_{g+1}}{n_g}$ = the golden ratio

Conjecture (Bras-Amoros, 2008)

For all g, we have $n_g \ge n_{g-1}$.

Genus $g = g(S) = |\mathbb{Z}_{\geq 0} \setminus S|$: number of "gaps" of S. $n_g = \#$ of numerical semigroups with genus g. Example: $n_3 = 4$

$\langle 2,7 angle = \{0,$	2, 4, 6,7,8,}
$\langle {\bf 3}, {\bf 4} \rangle = \{ {\bf 0},$	$3, 4, 6, 7, 8, \ldots \}$
$\langle 3,5,7\rangle = \{0,$	$3, 5, 6, 7, 8, \ldots \}$
$\langle 4,5,6,7\rangle = \{0,$	$4, 5, 6, 7, 8, \ldots\}$

Suspected: $n_g \ge n_{g-1} + n_{g-2}$ for all g (verified for $g \le 70$) Known: $\lim_{g\to\infty} \frac{n_{g+1}}{n_g}$ = the golden ratio

Conjecture (Bras-Amoros, 2008)

For all g, we have $n_g \ge n_{g-1}$.

Not true for $n'_f = \#$ of numerical semigroups with Frobenius number f $n'_{11} = 51$ $n'_{12} = 40$ $n'_{13} = 106$

Wilf's Conjecture

For any
$$S = \langle n_1, \ldots, n_k \rangle$$
, we have $F(S) + 1 \leq k(F(S) + 1 - g(S))$.

Wilf's Conjecture

For any
$$S = \langle n_1, \ldots, n_k \rangle$$
, we have $F(S) + 1 \leq k(F(S) + 1 - g(S))$.

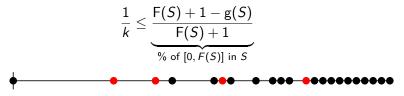
Equivalently,

$$\frac{1}{k} \leq \underbrace{\frac{\mathsf{F}(S) + 1 - \mathsf{g}(S)}{\mathsf{F}(S) + 1}}_{\% \text{ of } [0, \mathcal{F}(S)] \text{ in } S}$$

Wilf's Conjecture

For any
$$S = \langle n_1, \ldots, n_k \rangle$$
, we have $F(S) + 1 \leq k(F(S) + 1 - g(S))$.

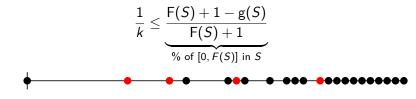
Equivalently,



Wilf's Conjecture

For any
$$S = \langle n_1, \ldots, n_k \rangle$$
, we have $F(S) + 1 \le k(F(S) + 1 - g(S))$.

Equivalently,



Equality holds when:

Wilf's Conjecture

For any
$$S = \langle n_1, \ldots, n_k \rangle$$
, we have $F(S) + 1 \leq k(F(S) + 1 - g(S))$.

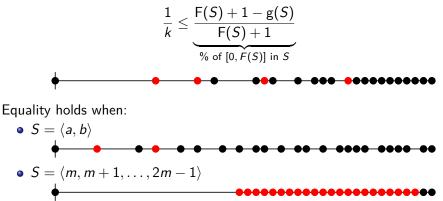
Equivalently,



Wilf's Conjecture

For any
$$S = \langle n_1, \ldots, n_k \rangle$$
, we have $F(S) + 1 \leq k(F(S) + 1 - g(S))$.

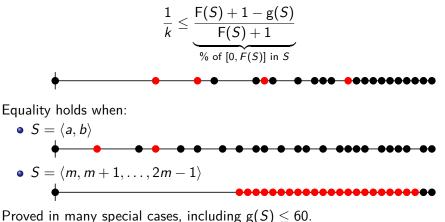
Equivalently,



Wilf's Conjecture

For any
$$S = \langle n_1, \ldots, n_k \rangle$$
, we have $F(S) + 1 \leq k(F(S) + 1 - g(S))$.

Equivalently,



Christopher O'Neill (SDSU) Classifying numerical semigroups using polyhe

Wilf's Conjecture

For any
$$S = \langle n_1, \ldots, n_k \rangle$$
, we have $\mathsf{F}(S) + 1 \leq k(\mathsf{F}(S) + 1 - \mathsf{g}(S))$.

Bras-Amoros Conjecture

For all g, we have $n_g \ge n_{g-1}$.

Wilf's Conjecture

For any
$$S = \langle n_1, \ldots, n_k \rangle$$
, we have $\mathsf{F}(S) + 1 \leq k(\mathsf{F}(S) + 1 - \mathsf{g}(S)).$

Bras-Amoros Conjecture

For all g, we have $n_g \ge n_{g-1}$.

Direct ties to geometry: if S corresponds to $x = (a_1, \ldots, a_{m-1}) \in C_m$,

$$g(S) = ||x||_1 - \frac{1}{2}m(m-1), \qquad F(S) = ||x||_{\infty} - m,$$

and # generators k is determined by the face $F \subseteq C_m$ containing x.

Wilf's Conjecture

For any
$$S = \langle n_1, \ldots, n_k \rangle$$
, we have $\mathsf{F}(S) + 1 \leq k(\mathsf{F}(S) + 1 - \mathsf{g}(S)).$

Bras-Amoros Conjecture

For all g, we have $n_g \ge n_{g-1}$.

Direct ties to geometry: if S corresponds to $x = (a_1, \ldots, a_{m-1}) \in C_m$,

$$g(S) = ||x||_1 - \frac{1}{2}m(m-1), \qquad F(S) = ||x||_{\infty} - m,$$

and # generators k is determined by the face $F \subseteq C_m$ containing x.

Theorem (Bruns-García-Sánchez-O.-Wilburne, 2020)

Wilf's conjecture holds for all numerical semigroups S with $m \leq 18$.

Wilf's Conjecture

For any
$$S = \langle n_1, \ldots, n_k \rangle$$
, we have $\mathsf{F}(S) + 1 \leq k(\mathsf{F}(S) + 1 - \mathsf{g}(S)).$

Bras-Amoros Conjecture

For all g, we have $n_g \ge n_{g-1}$.

Direct ties to geometry: if S corresponds to $x = (a_1, \ldots, a_{m-1}) \in C_m$,

$$g(S) = ||x||_1 - \frac{1}{2}m(m-1), \qquad F(S) = ||x||_{\infty} - m,$$

and # generators k is determined by the face $F \subseteq C_m$ containing x.

Theorem (Bruns-García-Sánchez-O.-Wilburne, 2020)

Wilf's conjecture holds for all numerical semigroups S with $m \leq 18$.

Conjecture (Kaplan)

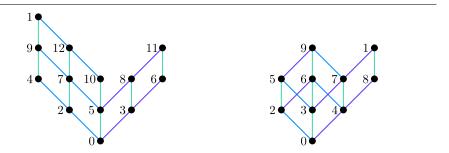
For fixed m, the number of numerical semigroups g gaps is non-decreasing.

Christopher O'Neill (SDSU) Classifying numerical semigroups using polyhe

What properties are determined by the Kunz poset *P* of $S = \langle n_1, \ldots, n_k \rangle$?

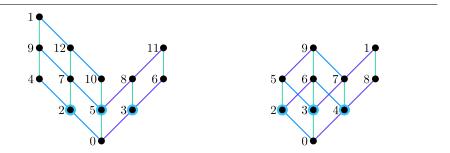
What properties are determined by the Kunz poset *P* of $S = \langle n_1, \ldots, n_k \rangle$?

• k = 1 + # atoms of P



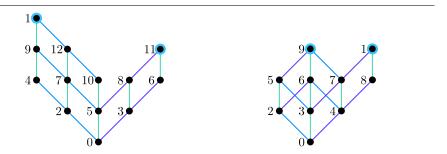
What properties are determined by the Kunz poset *P* of $S = \langle n_1, \ldots, n_k \rangle$?

• k = 1 + # atoms of P



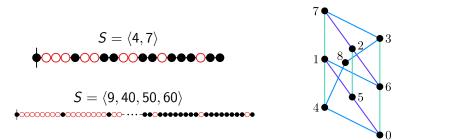
What properties are determined by the Kunz poset *P* of $S = \langle n_1, \ldots, n_k \rangle$?

- k = 1 + # atoms of P
- t(S) = # maximal elements (Cohen-Macaulay type of S)



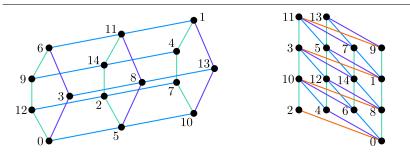
What properties are determined by the Kunz poset *P* of $S = \langle n_1, \ldots, n_k \rangle$?

- k = 1 + # atoms of P
- t(S) = # maximal elements (Cohen-Macaulay type of S)
- Symmetric/Gorenstein?



What properties are determined by the Kunz poset *P* of $S = \langle n_1, \ldots, n_k \rangle$?

- k = 1 + # atoms of P
- t(S) = # maximal elements (Cohen-Macaulay type of S)
- Symmetric/Gorenstein?
- Complete intersection?
- Generalized arithmetical?

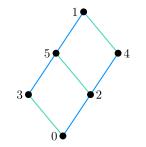


What properties are determined by the Kunz poset *P* of $S = \langle n_1, \ldots, n_k \rangle$?

- k = 1 + # atoms of P
- t(S) = # maximal elements (Cohen-Macaulay type of S)
- Symmetric/Gorenstein?
- Complete intersection?
- Generalized arithmetical?

Minimal binomial generators of
the *defining toric ideal* of *S*:
$$I_S = \ker (\mathbb{k}[\overline{x}] \to \mathbb{k}[t])$$

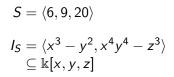
 $S = \langle 6, 9, 20 \rangle$ $I_S = \langle x^3 - y^2, x^4 y^4 - z^3 \rangle$ $\subseteq \mathbb{k}[x, y, z]$

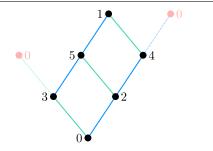


What properties are determined by the Kunz poset *P* of $S = \langle n_1, \ldots, n_k \rangle$?

- k = 1 + # atoms of P
- t(S) = # maximal elements (Cohen-Macaulay type of S)
- Symmetric/Gorenstein?
- Complete intersection?
- Generalized arithmetical?

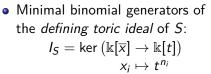
• Minimal binomial generators of the *defining toric ideal* of *S*: $I_S = \ker (\mathbb{k}[\overline{x}] \to \mathbb{k}[t])$ $x_i \mapsto t^{n_i}$

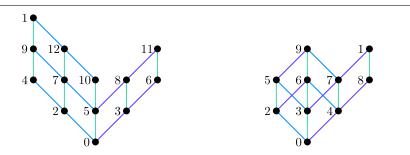




What properties are determined by the Kunz poset *P* of $S = \langle n_1, \ldots, n_k \rangle$?

- k = 1 + # atoms of P
- t(S) = # maximal elements (Cohen-Macaulay type of S)
- Symmetric/Gorenstein?
- Complete intersection?
- Generalized arithmetical?

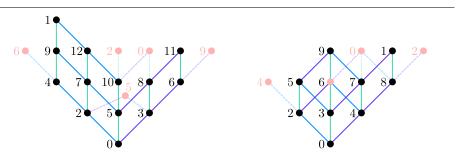




What properties are determined by the Kunz poset *P* of $S = \langle n_1, \ldots, n_k \rangle$?

- k = 1 + # atoms of P
- t(S) = # maximal elements (Cohen-Macaulay type of S)
- Symmetric/Gorenstein?
- Complete intersection?
- Generalized arithmetical?

• Minimal binomial generators of the *defining toric ideal* of *S*: $I_S = \ker (\mathbb{k}[\overline{x}] \to \mathbb{k}[t])$ $x_i \mapsto t^{n_i}$



What properties are determined by the Kunz poset *P* of $S = \langle n_1, \ldots, n_k \rangle$?

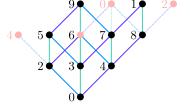
- k = 1 + # atoms of P
- t(S) = # maximal elements (Cohen-Macaulay type of S)
- Symmetric/Gorenstein?
- Complete intersection?
- Generalized arithmetical?

• Minimal binomial generators of the *defining toric ideal* of *S*: $I_S = \ker (\mathbb{k}[\overline{x}] \to \mathbb{k}[t])$ $x_i \mapsto t^{n_i}$

$$S = \langle 10, a_2, a_3, a_4 \rangle$$

$$I_S = \langle x_2^2 - y^* x_4, x_2 x_4 - x_3^2 x_4 - y^*, x_4^3 - y$$

$$\subseteq \Bbbk[y, x_2, x_3, x_4]$$

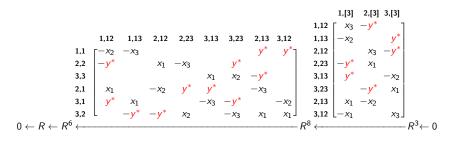


 x_{3}^{2} ,

What properties are determined by the Kunz poset P of $S = \langle n_1, \ldots, n_k \rangle$?

- k = 1 + # atoms of P
- t(S) = # maximal elements (Cohen-Macaulay type of S)
- Symmetric/Gorenstein?
- Complete intersection?
- Generalized arithmetical?

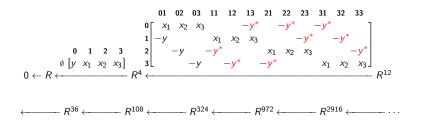
- Minimal binomial generators of the *defining toric ideal* of *S*: $I_S = \ker (\mathbb{k}[\overline{x}] \to \mathbb{k}[t])$ $x_i \mapsto t^{n_i}$
- Betti numbers of I_S over $\Bbbk[\overline{x}]$

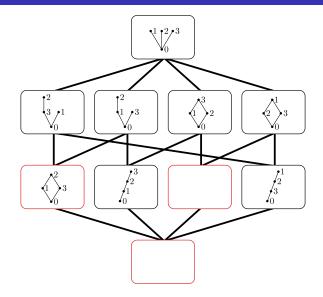


What properties are determined by the Kunz poset P of $S = \langle n_1, \ldots, n_k \rangle$?

- k = 1 + # atoms of P
- t(S) = # maximal elements (Cohen-Macaulay type of S)
- Symmetric/Gorenstein?
- Complete intersection?
- Generalized arithmetical?

- Minimal binomial generators of the *defining toric ideal* of *S*: $I_S = \ker (\mathbb{k}[\overline{x}] \to \mathbb{k}[t])$ $x_i \mapsto t^{n_i}$
- Betti numbers of I_S over $\Bbbk[\overline{x}]$
- Betti numbers of \Bbbk over $\Bbbk[\overline{x}]/I_S$





Face lattice of C_4

If $d \mid m$, then there exists a map $C_d \hookrightarrow C_m$ that induces a dimension-preserving injection on face lattices.

If $d \mid m$, then there exists a map $C_d \hookrightarrow C_m$ that induces a dimension-preserving injection on face lattices.

For $x \in C_m$, the coordinates of 0's form a subgroup of \mathbb{Z}_m Example: \mathbb{Z}_{10} (*, *, *, *, 0, *, *, *, *) (*, 0, *, 0, *, 0, *, 0, *)(0, 0, 0, 0, 0, 0, 0, 0, 0) (*, *, *, *, *, *, *, *, *, *)

If $d \mid m$, then there exists a map $C_d \hookrightarrow C_m$ that induces a dimension-preserving injection on face lattices.

For $x \in C_m$, the coordinates of 0's form a subgroup of \mathbb{Z}_m Example: \mathbb{Z}_{10} (*, *, *, *, 0, *, *, *, *) (*, 0, *, 0, *, 0, *, 0, *)(0, 0, 0, 0, 0, 0, 0, 0, 0) (*, *, *, *, *, *, *, *, *)

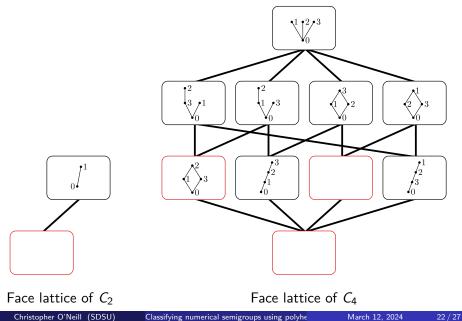
 $\begin{array}{ll} \text{Maps are induced by } \mathbb{Z}_m/\langle d \rangle \cong \mathbb{Z}_d \\ C_5 \hookrightarrow C_{10} \colon & (x_1, x_2, x_3, x_4) \mapsto (x_1, x_2, x_3, x_4, 0, x_1, x_2, x_3, x_4) \\ C_4 \hookrightarrow C_{12} \colon & (x_1, x_2, x_3) \mapsto (x_1, x_2, x_3, 0, x_1, x_2, x_3, 0, x_1, x_2, x_3) \end{array}$

If $d \mid m$, then there exists a map $C_d \hookrightarrow C_m$ that induces a dimension-preserving injection on face lattices.

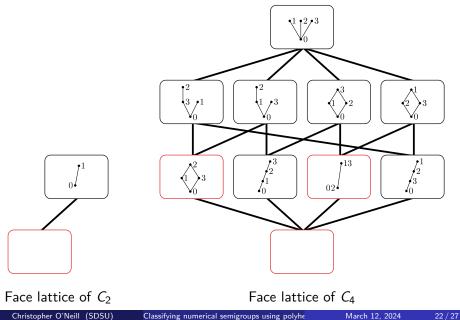
If $d \mid m$, then there exists a map $C_d \hookrightarrow C_m$ that induces a dimension-preserving injection on face lattices.

Rays of $\mathcal{C}_4 \subseteq \mathbb{R}^3$:	Rays of $\mathcal{C}_{12}\subseteq \mathbb{R}^{11}$:
(1, 0, 1)	(1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1)
(1, 2, 1)	(1, 2, 1, 0, 1, 2, 1, 0, 1, 2, 1)
(1, 2, 3)	(1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3)
(3, 2, 1)	(3, 2, 1, 0, 3, 2, 1, 0, 3, 2, 1)
Rays of $C_3 \subseteq \mathbb{R}^2$:	:
(1,2)	(1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2)
(2,1)	(2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1)
	(1,0,1) (1,2,1) (1,2,3) (3,2,1) Rays of $C_3 \subseteq \mathbb{R}^2$: (1,2)

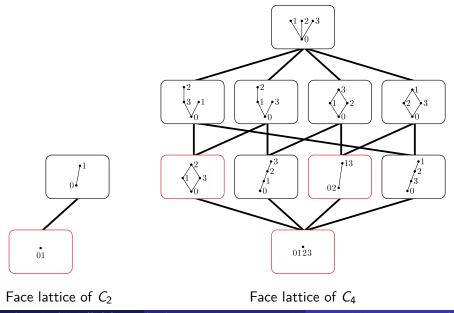
:



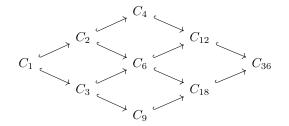
Christopher O'Neill (SDSU)

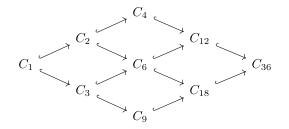


Christopher O'Neill (SDSU)



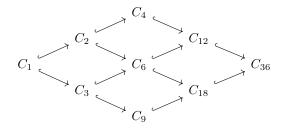
Christopher O'Neill (SDSU)





Takeaways:

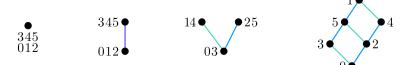
• Define $C_1 = \mathbb{R}^0 = \{\bullet\}$, and for $m \ge 1$, define $C_1 \hookrightarrow C_m$ with $\bullet \mapsto 0$



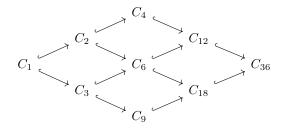
Takeaways:

• Define $C_1 = \mathbb{R}^0 = \{\bullet\}$, and for $m \ge 1$, define $C_1 \hookrightarrow C_m$ with $\bullet \mapsto 0$

• Every $F \subseteq C_m$ has a Kunz poset; elements are *cosets* of $H \subseteq \mathbb{Z}_m$



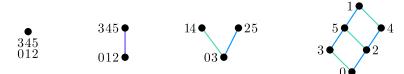
Posets for the poset-less faces



Takeaways:

• Define $C_1 = \mathbb{R}^0 = \{\bullet\}$, and for $m \ge 1$, define $C_1 \hookrightarrow C_m$ with $\bullet \mapsto 0$

• Every $F \subseteq C_m$ has a Kunz poset; elements are *cosets* of $H \subseteq \mathbb{Z}_m$



• Categorical limit: polyhedral complex C_{∞} with C_m as subcomplexes

Christopher O'Neill (SDSU)

The gluing of
$$S = \langle n_1, \dots, n_k \rangle$$
, $S' = \langle n'_1, \dots, n'_\ell \rangle$ by $a, b \in \mathbb{Z}_{\geq 0}$:
 $T = aS + bS' = \langle an_1, \dots, an_k, bn'_1, \dots, bn'_\ell \rangle$

Requirements: $a \in S', b \in S$ non-generators with gcd(a, b) = 1.

The gluing of
$$S = \langle n_1, \dots, n_k \rangle$$
, $S' = \langle n'_1, \dots, n'_\ell \rangle$ by $a, b \in \mathbb{Z}_{\geq 0}$:
 $T = aS + bS' = \langle an_1, \dots, an_k, bn'_1, \dots, bn'_\ell \rangle$

Requirements: $a \in S', b \in S$ non-generators with gcd(a, b) = 1.

(55, 66, 77, 100, 150)

The gluing of
$$S = \langle n_1, \dots, n_k \rangle$$
, $S' = \langle n'_1, \dots, n'_\ell \rangle$ by $a, b \in \mathbb{Z}_{\geq 0}$:
 $T = aS + bS' = \langle an_1, \dots, an_k, bn'_1, \dots, bn'_\ell \rangle$

Requirements: $a \in S', b \in S$ non-generators with gcd(a, b) = 1.

$$\langle 55, 66, 77, 100, 150 \rangle = 11 \langle 5, 6, 7 \rangle + 50 \langle 2, 3 \rangle$$

The gluing of
$$S = \langle n_1, \dots, n_k \rangle$$
, $S' = \langle n'_1, \dots, n'_\ell \rangle$ by $a, b \in \mathbb{Z}_{\geq 0}$:
 $T = aS + bS' = \langle an_1, \dots, an_k, bn'_1, \dots, bn'_\ell \rangle$

Requirements: $a \in S', b \in S$ non-generators with gcd(a, b) = 1.

$$\langle 55, 66, 77, 100, 150 \rangle = 11 \langle 5, 6, 7 \rangle + 50 \langle 2, 3 \rangle$$

Monoscopic gluings: $S' = \langle 1 \rangle$

The gluing of
$$S = \langle n_1, \dots, n_k \rangle$$
, $S' = \langle n'_1, \dots, n'_\ell \rangle$ by $a, b \in \mathbb{Z}_{\geq 0}$:
 $T = aS + bS' = \langle an_1, \dots, an_k, bn'_1, \dots, bn'_\ell \rangle$

Requirements: $a \in S', b \in S$ non-generators with gcd(a, b) = 1.

$$\langle 55, 66, 77, 100, 150 \rangle = 11 \langle 5, 6, 7 \rangle + 50 \langle 2, 3 \rangle$$

Monoscopic gluings: $S'=\langle 1
angle$

$$\langle 10,12,14,15\rangle=2\langle 5,6,7\rangle+\langle 15\rangle=2\langle 5,6,7\rangle+15\langle 1\rangle$$

The gluing of
$$S = \langle n_1, \dots, n_k \rangle$$
, $S' = \langle n'_1, \dots, n'_\ell \rangle$ by $a, b \in \mathbb{Z}_{\geq 0}$:
 $T = aS + bS' = \langle an_1, \dots, an_k, bn'_1, \dots, bn'_\ell \rangle$

Requirements: $a \in S', b \in S$ non-generators with gcd(a, b) = 1.

$$\langle 55, 66, 77, 100, 150 \rangle = 11 \langle 5, 6, 7 \rangle + 50 \langle 2, 3 \rangle$$

Monoscopic gluings: $S' = \langle 1 \rangle$

$$\langle 10,12,14,15\rangle=2\langle 5,6,7\rangle+\langle 15\rangle=2\langle 5,6,7\rangle+15\langle 1\rangle$$

Complete intersections: gluing from the ground up

The gluing of
$$S = \langle n_1, \dots, n_k \rangle$$
, $S' = \langle n'_1, \dots, n'_\ell \rangle$ by $a, b \in \mathbb{Z}_{\geq 0}$:
 $T = aS + bS' = \langle an_1, \dots, an_k, bn'_1, \dots, bn'_\ell \rangle$

Requirements: $a \in S', b \in S$ non-generators with gcd(a, b) = 1.

$$\langle 55, 66, 77, 100, 150 \rangle = 11 \langle 5, 6, 7 \rangle + 50 \langle 2, 3 \rangle$$

Monoscopic gluings: $S' = \langle 1 \rangle$

$$\langle 10,12,14,15\rangle=2\langle 5,6,7\rangle+\langle 15\rangle=2\langle 5,6,7\rangle+15\langle 1\rangle$$

Complete intersections: gluing from the ground up

 $\langle 70,105,112,150,200\rangle$

The gluing of
$$S = \langle n_1, \dots, n_k \rangle$$
, $S' = \langle n'_1, \dots, n'_\ell \rangle$ by $a, b \in \mathbb{Z}_{\geq 0}$:
 $T = aS + bS' = \langle an_1, \dots, an_k, bn'_1, \dots, bn'_\ell \rangle$

Requirements: $a \in S', b \in S$ non-generators with gcd(a, b) = 1.

$$\langle 55, 66, 77, 100, 150 \rangle = 11 \langle 5, 6, 7 \rangle + 50 \langle 2, 3 \rangle$$

Monoscopic gluings: $S' = \langle 1 \rangle$

$$\langle 10,12,14,15\rangle=2\langle 5,6,7\rangle+\langle 15\rangle=2\langle 5,6,7\rangle+15\langle 1\rangle$$

Complete intersections: gluing from the ground up

 $\langle 70, 105, 112, 150, 200 \rangle = 7 \langle 10, 15, 16 \rangle + 50 \langle 3, 4 \rangle$

The gluing of
$$S = \langle n_1, \dots, n_k \rangle$$
, $S' = \langle n'_1, \dots, n'_\ell \rangle$ by $a, b \in \mathbb{Z}_{\geq 0}$:
 $T = aS + bS' = \langle an_1, \dots, an_k, bn'_1, \dots, bn'_\ell \rangle$

Requirements: $a \in S', b \in S$ non-generators with gcd(a, b) = 1.

$$\langle 55, 66, 77, 100, 150 \rangle = 11 \langle 5, 6, 7 \rangle + 50 \langle 2, 3 \rangle$$

Monoscopic gluings: $S' = \langle 1 \rangle$

$$\langle 10,12,14,15\rangle=2\langle 5,6,7\rangle+\langle 15\rangle=2\langle 5,6,7\rangle+15\langle 1\rangle$$

Complete intersections: gluing from the ground up

$$egin{aligned} &\langle 70,105,112,150,200
angle &=7\langle 10,15,16
angle+50\langle 3,4
angle\ &=7\Big(5\langle 2,3
angle+\langle 16
angle\Big)+50\langle 3,4
angle \end{aligned}$$

The gluing of
$$S = \langle n_1, \dots, n_k \rangle$$
, $S' = \langle n'_1, \dots, n'_\ell \rangle$ by $a, b \in \mathbb{Z}_{\geq 0}$:
 $T = aS + bS' = \langle an_1, \dots, an_k, bn'_1, \dots, bn'_\ell \rangle$

Requirements: $a \in S', b \in S$ non-generators with gcd(a, b) = 1.

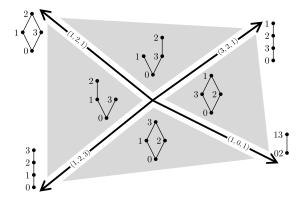
$$\langle 55,66,77,100,150\rangle = 11\langle 5,6,7\rangle + 50\langle 2,3\rangle$$

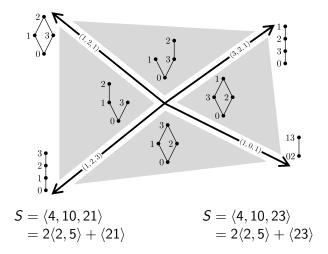
Monoscopic gluings: $S' = \langle 1 \rangle$

$$\langle 10,12,14,15\rangle=2\langle 5,6,7\rangle+\langle 15\rangle=2\langle 5,6,7\rangle+15\langle 1\rangle$$

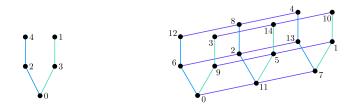
Complete intersections: gluing from the ground up

$$\begin{aligned} \langle 70, 105, 112, 150, 200 \rangle &= 7 \langle 10, 15, 16 \rangle + 50 \langle 3, 4 \rangle \\ &= 7 \Big(5 \langle 2, 3 \rangle + \langle 16 \rangle \Big) + 50 \langle 3, 4 \rangle \\ &= 7 \Big(5 \Big(\langle 2 \rangle + \langle 3 \rangle \Big) + \langle 16 \rangle \Big) + 50 \Big(\langle 3 \rangle + \langle 4 \rangle \Big) \end{aligned}$$

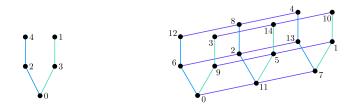




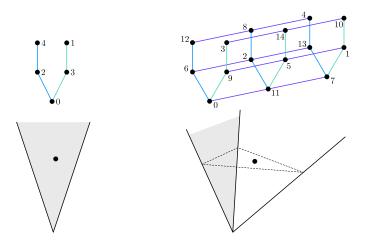
$$S=\langle 5,12,13
angle$$
 $T=3S+\langle 41
angle=\langle 15,36,39,41
angle$



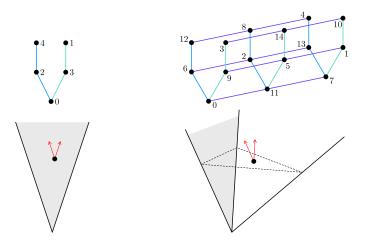
$$S=\langle 5,12,13
angle$$
 $T=3S+\langle 41
angle=\langle 15,36,39,41
angle$



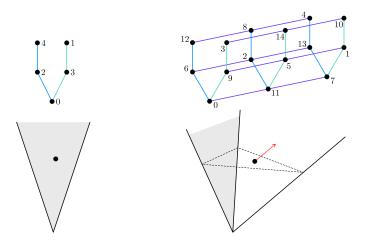
$$S = \langle 5, 12, 13
angle$$
 $T = 3S + \langle 41
angle = \langle 15, 36, 39, 41
angle$



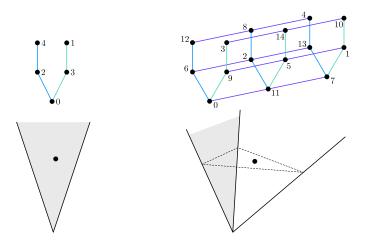
$$S = \langle 5, 12, 13 \rangle$$
 $T = 3S + \langle 41 \rangle = \langle 15, 36, 39, 41 \rangle$



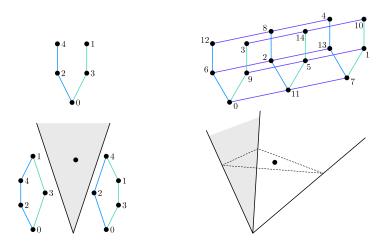
$$S = \langle 5, 12, 13 \rangle$$
 $T = 3S + \langle 41 \rangle = \langle 15, 36, 39, 41 \rangle$

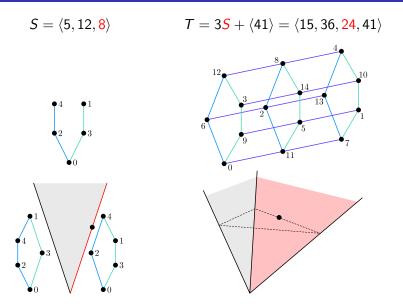


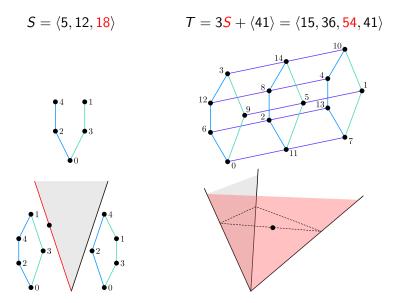
$$S = \langle 5, 12, 13
angle$$
 $T = 3S + \langle 41
angle = \langle 15, 36, 39, 41
angle$



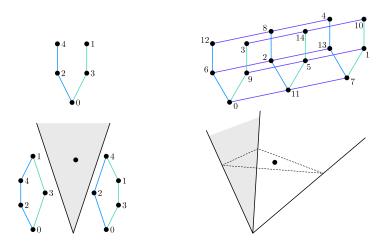
$$S = \langle 5, 12, 13 \rangle$$
 $T = 3S + \langle 41 \rangle = \langle 15, 36, 39, 41 \rangle$



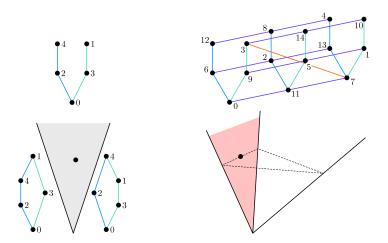


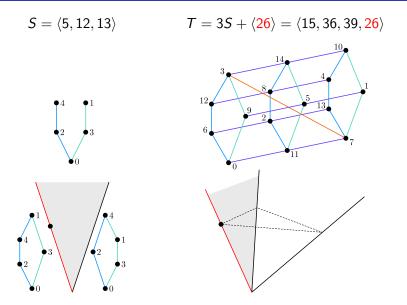


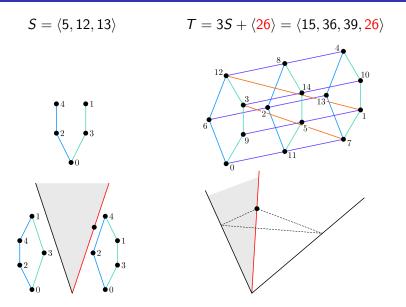
$$S = \langle 5, 12, 13 \rangle$$
 $T = 3S + \langle 41 \rangle = \langle 15, 36, 39, 41 \rangle$



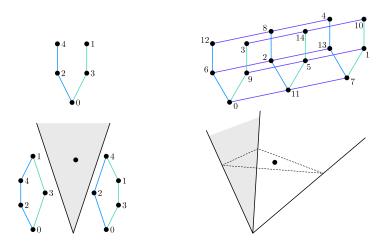
$$S = \langle 5, 12, 13 \rangle$$
 $T = 3S + \langle 26 \rangle = \langle 15, 36, 39, 26 \rangle$



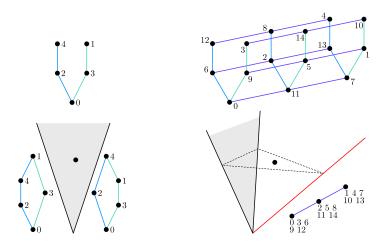




$$S = \langle 5, 12, 13 \rangle$$
 $T = 3S + \langle 41 \rangle = \langle 15, 36, 39, 41 \rangle$



$$S = \langle 5, 12, 13
angle$$
 $T = 3S + \langle 41
angle = \langle 15, 36, 39, 41
angle$



References

W. Bruns, P. García-Sánchez, C. O'Neill, D. Wilburne (2020)
Wilf's conjecture in fixed multiplicity
International Journal of Algebra and Computation 30 (2020), no. 4, 861–882. (arXiv:1903.04342)

N. Kaplan, C. O'Neill, (2021)

Numerical semigroups, polyhedra, and posets I: the group cone Combinatorial Theory 1 (2021), #19. (arXiv:1912.03741)

J. Autry, A. Ezell, T. Gomes, C. O'Neill, C. Preuss, T. Saluja, E. Torres Davila (2022) Numerical semigroups, polyhedra, and posets II: locating certain families of semigroups. Advances in Geometry **22** (2022), no. 1, 33–48. (arXiv:1912.04460)

T. Gomes, C. O'Neill, E. Torres Davila (2023)

Numerical semigroups, polyhedra, and posets III: minimal presentations and face dimension.

Electronic Journal of Combinatorics 30 (2023), no. 2, #P2.5. (arXiv:2009.05921)

B. Braun, T. Gomes, E. Miller, C. O'Neill, and A. Sobieska (2023) Minimal free resolutions of numerical semigroup algebras via Apéry specialization under review. (arXiv:2310.03612)

References

W. Bruns, P. García-Sánchez, C. O'Neill, D. Wilburne (2020)
Wilf's conjecture in fixed multiplicity
International Journal of Algebra and Computation 30 (2020), no. 4, 861–882. (arXiv:1903.04342)

N. Kaplan, C. O'Neill, (2021)

Numerical semigroups, polyhedra, and posets I: the group cone Combinatorial Theory 1 (2021), #19. (arXiv:1912.03741)

J. Autry, A. Ezell, T. Gomes, C. O'Neill, C. Preuss, T. Saluja, E. Torres Davila (2022) Numerical semigroups, polyhedra, and posets II: locating certain families of semigroups. Advances in Geometry **22** (2022), no. 1, 33–48. (arXiv:1912.04460)

T. Gomes, C. O'Neill, E. Torres Davila (2023)

Numerical semigroups, polyhedra, and posets III: minimal presentations and face dimension.

Electronic Journal of Combinatorics 30 (2023), no. 2, #P2.5. (arXiv:2009.05921)

B. Braun, T. Gomes, E. Miller, C. O'Neill, and A. Sobieska (2023) Minimal free resolutions of numerical semigroup algebras via Apéry specialization under review. (arXiv:2310.03612)

Thanks!