Classifying numerical semigroups using polyhedral geometry

Christopher O'Neill

San Diego State University
cdoneill@sdsu.edu

Joint with (i) Winfred Bruns, Pedro García-Sánchez, Dane Wilbourne; (ii) Nathan Kaplan;
(iii) *T. Gomes, *E. Torres Dávila; (iv) B. Braun, T. Gomes, E. Miller, A. Sobieska;
(v) T. Gomes, A. Sobieska, E. Torres Dávila

* $=$ undergraduate student

Slides available: https://cdoneill.sdsu.edu/

$$
\text { May 7, } 2024
$$

Numerical semigroups

Definition

A numerical semigroup $S \subseteq \mathbb{Z}_{\geq 0}$: closed under addition, $\left|\mathbb{Z}_{\geq 0} \backslash S\right|<\infty$.

Numerical semigroups

Definition

A numerical semigroup $S \subseteq \mathbb{Z}_{\geq 0}$: closed under addition, $\left|\mathbb{Z}_{\geq 0} \backslash S\right|<\infty$.
Example:

$$
M c N=\langle 6,9,20\rangle=\left\{\begin{array}{l}
0,6,9,12,15,18,20,21,24, \ldots \\
\cdots, 36,38,39,40,41,42,44 \rightarrow
\end{array}\right\}
$$

Numerical semigroups

Definition

A numerical semigroup $S \subseteq \mathbb{Z}_{\geq 0}$: closed under addition, $\left|\mathbb{Z}_{\geq 0} \backslash S\right|<\infty$.
Example: "McNugget Semigroup"

$$
M c N=\langle 6,9,20\rangle=\left\{\begin{array}{l}
0,6,9,12,15,18,20,21,24, \ldots \\
\cdots, 36,38,39,40,41,42,44 \rightarrow
\end{array}\right\}
$$

Numerical semigroups

Definition

A numerical semigroup $S \subseteq \mathbb{Z}_{\geq 0}$: closed under addition, $\left|\mathbb{Z}_{\geq 0} \backslash S\right|<\infty$.
Example: "McNugget Semigroup"

$$
M c N=\langle 6,9,20\rangle=\left\{\begin{array}{l}
0,6,9,12,15,18,20,21,24, \ldots \\
\cdots, 36,38,39,40,41,42,44 \rightarrow
\end{array}\right\}
$$

Example: $S=\langle 6,9,18,20,32\rangle$

Numerical semigroups

Definition

A numerical semigroup $S \subseteq \mathbb{Z}_{\geq 0}$: closed under addition, $\left|\mathbb{Z}_{\geq 0} \backslash S\right|<\infty$.
Example: "McNugget Semigroup"

$$
M c N=\langle 6,9,20\rangle=\left\{\begin{array}{l}
0,6,9,12,15,18,20,21,24, \ldots \\
\cdots, 36,38,39,40,41,42,44 \rightarrow
\end{array}\right\}
$$

Example: $S=\langle 6,9,18,20,32\rangle$

Numerical semigroups

Definition

A numerical semigroup $S \subseteq \mathbb{Z}_{\geq 0}$: closed under addition, $\left|\mathbb{Z}_{\geq 0} \backslash S\right|<\infty$.
Example: "McNugget Semigroup"

$$
M c N=\langle 6,9,20\rangle=\left\{\begin{array}{l}
0,6,9,12,15,18,20,21,24, \ldots \\
\cdots, 36,38,39,40,41,42,44 \rightarrow
\end{array}\right\}
$$

Example: $S=\langle 6,9,18,20,32\rangle=M c N$

Numerical semigroups

Definition

A numerical semigroup $S \subseteq \mathbb{Z}_{\geq 0}$: closed under addition, $\left|\mathbb{Z}_{\geq 0} \backslash S\right|<\infty$.
Example: "McNugget Semigroup"

$$
M c N=\langle 6,9,20\rangle=\left\{\begin{array}{l}
0,6,9,12,15,18,20,21,24, \ldots \\
\cdots, 36,38,39,40,41,42,44 \rightarrow
\end{array}\right\}
$$

Example: $S=\langle 6,9,18,20,32\rangle=M c N$

Fact

Every numerical semigroup has a unique minimal generating set.

Numerical semigroups

Definition

A numerical semigroup $S \subseteq \mathbb{Z}_{\geq 0}$: closed under addition, $\left|\mathbb{Z}_{\geq 0} \backslash S\right|<\infty$.
Example: "McNugget Semigroup"

$$
M c N=\langle 6,9,20\rangle=\left\{\begin{array}{l}
0,6,9,12,15,18,20,21,24, \ldots \\
\cdots, 36,38,39,40,41,42,44 \rightarrow
\end{array}\right\}
$$

Example: $S=\langle 6,9,18,20,32\rangle=M c N$

Fact

Every numerical semigroup has a unique minimal generating set.
Multiplicity: $\mathrm{m}(S)=$ smallest nonzero element

Apéry sets

Fix a numerical semigroup S with $\mathrm{m}(S)=m$.

Apéry sets

Fix a numerical semigroup S with $\mathrm{m}(S)=m$.

Definition

The Apéry set of S is

$$
\operatorname{Ap}(S)=\{a \in S: a-m \notin S\}
$$

Apéry sets

Fix a numerical semigroup S with $\mathrm{m}(S)=m$.

Definition

The Apéry set of S is

$$
\operatorname{Ap}(S)=\{a \in S: a-m \notin S\}
$$

If $S=\langle 6,9,20\rangle$, then

$$
\operatorname{Ap}(S)=\{0,49,20,9,40,29\}
$$

Apéry sets

Fix a numerical semigroup S with $\mathrm{m}(S)=m$.

Definition

The Apéry set of S is

$$
\operatorname{Ap}(S)=\{a \in S: a-m \notin S\}
$$

If $S=\langle 6,9,20\rangle$, then

$$
\operatorname{Ap}(S)=\{0,49,20,9,40,29\}
$$

For $2 \bmod 6:\{2,8,14,20,26,32, \ldots\} \cap S=\{20,26,32, \ldots\}$
For $3 \bmod 6$:
$\{3,9,15,21, \ldots\} \cap S=\{9,15,21, \ldots\}$
For $4 \bmod 6$:

$$
\{4,10,16,22, \ldots\} \cap S=\{40,46,52, \ldots\}
$$

Apéry sets

Fix a numerical semigroup S with $\mathrm{m}(S)=m$.

Definition

The Apéry set of S is

$$
\operatorname{Ap}(S)=\{a \in S: a-m \notin S\}
$$

If $S=\langle 6,9,20\rangle$, then

$$
\operatorname{Ap}(S)=\{0,49,20,9,40,29\}
$$

For $2 \bmod 6:\{2,8,14,20,26,32, \ldots\} \cap S=\{20,26,32, \ldots\}$
For $3 \bmod 6$:
$\{3,9,15,21, \ldots\} \cap S=\{9,15,21, \ldots\}$
For $4 \bmod 6$:

$$
\{4,10,16,22, \ldots\} \cap S=\{40,46,52, \ldots\}
$$

Apéry sets

Fix a numerical semigroup S with $\mathrm{m}(S)=m$.

Definition

The Apéry set of S is

$$
\operatorname{Ap}(S)=\{a \in S: a-m \notin S\}
$$

If $S=\langle 6,9,20\rangle$, then

$$
\operatorname{Ap}(S)=\{0,49,20,9,40,29\}
$$

For $2 \bmod 6:\{2,8,14,20,26,32, \ldots\} \cap S=\{20,26,32, \ldots\}$
For $3 \bmod 6$:
$\{3,9,15,21, \ldots\} \cap S=\{9,15,21, \ldots\}$
For $4 \bmod 6$:

$$
\{4,10,16,22, \ldots\} \cap S=\{40,46,52, \ldots\}
$$

Apéry sets

Fix a numerical semigroup S with $\mathrm{m}(S)=m$.

Definition

The Apéry set of S is

$$
\operatorname{Ap}(S)=\{a \in S: a-m \notin S\}
$$

If $S=\langle 6,9,20\rangle$, then

$$
\operatorname{Ap}(S)=\{0,49,20,9,40,29\}
$$

For $2 \bmod 6:\{2,8,14,20,26,32, \ldots\} \cap S=\{20,26,32, \ldots\}$
For $3 \bmod 6$:
$\{3,9,15,21, \ldots\} \cap S=\{9,15,21, \ldots\}$
For $4 \bmod 6$:

$$
\{4,10,16,22, \ldots\} \cap S=\{40,46,52, \ldots\}
$$

Observations:

Apéry sets

Fix a numerical semigroup S with $\mathrm{m}(S)=m$.

Definition

The Apéry set of S is

$$
\operatorname{Ap}(S)=\{a \in S: a-m \notin S\}
$$

If $S=\langle 6,9,20\rangle$, then

$$
\operatorname{Ap}(S)=\{0,49,20,9,40,29\}
$$

For $2 \bmod 6:\{2,8,14,20,26,32, \ldots\} \cap S=\{20,26,32, \ldots\}$
For $3 \bmod 6$:
$\{3,9,15,21, \ldots\} \cap S=\{9,15,21, \ldots\}$
For $4 \bmod 6$:

$$
\{4,10,16,22, \ldots\} \cap S=\{40,46,52, \ldots\}
$$

Observations:

- The elements of $\operatorname{Ap}(S)$ are distinct modulo m

Apéry sets

Fix a numerical semigroup S with $\mathrm{m}(S)=m$.

Definition

The Apéry set of S is

$$
\operatorname{Ap}(S)=\{a \in S: a-m \notin S\}
$$

If $S=\langle 6,9,20\rangle$, then

$$
\operatorname{Ap}(S)=\{0,49,20,9,40,29\}
$$

For $2 \bmod 6:\{2,8,14,20,26,32, \ldots\} \cap S=\{20,26,32, \ldots\}$
For $3 \bmod 6$:
$\{3,9,15,21, \ldots\} \cap S=\{9,15,21, \ldots\}$
For $4 \bmod 6$:

$$
\{4,10,16,22, \ldots\} \cap S=\{40,46,52, \ldots\}
$$

Observations:

- The elements of $\operatorname{Ap}(S)$ are distinct modulo m
- $|\operatorname{Ap}(S)|=m$

Apéry sets

Fix a numerical semigroup S with $\mathrm{m}(S)=m$.

Definition

The Apéry set of S is

$$
\operatorname{Ap}(S)=\{a \in S: a-m \notin S\}
$$

Apéry sets

Fix a numerical semigroup S with $\mathrm{m}(S)=m$.

Definition

The Apéry set of S is

$$
\operatorname{Ap}(S)=\{a \in S: a-m \notin S\}
$$

Many things can be easily recovered from the Apéry set.

Apéry sets

Fix a numerical semigroup S with $\mathrm{m}(S)=m$.

Definition

The Apéry set of S is

$$
\operatorname{Ap}(S)=\{a \in S: a-m \notin S\}
$$

Many things can be easily recovered from the Apéry set.

- Fast membership test:

$$
n \in S \text { if } n \geq a \text { for } a \in \operatorname{Ap}(S) \text { with } a \equiv n \bmod m
$$

Apéry sets

Fix a numerical semigroup S with $\mathrm{m}(S)=m$.

Definition

The Apéry set of S is

$$
\operatorname{Ap}(S)=\{a \in S: a-m \notin S\}
$$

Many things can be easily recovered from the Apéry set.

- Fast membership test:

$$
n \in S \text { if } n \geq a \text { for } a \in \operatorname{Ap}(S) \text { with } a \equiv n \bmod m
$$

- Frobenius number: $F(S)=\max (\operatorname{Ap}(S))-m$

Apéry sets

Fix a numerical semigroup S with $\mathrm{m}(S)=m$.

Definition

The Apéry set of S is

$$
\operatorname{Ap}(S)=\{a \in S: a-m \notin S\}
$$

Many things can be easily recovered from the Apéry set.

- Fast membership test:

$$
n \in S \text { if } n \geq a \text { for } a \in \operatorname{Ap}(S) \text { with } a \equiv n \bmod m
$$

- Frobenius number: $F(S)=\max (\operatorname{Ap}(S))-m$
- Number of gaps (the genus):

$$
\mathrm{g}(S)=|\mathbb{N} \backslash S|=\sum_{a \in \operatorname{Ap}(S)}\left\lfloor\frac{a}{m}\right\rfloor
$$

Apéry sets

Fix a numerical semigroup S with $\mathrm{m}(S)=m$.

Definition

The Apéry set of S is

$$
\operatorname{Ap}(S)=\{a \in S: a-m \notin S\}
$$

Many things can be easily recovered from the Apéry set.

- Fast membership test:

$$
n \in S \text { if } n \geq a \text { for } a \in \operatorname{Ap}(S) \text { with } a \equiv n \bmod m
$$

- Frobenius number: $F(S)=\max (\operatorname{Ap}(S))-m$
- Number of gaps (the genus):

$$
\begin{aligned}
& \mathrm{g}(S)=|\mathbb{N} \backslash S|=\sum_{a \in \operatorname{Ap}(S)}\left\lfloor\frac{a}{m}\right\rfloor
\end{aligned}
$$

The Apéry set is a "one stop shop" for computation.

Apéry sets

$$
\text { Is } A=\{0,11,7,23,19\} \text { the Apéry set of some numerical semigroup? }
$$

Apéry sets

Is $A=\{0,11,7,23,19\}$ the Apéry set of some numerical semigroup?

$$
m=|A|=5, \quad a_{1}=11, a_{2}=7, a_{3}=23, a_{4}=19
$$

Apéry sets

Is $A=\{0,11,7,23,19\}$ the Apéry set of some numerical semigroup? $m=|A|=5, \quad a_{1}=11, a_{2}=7, a_{3}=23, a_{4}=19$
but $a_{1}+a_{2} \equiv 3 \bmod 5$ and $a_{1}+a_{2}<a_{3}$.

Apéry sets

Is $A=\{0,11,7,23,19\}$ the Apéry set of some numerical semigroup? $m=|A|=5, \quad a_{1}=11, a_{2}=7, a_{3}=23, a_{4}=19$
but $a_{1}+a_{2} \equiv 3 \bmod 5$ and $a_{1}+a_{2}<a_{3}$.
Is $\{0,13,14,27,10,11\}$ the Apéry set of some numerical semigroup? $m=|A|=6, \quad a_{1}=13, a_{2}=14, a_{3}=27, a_{4}=10, a_{5}=11$

Apéry sets

Is $A=\{0,11,7,23,19\}$ the Apéry set of some numerical semigroup? $m=|A|=5, \quad a_{1}=11, a_{2}=7, a_{3}=23, a_{4}=19$
but $a_{1}+a_{2} \equiv 3 \bmod 5$ and $a_{1}+a_{2}<a_{3}$.
Is $\{0,13,14,27,10,11\}$ the Apéry set of some numerical semigroup?

$$
m=|A|=6, \quad a_{1}=13, a_{2}=14, a_{3}=27, a_{4}=10, a_{5}=11
$$

but $a_{4}+a_{5} \equiv 3 \bmod 6$ and $a_{4}+a_{5}<a_{3}$.

Apéry sets

Is $A=\{0,11,7,23,19\}$ the Apéry set of some numerical semigroup?

$$
m=|A|=5, \quad a_{1}=11, a_{2}=7, a_{3}=23, a_{4}=19
$$

but $a_{1}+a_{2} \equiv 3 \bmod 5$ and $a_{1}+a_{2}<a_{3}$.
Is $\{0,13,14,27,10,11\}$ the Apéry set of some numerical semigroup?

$$
m=|A|=6, \quad a_{1}=13, a_{2}=14, a_{3}=27, a_{4}=10, a_{5}=11
$$

but $a_{4}+a_{5} \equiv 3 \bmod 6$ and $a_{4}+a_{5}<a_{3}$.

Theorem

If $A=\left\{0, a_{1}, \ldots, a_{m-1}\right\}$ with each $a_{i}>m$ and $a_{i} \equiv i \bmod m$, then there exists a numerical semigroup S with $\operatorname{Ap}(S)=A$ if and only if

$$
a_{i}+a_{j} \geq a_{i+j} \quad \text { whenever } \quad i+j \neq 0
$$

Apéry sets

Is $A=\{0,11,7,23,19\}$ the Apéry set of some numerical semigroup?

$$
m=|A|=5, \quad a_{1}=11, a_{2}=7, a_{3}=23, a_{4}=19
$$

but $a_{1}+a_{2} \equiv 3 \bmod 5$ and $a_{1}+a_{2}<a_{3}$.
Is $\{0,13,14,27,10,11\}$ the Apéry set of some numerical semigroup?

$$
m=|A|=6, \quad a_{1}=13, a_{2}=14, a_{3}=27, a_{4}=10, a_{5}=11
$$

but $a_{4}+a_{5} \equiv 3 \bmod 6$ and $a_{4}+a_{5}<a_{3}$.

Theorem

If $A=\left\{0, a_{1}, \ldots, a_{m-1}\right\}$ with each $a_{i}>m$ and $a_{i} \equiv i \bmod m$, then there exists a numerical semigroup S with $\operatorname{Ap}(S)=A$ if and only if

$$
a_{i}+a_{j} \geq a_{i+j} \quad \text { whenever } \quad i+j \neq 0
$$

Big idea: the inequalities " $a_{i}+a_{j} \geq a_{i+j}$ " to define a cone C_{m}.

Kunz cone

Definition

The Kunz cone $C_{m} \subseteq \mathbb{R}^{m-1}$ is a pointed cone with defining inequalities $a_{i}+a_{j} \geq a_{i+j} \quad$ whenever $\quad i+j \neq 0$.

$$
\begin{aligned}
\left\{S \subseteq \mathbb{Z}_{\geq 0}: m(S)=m\right\} & \longrightarrow C_{m} \\
\operatorname{Ap}(S)=\left\{0, a_{1}, \ldots, a_{m-1}\right\} & \longmapsto\left(a_{1}, \ldots, a_{m-1}\right)
\end{aligned}
$$

Kunz cone

Definition

The Kunz cone $C_{m} \subseteq \mathbb{R}^{m-1}$ is a pointed cone with defining inequalities $a_{i}+a_{j} \geq a_{i+j} \quad$ whenever $\quad i+j \neq 0$.

$$
\begin{aligned}
&\left\{S \subseteq \mathbb{Z}_{\geq 0}: m(S)=m\right\} \longrightarrow C_{m} \\
& \operatorname{Ap}(S)=\left\{0, a_{1}, \ldots, a_{m-1}\right\} \longmapsto \\
&\left(a_{1}, \ldots, a_{m-1}\right)
\end{aligned}
$$

Example: C_{3}

Kunz cone

Definition

The Kunz cone $C_{m} \subseteq \mathbb{R}^{m-1}$ is a pointed cone with defining inequalities $a_{i}+a_{j} \geq a_{i+j} \quad$ whenever $\quad i+j \neq 0$.

$$
\begin{aligned}
&\left\{S \subseteq \mathbb{Z}_{\geq 0}: m(S)=m\right\} \longrightarrow C_{m} \\
& \operatorname{Ap}(S)=\left\{0, a_{1}, \ldots, a_{m-1}\right\} \longmapsto \\
&\left(a_{1}, \ldots, a_{m-1}\right)
\end{aligned}
$$

Example: C_{3}

$$
\begin{aligned}
& S=\langle 3,5,7\rangle \\
& \operatorname{Ap}(S)=\{0,7,5\}
\end{aligned}
$$

Kunz cone

Definition

The Kunz cone $C_{m} \subseteq \mathbb{R}^{m-1}$ is a pointed cone with defining inequalities $a_{i}+a_{j} \geq a_{i+j} \quad$ whenever $\quad i+j \neq 0$.

$$
\begin{array}{rll}
\left\{S \subseteq \mathbb{Z}_{\geq 0}: m(S)=m\right\} & \longrightarrow C_{m} \\
\operatorname{Ap}(S)=\left\{0, a_{1}, \ldots, a_{m-1}\right\} & \longmapsto & \left(a_{1}, \ldots, a_{m-1}\right)
\end{array}
$$

Example: C_{3}

$$
\begin{aligned}
& S=\langle 3,5,7\rangle \\
& \operatorname{Ap}(S)=\{0,7,5\} \\
& S=\langle 3,4\rangle \\
& \operatorname{Ap}(S)=\{0,4,8\}
\end{aligned}
$$

Kunz cone

Definition

The Kunz cone $C_{m} \subseteq \mathbb{R}^{m-1}$ is a pointed cone with defining inequalities $a_{i}+a_{j} \geq a_{i+j} \quad$ whenever $\quad i+j \neq 0$.

$$
\begin{aligned}
\left\{S \subseteq \mathbb{Z}_{\geq 0}: m(S)=m\right\} & \longrightarrow C_{m} \\
\operatorname{Ap}(S)=\left\{0, a_{1}, \ldots, a_{m-1}\right\} & \longmapsto\left(a_{1}, \ldots, a_{m-1}\right)
\end{aligned}
$$

Kunz cone

Definition

The Kunz cone $C_{m} \subseteq \mathbb{R}^{m-1}$ is a pointed cone with defining inequalities $a_{i}+a_{j} \geq a_{i+j} \quad$ whenever $\quad i+j \neq 0$.

$$
\begin{aligned}
\left\{S \subseteq \mathbb{Z}_{\geq 0}: m(S)=m\right\} & \longrightarrow C_{m} \\
\operatorname{Ap}(S)=\left\{0, a_{1}, \ldots, a_{m-1}\right\} & \longmapsto\left(a_{1}, \ldots, a_{m-1}\right)
\end{aligned}
$$

Example: C_{4}

Faces of the Kunz cone

Question

When are numerical semigroups in (the relative interior of) the same face?

Faces of the Kunz cone

Question

When are numerical semigroups in (the relative interior of) the same face?
Big picture: "moduli space" approach for studying $X Y Z$'s

- Define a space with $X Y Z$'s as points

Small changes to an $X Y Z \rightsquigarrow$ small movements in space

- Let geometric/topological structure inform study of $X Y Z$'s

Faces of the Kunz cone

Question

When are numerical semigroups in (the relative interior of) the same face?
Big picture: "moduli space" approach for studying $X Y Z$'s

- Define a space with $X Y Z$'s as points

Small changes to an $X Y Z \rightsquigarrow$ small movements in space

- Let geometric/topological structure inform study of $X Y Z$'s

Basic example: $\mathrm{GL}_{n}(\mathbb{R}) \hookrightarrow \mathbb{R}^{n^{2}}$

Faces of the Kunz cone

Question

When are numerical semigroups in (the relative interior of) the same face?
Big picture: "moduli space" approach for studying $X Y Z$'s

- Define a space with $X Y Z$'s as points

Small changes to an $X Y Z \rightsquigarrow$ small movements in space

- Let geometric/topological structure inform study of $X Y Z$'s

Basic example: $\mathrm{GL}_{n}(\mathbb{R}) \hookrightarrow \mathbb{R}^{n^{2}}$
More interesting example: C_{m}

Faces of the Kunz cone

Question

When are numerical semigroups in (the relative interior of) the same face?

Faces of the Kunz cone

Question

When are numerical semigroups in (the relative interior of) the same face?
Motivation: $S \in \operatorname{lnt}\left(C_{m}\right)$ if and only if S has max embedding dimension

Faces of the Kunz cone

Question

When are numerical semigroups in (the relative interior of) the same face?
Motivation: $S \in \operatorname{lnt}\left(C_{m}\right)$ if and only if S has max embedding dimension If $S=\left\langle n_{1}, \ldots, n_{k}\right\rangle$, then

$$
n_{i} \not \equiv n_{j} \bmod n_{1} \quad \Longrightarrow \quad k \leq \mathrm{m}(S)
$$

Faces of the Kunz cone

Question

When are numerical semigroups in (the relative interior of) the same face?
Motivation: $S \in \operatorname{lnt}\left(C_{m}\right)$ if and only if S has max embedding dimension If $S=\left\langle n_{1}, \ldots, n_{k}\right\rangle$, then

$$
n_{i} \not \equiv n_{j} \bmod n_{1} \quad \Longrightarrow \quad k \leq \mathrm{m}(S)
$$

If $k=m(S)$, then S has max embedding dimension

Faces of the Kunz cone

Question

When are numerical semigroups in (the relative interior of) the same face?
Motivation: $S \in \operatorname{lnt}\left(C_{m}\right)$ if and only if S has max embedding dimension If $S=\left\langle n_{1}, \ldots, n_{k}\right\rangle$, then

$$
n_{i} \not \equiv n_{j} \bmod n_{1} \quad \Longrightarrow \quad k \leq \mathrm{m}(S)
$$

If $k=m(S)$, then S has max embedding dimension

$$
S=\left\langle m, a_{1}, \ldots, a_{m-1}\right\rangle \quad \text { where } \quad \operatorname{Ap}(S)=\left\{0, a_{1}, \ldots, a_{m-1}\right\}
$$

Faces of the Kunz cone

Question

When are numerical semigroups in (the relative interior of) the same face?
Motivation: $S \in \operatorname{lnt}\left(C_{m}\right)$ if and only if S has max embedding dimension If $S=\left\langle n_{1}, \ldots, n_{k}\right\rangle$, then

$$
n_{i} \not \equiv n_{j} \bmod n_{1} \quad \Longrightarrow \quad k \leq m(S)
$$

If $k=m(S)$, then S has max embedding dimension

$$
S=\left\langle m, a_{1}, \ldots, a_{m-1}\right\rangle \quad \text { where } \quad \operatorname{Ap}(S)=\left\{0, a_{1}, \ldots, a_{m-1}\right\}
$$

Geometrically: "most" numerical semigroups with $m(S)=m$ are MED

Faces of the Kunz cone

Question

When are numerical semigroups in (the relative interior of) the same face?
Motivation: $S \in \operatorname{lnt}\left(C_{m}\right)$ if and only if S has max embedding dimension If $S=\left\langle n_{1}, \ldots, n_{k}\right\rangle$, then

$$
n_{i} \not \equiv n_{j} \bmod n_{1} \quad \Longrightarrow \quad k \leq m(S)
$$

If $k=m(S)$, then S has max embedding dimension

$$
S=\left\langle m, a_{1}, \ldots, a_{m-1}\right\rangle \quad \text { where } \quad \operatorname{Ap}(S)=\left\{0, a_{1}, \ldots, a_{m-1}\right\}
$$

Geometrically: "most" numerical semigroups with $m(S)=m$ are MED What about the other faces?

Faces of the Kunz cone

Question

When are numerical semigroups in (the relative interior of) the same face?

Faces of the Kunz cone

Question

When are numerical semigroups in (the relative interior of) the same face?
Example: $S=\langle 4,10,11,13\rangle$

$$
\begin{gathered}
\operatorname{Ap}(S)=\{0,13,10,11\} \\
a_{1}=13, \quad a_{2}=10, \quad a_{3}=11
\end{gathered}
$$

$$
\begin{array}{ll}
2 a_{1}>a_{2} & a_{1}+a_{2}>a_{3} \\
2 a_{3}>a_{2} & a_{2}+a_{3}>a_{1}
\end{array}
$$

Faces of the Kunz cone

Question

When are numerical semigroups in (the relative interior of) the same face?
Example: $S=\langle 4,10,11,13\rangle$

$$
\begin{array}{cll}
\operatorname{Ap}(S)=\{0,13,10,11\} & 2 a_{1}>a_{2} & a_{1}+a_{2}>a_{3} \\
a_{1}=13, \quad a_{2}=10, \quad a_{3}=11 & 2 a_{3}>a_{2} & a_{2}+a_{3}>a_{1}
\end{array}
$$

Example: $S=\langle 4,10,13\rangle$

$$
\begin{array}{cll}
\operatorname{Ap}(S)=\{0,13,10,23\} & 2 a_{1}>a_{2} & a_{1}+a_{2}=a_{3} \\
a_{1}=13, \quad a_{2}=10, \quad a_{3}=23 & 2 a_{3}>a_{2} & a_{2}+a_{3}>a_{1}
\end{array}
$$

Faces of the Kunz cone

Question

When are numerical semigroups in (the relative interior of) the same face?
Example: $S=\langle 4,10,11,13\rangle$

$$
\begin{array}{cll}
\operatorname{Ap}(S)=\{0,13,10,11\} & 2 a_{1}>a_{2} & a_{1}+a_{2}>a_{3} \\
a_{1}=13, \quad a_{2}=10, \quad a_{3}=11 & 2 a_{3}>a_{2} & a_{2}+a_{3}>a_{1}
\end{array}
$$

Example: $S=\langle 4,10,13\rangle$

$$
\begin{array}{cll}
\operatorname{Ap}(S)=\{0,13,10,23\} & 2 a_{1}>a_{2} & a_{1}+a_{2}=a_{3} \\
a_{1}=13, \quad a_{2}=10, \quad a_{3}=23 & 2 a_{3}>a_{2} & a_{2}+a_{3}>a_{1}
\end{array}
$$

Example: $S=\langle 4,13\rangle$

$$
\begin{gathered}
\operatorname{Ap}(S)=\{0,13,26,39\} \\
a_{1}=13, \quad a_{2}=26, \quad a_{3}=39
\end{gathered}
$$

$$
2 a_{1}=a_{2}
$$

$$
a_{1}+a_{2}=a_{3}
$$

$$
2 a_{3}>a_{2} \quad a_{2}+a_{3}>a_{1}
$$

Faces of the Kunz cone

Question

When are numerical semigroups in (the relative interior of) the same face?

Faces of the Kunz cone

Question

When are numerical semigroups in (the relative interior of) the same face?

Definition

The Apéry poset of S : define $a \preceq a^{\prime}$ whenever $a^{\prime}-a \in S$.

$$
\operatorname{Ap}(S)=\{0,13,10,23\}
$$

$$
\operatorname{Ap}(S)=\{0,13,26,39\}
$$

$$
\left\{\begin{array}{l}
39 \\
26 \\
13 \\
0
\end{array}\right.
$$

Faces of the Kunz polyhedron

Question

When are numerical semigroups in (the relative interior of) the same face?

Faces of the Kunz polyhedron

Question

When are numerical semigroups in (the relative interior of) the same face?

$$
\begin{array}{cc}
S=\langle 6,9,20\rangle & S^{\prime}=\langle 6,26,27\rangle \\
\operatorname{Ap}(S)=\{0,49,20,9,40,29\} & \operatorname{Ap}\left(S^{\prime}\right)=\{0,79,26,27,52,53\}
\end{array}
$$

Faces of the Kunz polyhedron

Question

When are numerical semigroups in (the relative interior of) the same face?

$$
\begin{array}{cc}
S=\langle 6,9,20\rangle & S^{\prime}=\langle 6,26,27\rangle \\
\operatorname{Ap}(S)=\{0,49,20,9,40,29\} & \operatorname{Ap}\left(S^{\prime}\right)=\{0,79,26,27,52,53\}
\end{array}
$$

Faces of the Kunz polyhedron

Question

When are numerical semigroups in (the relative interior of) the same face?

$$
\begin{array}{cc}
S=\langle 6,9,20\rangle & S^{\prime}=\langle 6,26,27\rangle \\
\operatorname{Ap}(S)=\{0,49,20,9,40,29 \\
\hline
\end{array}
$$

Faces of the Kunz polyhedron

Question

When are numerical semigroups in (the relative interior of) the same face?

$$
\begin{array}{cc}
S=\langle 6,9,20\rangle & \begin{array}{c}
S^{\prime}=\langle 6,26,27\rangle \\
A p(S)= \\
\{0,49,20,9,40,29\} \\
1
\end{array}
\end{array} \quad \mathrm{Ap}\left(S^{\prime}\right)=\{0,79,26,27,52,53\}
$$

The Kunz poset of S : use ground set \mathbb{Z}_{m} instead of $\operatorname{Ap}(S)$.

Faces of the Kunz polyhedron

Question

When are numerical semigroups in (the relative interior of) the same face?

$$
\begin{gathered}
S=\langle 6,9,20\rangle \\
\operatorname{Ap}(S)=\{0,49,20,9,40,29\}
\end{gathered}
$$

$$
\begin{gathered}
S^{\prime}=\langle 6,26,27\rangle \\
\operatorname{Ap}\left(S^{\prime}\right)=\{0,7 \underset{1}{9}, \underset{2}{26}, 27,52,53
\end{gathered}
$$

The Kunz poset of S : use ground set \mathbb{Z}_{m} instead of $\operatorname{Ap}(S)$.

Theorem (Bruns-García-Sánchez-O.-Wilburne)

Numerical semigroups lie in the relative interior of the same face of C_{m} if and only if their Kunz posets are identical.

Faces of the Kunz polyhedron

Question

When are numerical semigroups in (the relative interior of) the same face?

$$
\left.\begin{array}{c}
S=\langle 6,9,20\rangle \\
\operatorname{Ap}(S)=\left\{0,49,20,{ }_{3}^{9}, 40,29\right.
\end{array}\right\}
$$

The Kunz poset of S : use ground set \mathbb{Z}_{m} instead of $\operatorname{Ap}(S)$.

Theorem (Bruns-García-Sánchez-O.-Wilburne)

Numerical semigroups lie in the relative interior of the same face of C_{m} if and only if their Kunz posets are identical.

Faces of the Kunz polyhedron

Question

When are numerical semigroups in (the relative interior of) the same face?

$$
\left.\begin{array}{c}
S=\langle 6,9,20\rangle \\
\operatorname{Ap}(S)=\{0,4 \underset{1}{20,}, \underset{3}{9}, 40,29
\end{array}\right\}
$$

Defining facet equations:

$$
\begin{aligned}
2 a_{2} & =a_{4} \\
a_{2}+a_{3} & =a_{5} \\
a_{2}+a_{5} & =a_{1} \\
a_{3}+a_{4} & =a_{1}
\end{aligned}
$$

The Kunz poset of S : use ground set \mathbb{Z}_{m} instead of $\operatorname{Ap}(S)$.

Theorem (Bruns-García-Sánchez-O.-Wilburne)

Numerical semigroups lie in the relative interior of the same face of C_{m} if and only if their Kunz posets are identical.

Faces of the Kunz polyhedron

Question

When are numerical semigroups in（the relative interior of）the same face？

$$
\begin{aligned}
& S=\langle 6,9,20\rangle \\
& \operatorname{Ap}(S)=\{0,4 \underset{1}{9}, 20,9,4 \underset{4}{9}, 29\} \\
& \text { Defining facet equations: } \\
& 2 a_{2}=a_{4} \\
& 2 \text { 〔 } 4 \\
& a_{2}+a_{3}=a_{5} \\
& 2 \text { 亿 } 5 \\
& 3 \text { 〔 } 5 \\
& a_{2}+a_{5}=a_{1} \\
& 2 \text { 亿 } 1 \\
& 5 \text { 々 } 1 \\
& a_{3}+a_{4}=a_{1} \\
& 3 \preceq 1 \\
& 4 \preceq 1
\end{aligned}
$$

The Kunz poset of S ：use ground set \mathbb{Z}_{m} instead of $\operatorname{Ap}(S)$ ．

Theorem（Bruns－García－Sánchez－O．－Wilburne）

Numerical semigroups lie in the relative interior of the same face of C_{m} if and only if their Kunz posets are identical．

C_{3} and C_{4}

A couple of long-standing (hard) conjectures

Genus $g=g(S)=\left|\mathbb{Z}_{\geq 0} \backslash S\right|$: number of "gaps" of S.

A couple of long-standing (hard) conjectures

Genus $g=g(S)=\left|\mathbb{Z}_{\geq 0} \backslash S\right|$: number of "gaps" of S.
$n_{g}=\#$ of numerical semigroups with genus g.

A couple of long-standing (hard) conjectures

Genus $g=\mathrm{g}(S)=\left|\mathbb{Z}_{\geq 0} \backslash S\right|$: number of "gaps" of S.
$n_{g}=\#$ of numerical semigroups with genus g.
Example: $n_{3}=4$

$$
\left.\begin{array}{rl}
\langle 2,7\rangle & =\left\{\begin{array}{ll}
0, & 2,
\end{array} \quad 4, \quad 6,7,8, \ldots\right.
\end{array}\right\}
$$

A couple of long-standing (hard) conjectures

Genus $g=\mathrm{g}(S)=\left|\mathbb{Z}_{\geq 0} \backslash S\right|$: number of "gaps" of S.
$n_{g}=\#$ of numerical semigroups with genus g.
Example: $n_{3}=4$

$$
\left.\left.\begin{array}{rl}
\langle 2,7\rangle & =\{0, \quad 2, \quad 4, \quad 6,7,8, \ldots\} \\
\langle 3,4\rangle & =\{0, \quad 3,4, \quad 6,7,8, \ldots\} \\
\langle 3,5,7\rangle & =\{0, \quad 3, \quad 5,6,7,8, \ldots\} \\
\langle 4,5,6,7\rangle & =\{0,
\end{array} \quad 4,5,6,7,8, \ldots\right\}\right\}
$$

Suspected: $n_{g} \geq n_{g-1}+n_{g-2}$ for all g (verified for $\left.g \leq 70\right)$

A couple of long-standing (hard) conjectures

Genus $g=\mathrm{g}(S)=\left|\mathbb{Z}_{\geq 0} \backslash S\right|$: number of "gaps" of S.
$n_{g}=\#$ of numerical semigroups with genus g.
Example: $n_{3}=4$

$$
\left.\left.\begin{array}{rl}
\langle 2,7\rangle & =\{0, \quad 2, \quad 4, \quad 6,7,8, \ldots\} \\
\langle 3,4\rangle & =\{0, \quad 3,4, \quad 6,7,8, \ldots\} \\
\langle 3,5,7\rangle & =\{0, \quad 3, \quad 5,6,7,8, \ldots\} \\
\langle 4,5,6,7\rangle & =\{0,
\end{array} \quad 4,5,6,7,8, \ldots\right\}\right\}
$$

Suspected: $n_{g} \geq n_{g-1}+n_{g-2}$ for all g (verified for $g \leq 70$) Known: $\lim _{g \rightarrow \infty} \frac{n_{g+1}}{n_{g}}=$ the golden ratio

A couple of long-standing (hard) conjectures

Genus $g=g(S)=\left|\mathbb{Z}_{\geq 0} \backslash S\right|$: number of "gaps" of S.
$n_{g}=\#$ of numerical semigroups with genus g.
Example: $n_{3}=4$

$$
\left.\left.\left.\begin{array}{rl}
\langle 2,7\rangle & =\{0, \quad 2, \quad 4, \quad 6,7,8, \ldots
\end{array}\right\} \begin{array}{rl}
\langle 3,4\rangle & =\{0, \quad 3,4, \quad 6,7,8, \ldots\} \\
\langle 3,5,7\rangle & =\{0, \quad 3, \quad 5,6,7,8, \ldots\} \\
\langle 4,5,6,7\rangle & =\{0,
\end{array} \quad 4,5,6,7,8, \ldots\right\}\right\}
$$

Suspected: $n_{g} \geq n_{g-1}+n_{g-2}$ for all g (verified for $g \leq 70$)
Known: $\lim _{g \rightarrow \infty} \frac{n_{g+1}}{n_{g}}=$ the golden ratio

Conjecture (Bras-Amoros, 2008)

For all g, we have $n_{g} \geq n_{g-1}$.

A couple of long-standing (hard) conjectures

Genus $g=g(S)=\left|\mathbb{Z}_{\geq 0} \backslash S\right|$: number of "gaps" of S.
$n_{g}=\#$ of numerical semigroups with genus g.
Example: $n_{3}=4$

$$
\left.\left.\begin{array}{rl}
\langle 2,7\rangle & =\{0, \quad 2, \quad 4, \quad 6,7,8, \ldots\} \\
\langle 3,4\rangle & =\{0, \quad 3,4, \quad 6,7,8, \ldots\} \\
\langle 3,5,7\rangle & =\{0, \quad 3,5,6,7,8, \ldots\} \\
\langle 4,5,6,7\rangle & =\{0,
\end{array} \quad 4,5,6,7,8, \ldots\right\}\right\}
$$

Suspected: $n_{g} \geq n_{g-1}+n_{g-2}$ for all g (verified for $g \leq 70$)
Known: $\lim _{g \rightarrow \infty} \frac{n_{g+1}}{n_{g}}=$ the golden ratio

Conjecture (Bras-Amoros, 2008)

For all g, we have $n_{g} \geq n_{g-1}$.
Not true for $n_{f}^{\prime}=\#$ of numerical semigroups with Frobenius number f

$$
n_{11}^{\prime}=51 \quad n_{12}^{\prime}=40 \quad n_{13}^{\prime}=106
$$

A couple of long-standing (hard) conjectures

Wilf's Conjecture
 For any $S=\left\langle n_{1}, \ldots, n_{k}\right\rangle$, we have $\mathrm{F}(S)+1 \leq k(\mathrm{~F}(S)+1-\mathrm{g}(S))$.

A couple of long-standing (hard) conjectures

Wilf's Conjecture
 For any $S=\left\langle n_{1}, \ldots, n_{k}\right\rangle$, we have $\mathrm{F}(S)+1 \leq k(\mathrm{~F}(S)+1-\mathrm{g}(S))$.

Equivalently,

$$
\frac{1}{k} \leq \underbrace{\frac{F(S)+1-g(S)}{F(S)+1}}_{\% \text { of }[0, F(S)] \text { in } S}
$$

A couple of long-standing (hard) conjectures

Wilf's Conjecture
 For any $S=\left\langle n_{1}, \ldots, n_{k}\right\rangle$, we have $F(S)+1 \leq k(F(S)+1-g(S))$.

Equivalently,

$$
\frac{1}{k} \leq \underbrace{\frac{F(S)+1-g(S)}{F(S)+1}}_{\% \text { of }[0, F(S)] \text { in } S}
$$

A couple of long-standing (hard) conjectures

Wilf's Conjecture
 For any $S=\left\langle n_{1}, \ldots, n_{k}\right\rangle$, we have $F(S)+1 \leq k(F(S)+1-g(S))$.

Equivalently,

$$
\frac{1}{k} \leq \underbrace{\frac{F(S)+1-g(S)}{F(S)+1}}_{\% \text { of }[0, F(S)] \text { in } S}
$$

Equality holds when:

A couple of long-standing (hard) conjectures

Wilf's Conjecture

For any $S=\left\langle n_{1}, \ldots, n_{k}\right\rangle$, we have $\mathrm{F}(S)+1 \leq k(\mathrm{~F}(S)+1-\mathrm{g}(S))$.
Equivalently,

$$
\frac{1}{k} \leq \underbrace{\frac{\mathrm{F}(S)+1-\mathrm{g}(S)}{\mathrm{F}(S)+1}}_{\% \text { of }[0, F(S)] \text { in } S}
$$

Equality holds when:

- $S=\langle a, b\rangle$

A couple of long-standing (hard) conjectures

Wilf's Conjecture

For any $S=\left\langle n_{1}, \ldots, n_{k}\right\rangle$, we have $\mathrm{F}(S)+1 \leq k(\mathrm{~F}(S)+1-\mathrm{g}(S))$.
Equivalently,

$$
\frac{1}{k} \leq \underbrace{\frac{\mathrm{F}(S)+1-\mathrm{g}(S)}{\mathrm{F}(S)+1}}_{\% \text { of }[0, F(S)] \text { in } S}
$$

Equality holds when:

- $S=\langle a, b\rangle$

- $S=\langle m, m+1, \ldots, 2 m-1\rangle$ ϕ

A couple of long-standing (hard) conjectures

Wilf's Conjecture

For any $S=\left\langle n_{1}, \ldots, n_{k}\right\rangle$, we have $\mathrm{F}(S)+1 \leq k(\mathrm{~F}(S)+1-\mathrm{g}(S))$.
Equivalently,

$$
\frac{1}{k} \leq \underbrace{\frac{F(S)+1-g(S)}{F(S)+1}}_{\% \text { of }[0, F(S)] \text { in } S}
$$

Equality holds when:

- $S=\langle a, b\rangle$

- $S=\langle m, m+1, \ldots, 2 m-1\rangle$ in many special cases, including $g(S) \leq 60$.

A couple of long-standing (hard) conjectures

A couple of long-standing (hard) conjectures

Wilf's Conjecture

For any $S=\left\langle n_{1}, \ldots, n_{k}\right\rangle$, we have $\mathrm{F}(S)+1 \leq k(\mathrm{~F}(S)+1-\mathrm{g}(S))$.

Bras-Amoros Conjecture

For all g, we have $n_{g} \geq n_{g-1}$.

A couple of long-standing (hard) conjectures

Wilf's Conjecture

For any $S=\left\langle n_{1}, \ldots, n_{k}\right\rangle$, we have $F(S)+1 \leq k(F(S)+1-\mathrm{g}(S))$.

Bras-Amoros Conjecture

For all g, we have $n_{g} \geq n_{g-1}$.
Direct ties to geometry: if S corresponds to $x=\left(a_{1}, \ldots, a_{m-1}\right) \in C_{m}$,

$$
g(S)=\|x\|_{1}-\frac{1}{2} m(m-1), \quad F(S)=\|x\|_{\infty}-m
$$

and \# generators k is determined by the face $F \subseteq \mathcal{C}_{m}$ containing x.

A couple of long-standing (hard) conjectures

Wilf's Conjecture

For any $S=\left\langle n_{1}, \ldots, n_{k}\right\rangle$, we have $\mathrm{F}(S)+1 \leq k(\mathrm{~F}(S)+1-\mathrm{g}(S))$.

Bras-Amoros Conjecture

For all g, we have $n_{g} \geq n_{g-1}$.
Direct ties to geometry: if S corresponds to $x=\left(a_{1}, \ldots, a_{m-1}\right) \in C_{m}$,

$$
g(S)=\|x\|_{1}-\frac{1}{2} m(m-1), \quad F(S)=\|x\|_{\infty}-m
$$

and \# generators k is determined by the face $F \subseteq \mathcal{C}_{m}$ containing x.

Theorem (Bruns-García-Sánchez-O.-Wilburne, 2020)

Wilf's conjecture holds for all numerical semigroups S with $m \leq 18$.

A couple of long-standing (hard) conjectures

Wilf's Conjecture

For any $S=\left\langle n_{1}, \ldots, n_{k}\right\rangle$, we have $\mathrm{F}(S)+1 \leq k(\mathrm{~F}(S)+1-\mathrm{g}(S))$.

Bras-Amoros Conjecture

For all g, we have $n_{g} \geq n_{g-1}$.
Direct ties to geometry: if S corresponds to $x=\left(a_{1}, \ldots, a_{m-1}\right) \in C_{m}$,

$$
g(S)=\|x\|_{1}-\frac{1}{2} m(m-1), \quad F(S)=\|x\|_{\infty}-m
$$

and \# generators k is determined by the face $F \subseteq \mathcal{C}_{m}$ containing x.

Theorem (Bruns-García-Sánchez-O.-Wilburne, 2020)

Wilf's conjecture holds for all numerical semigroups S with $m \leq 18$.

Conjecture (Kaplan)

For fixed m, the number of numerical semigroups g gaps is non-decreasing.

Shared properties within a face

What properties are determined by the Kunz poset P of $S=\left\langle n_{1}, \ldots, n_{k}\right\rangle$?

Shared properties within a face

What properties are determined by the Kunz poset P of $S=\left\langle n_{1}, \ldots, n_{k}\right\rangle$?

- $k=1+\#$ atoms of P

Shared properties within a face

What properties are determined by the Kunz poset P of $S=\left\langle n_{1}, \ldots, n_{k}\right\rangle$?

- $k=1+\#$ atoms of P

Shared properties within a face

What properties are determined by the Kunz poset P of $S=\left\langle n_{1}, \ldots, n_{k}\right\rangle$?

- $k=1+\#$ atoms of P
- $\mathrm{t}(S)=\#$ maximal elements
(Cohen-Macaulay type of S)

Shared properties within a face

What properties are determined by the Kunz poset P of $S=\left\langle n_{1}, \ldots, n_{k}\right\rangle$?

- $k=1+\#$ atoms of P
- $\mathrm{t}(S)=\#$ maximal elements
(Cohen-Macaulay type of S)
- Symmetric/Gorenstein?

$$
\begin{gathered}
S=\langle 4,7\rangle \\
\end{gathered}
$$

$$
S=\langle 9,40,50,60\rangle
$$

Shared properties within a face

What properties are determined by the Kunz poset P of $S=\left\langle n_{1}, \ldots, n_{k}\right\rangle$?

- $k=1+\#$ atoms of P
- $\mathrm{t}(S)=\#$ maximal elements
(Cohen-Macaulay type of S)
- Symmetric/Gorenstein?
- Complete intersection?
- Generalized arithmetical?

Shared properties within a face

What properties are determined by the Kunz poset P of $S=\left\langle n_{1}, \ldots, n_{k}\right\rangle$?

- $k=1+\#$ atoms of P
- $\mathrm{t}(S)=\#$ maximal elements (Cohen-Macaulay type of S)
- Symmetric/Gorenstein?
- Complete intersection?
- Generalized arithmetical?

$$
\begin{aligned}
S & =\langle 6,9,20\rangle \\
I_{S} & =\left\langle x^{3}-y^{2}, x^{4} y^{4}-z^{3}\right\rangle \\
& \subseteq \mathbb{k}[x, y, z]
\end{aligned}
$$

Shared properties within a face

What properties are determined by the Kunz poset P of $S=\left\langle n_{1}, \ldots, n_{k}\right\rangle$?

- $k=1+\#$ atoms of P
- $\mathrm{t}(S)=\#$ maximal elements (Cohen-Macaulay type of S)
- Symmetric/Gorenstein?
- Complete intersection?
- Generalized arithmetical?

$$
\begin{aligned}
S & =\langle 6,9,20\rangle \\
I_{S} & =\left\langle x^{3}-y^{2}, x^{4} y^{4}-z^{3}\right\rangle \\
& \subseteq \mathbb{k}[x, y, z]
\end{aligned}
$$

Shared properties within a face

What properties are determined by the Kunz poset P of $S=\left\langle n_{1}, \ldots, n_{k}\right\rangle$?

- $k=1+\#$ atoms of P
- $\mathrm{t}(S)=\#$ maximal elements (Cohen-Macaulay type of S)
- Symmetric/Gorenstein?
- Complete intersection?
- Generalized arithmetical?
- Minimal binomial generators of the defining toric ideal of S :

$$
\begin{aligned}
I_{S}=\operatorname{ker}(\mathbb{k}[\bar{x}] & \rightarrow \mathbb{k}[t]) \\
x_{i} & \mapsto t^{n_{i}}
\end{aligned}
$$

Shared properties within a face

What properties are determined by the Kunz poset P of $S=\left\langle n_{1}, \ldots, n_{k}\right\rangle$?

- $k=1+\#$ atoms of P
- $\mathrm{t}(S)=\#$ maximal elements (Cohen-Macaulay type of S)
- Symmetric/Gorenstein?
- Complete intersection?
- Generalized arithmetical?
- Minimal binomial generators of the defining toric ideal of S :

$$
\begin{aligned}
I_{S}=\operatorname{ker}(\mathbb{k}[\bar{x}] & \rightarrow \mathbb{k}[t]) \\
x_{i} & \mapsto t^{n_{i}}
\end{aligned}
$$

Shared properties within a face

What properties are determined by the Kunz poset P of $S=\left\langle n_{1}, \ldots, n_{k}\right\rangle$?

- $k=1+\#$ atoms of P
- $\mathrm{t}(S)=\#$ maximal elements (Cohen-Macaulay type of S)
- Symmetric/Gorenstein?
- Complete intersection?
- Generalized arithmetical?

$$
\begin{aligned}
S & =\left\langle 10, a_{2}, a_{3}, a_{4}\right\rangle \\
I_{S} & =\left\langle x_{2}^{2}-y^{*} x_{4}, x_{2} x_{4}-x_{3}^{2},\right. \\
& \left.x_{3}^{2} x_{4}-y^{*}, \quad x_{4}^{3}-y^{*} x_{2}\right\rangle \\
& \subseteq \mathbb{k}\left[y, x_{2}, x_{3}, x_{4}\right]
\end{aligned}
$$

- Minimal binomial generators of the defining toric ideal of S :

$$
\begin{aligned}
I_{S}=\operatorname{ker}(\mathbb{k}[\bar{x}] & \rightarrow \mathbb{k}[t]) \\
x_{i} & \mapsto t^{n_{i}}
\end{aligned}
$$

Shared properties within a face

What properties are determined by the Kunz poset P of $S=\left\langle n_{1}, \ldots, n_{k}\right\rangle$?

- $k=1+\#$ atoms of P
- $\mathrm{t}(S)=\#$ maximal elements (Cohen-Macaulay type of S)
- Symmetric/Gorenstein?
- Complete intersection?
- Generalized arithmetical?
- Minimal binomial generators of the defining toric ideal of S :

$$
\begin{aligned}
I_{S}=\operatorname{ker}(\mathbb{k}[\bar{x}] & \rightarrow \mathbb{k}[t]) \\
x_{i} & \mapsto t^{n_{i}}
\end{aligned}
$$

- Betti numbers of I_{S} over $\mathbb{k}[\bar{x}]$

Shared properties within a face

What properties are determined by the Kunz poset P of $S=\left\langle n_{1}, \ldots, n_{k}\right\rangle$?

- $k=1+\#$ atoms of P
- $\mathrm{t}(S)=\#$ maximal elements (Cohen-Macaulay type of S)
- Symmetric/Gorenstein?
- Complete intersection?
- Generalized arithmetical?
- Minimal binomial generators of the defining toric ideal of S :

$$
\begin{aligned}
I_{S}=\operatorname{ker}(\mathbb{k}[\bar{x}] & \rightarrow \mathbb{k}[t]) \\
x_{i} & \mapsto t^{n_{i}}
\end{aligned}
$$

- Betti numbers of I_{S} over $\mathbb{k}[\bar{x}]$
- Betti numbers of \mathbb{k} over $\mathbb{k}[\bar{x}] / I_{S}$

$$
\longleftarrow R^{36} \longleftarrow R^{108} \longleftarrow R^{324} \longleftarrow R^{972} \longleftarrow R^{2916} \longleftarrow \ldots
$$

A commutative algebra view of Kunz posets

Fix a numerical semigroup S with

$$
\operatorname{Ap}(S)=\left\{0, a_{1}, \ldots, a_{m-1}\right\}, \quad a_{i} \equiv i \bmod m
$$

A commutative algebra view of Kunz posets

Fix a numerical semigroup S with

$$
\operatorname{Ap}(S)=\left\{0, a_{1}, \ldots, a_{m-1}\right\}, \quad a_{i} \equiv i \bmod m
$$

Defining toric ideal: $I_{S}=\operatorname{ker}\left(\mathbb{k}\left[y, x_{1}, \ldots, x_{m-1}\right] \rightarrow \mathbb{k}[t]\right)$

$$
y \mapsto t^{m} \quad x_{i} \mapsto t^{a_{i}}
$$

A commutative algebra view of Kunz posets

Fix a numerical semigroup S with

$$
\operatorname{Ap}(S)=\left\{0, a_{1}, \ldots, a_{m-1}\right\}, \quad a_{i} \equiv i \bmod m
$$

Defining toric ideal: $I_{S}=\operatorname{ker}\left(\mathbb{k}\left[y, x_{1}, \ldots, x_{m-1}\right] \rightarrow \mathbb{k}[t]\right)$

$$
y \mapsto t^{m} \quad x_{i} \mapsto t^{a_{i}}
$$

Kunz: $I_{S}+\langle y\rangle=I_{T}+\langle y\rangle$ if S, T are interior to the same face of C_{m},

$$
\text { so } \beta_{i}\left(I_{S}\right)=\beta_{i}\left(I_{S}+\langle y\rangle\right)=\beta_{i}\left(I_{T}+\langle y\rangle\right)=\beta_{i}\left(I_{T}\right)
$$

A commutative algebra view of Kunz posets

Fix a numerical semigroup S with

$$
\operatorname{Ap}(S)=\left\{0, a_{1}, \ldots, a_{m-1}\right\}, \quad a_{i} \equiv i \bmod m
$$

Defining toric ideal: $I_{S}=\operatorname{ker}\left(\mathbb{k}\left[y, x_{1}, \ldots, x_{m-1}\right] \rightarrow \mathbb{k}[t]\right)$

$$
y \mapsto t^{m} \quad x_{i} \mapsto t^{a_{i}}
$$

Kunz: $I_{S}+\langle y\rangle=I_{T}+\langle y\rangle$ if S, T are interior to the same face of C_{m},

$$
\text { so } \beta_{i}\left(I_{S}\right)=\beta_{i}\left(I_{S}+\langle y\rangle\right)=\beta_{i}\left(I_{T}+\langle y\rangle\right)=\beta_{i}\left(I_{T}\right)
$$

Example: $S=\langle 5,6,9\rangle, \quad I_{S}=\left\langle x_{1} x_{4}-y^{3}, x_{1}^{3}-x_{4}^{2}, x_{1}^{2}-x_{2}, x_{1}^{3}-x_{3}\right\rangle$

A commutative algebra view of Kunz posets

Fix a numerical semigroup S with

$$
\operatorname{Ap}(S)=\left\{0, a_{1}, \ldots, a_{m-1}\right\}, \quad a_{i} \equiv i \bmod m
$$

Defining toric ideal: $I_{S}=\operatorname{ker}\left(\mathbb{k}\left[y, x_{1}, \ldots, x_{m-1}\right] \rightarrow \mathbb{k}[t]\right)$

$$
y \mapsto t^{m} \quad x_{i} \mapsto t^{a_{i}}
$$

Kunz: $I_{S}+\langle y\rangle=I_{T}+\langle y\rangle$ if S, T are interior to the same face of C_{m},

$$
\text { so } \beta_{i}\left(I_{S}\right)=\beta_{i}\left(I_{S}+\langle y\rangle\right)=\beta_{i}\left(I_{T}+\langle y\rangle\right)=\beta_{i}\left(I_{T}\right)
$$

Example: $S=\langle 5,6,9\rangle, \quad I_{S}=\left\langle x_{1} x_{4}-y^{3}, x_{1}^{3}-x_{4}^{2}, x_{1}^{2}-x_{2}, x_{1}^{3}-x_{3}\right\rangle$

A commutative algebra view of Kunz posets

Fix a numerical semigroup S with

$$
\operatorname{Ap}(S)=\left\{0, a_{1}, \ldots, a_{m-1}\right\}, \quad a_{i} \equiv i \bmod m
$$

Defining toric ideal: $I_{S}=\operatorname{ker}\left(\mathbb{k}\left[y, x_{1}, \ldots, x_{m-1}\right] \rightarrow \mathbb{k}[t]\right)$

$$
y \mapsto t^{m} \quad x_{i} \mapsto t^{a_{i}}
$$

Kunz: $I_{S}+\langle y\rangle=I_{T}+\langle y\rangle$ if S, T are interior to the same face of C_{m},

$$
\text { so } \beta_{i}\left(I_{S}\right)=\beta_{i}\left(I_{S}+\langle y\rangle\right)=\beta_{i}\left(I_{T}+\langle y\rangle\right)=\beta_{i}\left(I_{T}\right)
$$

Example: $S=\langle 5,6,9\rangle, \quad I_{S}=\left\langle x_{1} x_{4}-y^{3}, x_{1}^{3}-x_{4}^{2}, x_{1}^{2}-x_{2}, x_{1}^{3}-x_{3}\right\rangle$

$$
I_{S}+\langle y\rangle=\left\langle x_{1}^{4}, x_{1} x_{4}, x_{4}^{3}, y, \quad x_{1}^{3}-x_{4}^{2}, \quad x_{1}^{2}-x_{2}, x_{1}^{3}-x_{3}\right\rangle
$$

A commutative algebra view of Kunz posets

Fix a numerical semigroup S with

$$
\operatorname{Ap}(S)=\left\{0, a_{1}, \ldots, a_{m-1}\right\}, \quad a_{i} \equiv i \bmod m
$$

Defining toric ideal: $I_{S}=\operatorname{ker}\left(\mathbb{k}\left[y, x_{1}, \ldots, x_{m-1}\right] \rightarrow \mathbb{k}[t]\right)$

$$
y \mapsto t^{m} \quad x_{i} \mapsto t^{a_{i}}
$$

Kunz: $I_{S}+\langle y\rangle=I_{T}+\langle y\rangle$ if S, T are interior to the same face of C_{m},

$$
\text { so } \beta_{i}\left(I_{S}\right)=\beta_{i}\left(I_{S}+\langle y\rangle\right)=\beta_{i}\left(I_{T}+\langle y\rangle\right)=\beta_{i}\left(I_{T}\right)
$$

Example: $S=\langle 5,6,9\rangle, \quad I_{S}=\left\langle x_{1} x_{4}-y^{3}, x_{1}^{3}-x_{4}^{2}, x_{1}^{2}-x_{2}, x_{1}^{3}-x_{3}\right\rangle$

$$
I_{S}+\langle y\rangle=\left\langle x_{1}^{4}, x_{1} x_{4}, x_{4}^{3}, y, \quad x_{1}^{3}-x_{4}^{2}, \quad x_{1}^{2}-x_{2}, x_{1}^{3}-x_{3}\right\rangle
$$

A commutative algebra view of Kunz posets

Fix a numerical semigroup S with

$$
\operatorname{Ap}(S)=\left\{0, a_{1}, \ldots, a_{m-1}\right\}, \quad a_{i} \equiv i \bmod m
$$

Defining toric ideal: $I_{S}=\operatorname{ker}\left(\mathbb{k}\left[y, x_{1}, \ldots, x_{m-1}\right] \rightarrow \mathbb{k}[t]\right)$

$$
y \mapsto t^{m} \quad x_{i} \mapsto t^{a_{i}}
$$

Kunz: $I_{S}+\langle y\rangle=I_{T}+\langle y\rangle$ if S, T are interior to the same face of C_{m},

$$
\text { so } \beta_{i}\left(I_{S}\right)=\beta_{i}\left(I_{S}+\langle y\rangle\right)=\beta_{i}\left(I_{T}+\langle y\rangle\right)=\beta_{i}\left(I_{T}\right)
$$

Example: $S=\langle 5,6,9\rangle, \quad I_{S}=\left\langle x_{1} x_{4}-y^{3}, x_{1}^{3}-x_{4}^{2}, x_{1}^{2}-x_{2}, x_{1}^{3}-x_{3}\right\rangle$

$$
I_{S}+\langle y\rangle=\left\langle x_{1}^{4}, x_{1} x_{4}, x_{4}^{3}, y, \quad x_{1}^{3}-x_{4}^{2}, \quad x_{1}^{2}-x_{2}, x_{1}^{3}-x_{3}\right\rangle
$$

A commutative algebra view of Kunz posets

Fix a numerical semigroup S with

$$
\operatorname{Ap}(S)=\left\{0, a_{1}, \ldots, a_{m-1}\right\}, \quad a_{i} \equiv i \bmod m
$$

Defining toric ideal: $I_{S}=\operatorname{ker}\left(\mathbb{k}\left[y, x_{1}, \ldots, x_{m-1}\right] \rightarrow \mathbb{k}[t]\right)$

$$
y \mapsto t^{m} \quad x_{i} \mapsto t^{a_{i}}
$$

Kunz: $I_{S}+\langle y\rangle=I_{T}+\langle y\rangle$ if S, T are interior to the same face of C_{m},

$$
\text { so } \beta_{i}\left(I_{S}\right)=\beta_{i}\left(I_{S}+\langle y\rangle\right)=\beta_{i}\left(I_{T}+\langle y\rangle\right)=\beta_{i}\left(I_{T}\right)
$$

Example: $S=\langle 5,6,9\rangle, \quad I_{S}=\left\langle x_{1} x_{4}-y^{3}, x_{1}^{3}-x_{4}^{2}, x_{1}^{2}-x_{2}, x_{1}^{3}-x_{3}\right\rangle$

$$
\begin{aligned}
I_{S}+\langle y\rangle & =\left\langle x_{1}^{4}, x_{1} x_{4}, x_{4}^{3}, y, \quad x_{1}^{3}-x_{4}^{2}, \quad x_{1}^{2}-x_{2}, x_{1}^{3}-x_{3}\right\rangle \\
& =\text { (Artinian monomial ideal })+(\text { binomials under staircase })
\end{aligned}
$$

A commutative algebra view of Kunz posets

Fix a numerical semigroup S with

$$
\operatorname{Ap}(S)=\left\{0, a_{1}, \ldots, a_{m-1}\right\}, \quad a_{i} \equiv i \bmod m
$$

Defining toric ideal: $I_{S}=\operatorname{ker}\left(\mathbb{k}\left[y, x_{1}, \ldots, x_{m-1}\right] \rightarrow \mathbb{k}[t]\right)$

$$
y \mapsto t^{m} \quad x_{i} \mapsto t^{a_{i}}
$$

A commutative algebra view of Kunz posets

Fix a numerical semigroup S with

$$
\operatorname{Ap}(S)=\left\{0, a_{1}, \ldots, a_{m-1}\right\}, \quad a_{i} \equiv i \bmod m
$$

Defining toric ideal: $I_{S}=\operatorname{ker}\left(\mathbb{k}\left[y, x_{1}, \ldots, x_{m-1}\right] \rightarrow \mathbb{k}[t]\right)$

$$
y \mapsto t^{m} \quad x_{i} \mapsto t^{a_{i}}
$$

The Apéry resolution for I_{S}, minimal if and only if S is MED:

A commutative algebra view of Kunz posets

Fix a numerical semigroup S with

$$
\operatorname{Ap}(S)=\left\{0, a_{1}, \ldots, a_{m-1}\right\}, \quad a_{i} \equiv i \bmod m
$$

Defining toric ideal: $I_{S}=\operatorname{ker}\left(\mathbb{k}\left[y, x_{1}, \ldots, x_{m-1}\right] \rightarrow \mathbb{k}[t]\right)$

$$
y \mapsto t^{m} \quad x_{i} \mapsto t^{a_{i}}
$$

The Apéry resolution for I_{S}, minimal if and only if S is MED:

Can "specialize" to a minimal resolution, consistent across the face of C_{m}

A commutative algebra view of Kunz posets

Fix a numerical semigroup S with

$$
\operatorname{Ap}(S)=\left\{0, a_{1}, \ldots, a_{m-1}\right\}, \quad a_{i} \equiv i \bmod m
$$

Defining toric ideal: $I_{S}=\operatorname{ker}\left(\mathbb{k}\left[y, x_{1}, \ldots, x_{m-1}\right] \rightarrow \mathbb{k}[t]\right)$

$$
y \mapsto t^{m} \quad x_{i} \mapsto t^{a_{i}}
$$

A commutative algebra view of Kunz posets

Fix a numerical semigroup S with

$$
\operatorname{Ap}(S)=\left\{0, a_{1}, \ldots, a_{m-1}\right\}, \quad a_{i} \equiv i \bmod m
$$

Defining toric ideal: $I_{S}=\operatorname{ker}\left(\mathbb{k}\left[y, x_{1}, \ldots, x_{m-1}\right] \rightarrow \mathbb{k}[t]\right)$

$$
y \mapsto t^{m} \quad x_{i} \mapsto t^{a_{i}}
$$

Words of caution:

A commutative algebra view of Kunz posets

Fix a numerical semigroup S with

$$
\operatorname{Ap}(S)=\left\{0, a_{1}, \ldots, a_{m-1}\right\}, \quad a_{i} \equiv i \bmod m
$$

Defining toric ideal: $I_{S}=\operatorname{ker}\left(\mathbb{k}\left[y, x_{1}, \ldots, x_{m-1}\right] \rightarrow \mathbb{k}[t]\right)$

$$
y \mapsto t^{m} \quad x_{i} \mapsto t^{a_{i}}
$$

Words of caution:

- "the same resolution" vs. "structure consistent across the face"

A commutative algebra view of Kunz posets

Fix a numerical semigroup S with

$$
\operatorname{Ap}(S)=\left\{0, a_{1}, \ldots, a_{m-1}\right\}, \quad a_{i} \equiv i \bmod m
$$

Defining toric ideal: $I_{S}=\operatorname{ker}\left(\mathbb{k}\left[y, x_{1}, \ldots, x_{m-1}\right] \rightarrow \mathbb{k}[t]\right)$

$$
y \mapsto t^{m} \quad x_{i} \mapsto t^{a_{i}}
$$

Words of caution:

- "the same resolution" vs. "structure consistent across the face"
- "up to isomorphism" isn't good enough

A commutative algebra view of Kunz posets

Fix a numerical semigroup S with

$$
\operatorname{Ap}(S)=\left\{0, a_{1}, \ldots, a_{m-1}\right\}, \quad a_{i} \equiv i \bmod m
$$

Defining toric ideal: $I_{S}=\operatorname{ker}\left(\mathbb{k}\left[y, x_{1}, \ldots, x_{m-1}\right] \rightarrow \mathbb{k}[t]\right)$

$$
y \mapsto t^{m} \quad x_{i} \mapsto t^{a_{i}}
$$

Words of caution:

- "the same resolution" vs. "structure consistent across the face"
- "up to isomorphism" isn't good enough

$$
\begin{aligned}
S= & \langle 4,9,10,11\rangle: \\
I_{S} & =\left\langle x_{1}^{2}-x_{2} y^{2}, x_{2}^{2}-y^{5}, x_{3}^{2}-x_{2} y^{3}, x_{1} x_{2}-x_{3} y^{2}, x_{1} x_{3}-y^{5}, x_{2} x_{3}-x_{1} y^{3}\right\rangle \\
& =\left\langle x_{1}^{2}-x_{2} y^{2}, x_{2}^{2}-y^{5}, x_{3}^{2}-x_{2} y^{3}, x_{1} x_{2}-x_{3} y^{2}, \underline{x_{1} x_{3}-x_{2}^{2}}, x_{2} x_{3}-x_{1} y^{3}\right\rangle
\end{aligned}
$$

A commutative algebra view of Kunz posets

Fix a numerical semigroup S with

$$
\operatorname{Ap}(S)=\left\{0, a_{1}, \ldots, a_{m-1}\right\}, \quad a_{i} \equiv i \bmod m
$$

Defining toric ideal: $I_{S}=\operatorname{ker}\left(\mathbb{k}\left[y, x_{1}, \ldots, x_{m-1}\right] \rightarrow \mathbb{k}[t]\right)$

$$
y \mapsto t^{m} \quad x_{i} \mapsto t^{a_{i}}
$$

Words of caution:

- "the same resolution" vs. "structure consistent across the face"
- "up to isomorphism" isn't good enough

$$
\begin{aligned}
S= & \langle 4,9,10,11\rangle: \\
I_{S} & =\left\langle x_{1}^{2}-x_{2} y^{2}, x_{2}^{2}-y^{5}, x_{3}^{2}-x_{2} y^{3}, x_{1} x_{2}-x_{3} y^{2}, x_{1} x_{3}-y^{5}, x_{2} x_{3}-x_{1} y^{3}\right\rangle \\
& =\left\langle x_{1}^{2}-x_{2} y^{2}, x_{2}^{2}-y^{5}, x_{3}^{2}-x_{2} y^{3}, x_{1} x_{2}-x_{3} y^{2}, \underline{x_{1} x_{3}-x_{2}^{2}}, x_{2} x_{3}-x_{1} y^{3}\right\rangle
\end{aligned}
$$

- watch the number of variables

A commutative algebra view of Kunz posets

Fix a numerical semigroup S with

$$
\operatorname{Ap}(S)=\left\{0, a_{1}, \ldots, a_{m-1}\right\}, \quad a_{i} \equiv i \bmod m
$$

Defining toric ideal: $I_{S}=\operatorname{ker}\left(\mathbb{k}\left[y, x_{1}, \ldots, x_{m-1}\right] \rightarrow \mathbb{k}[t]\right)$

$$
y \mapsto t^{m} \quad x_{i} \mapsto t^{a_{i}}
$$

Words of caution:

- "the same resolution" vs. "structure consistent across the face"
- "up to isomorphism" isn't good enough

$$
\begin{aligned}
S= & \langle 4,9,10,11\rangle: \\
I_{S} & =\left\langle x_{1}^{2}-x_{2} y^{2}, x_{2}^{2}-y^{5}, x_{3}^{2}-x_{2} y^{3}, x_{1} x_{2}-x_{3} y^{2}, x_{1} x_{3}-y^{5}, x_{2} x_{3}-x_{1} y^{3}\right\rangle \\
& =\left\langle x_{1}^{2}-x_{2} y^{2}, x_{2}^{2}-y^{5}, x_{3}^{2}-x_{2} y^{3}, x_{1} x_{2}-x_{3} y^{2}, \underline{x_{1} x_{3}-x_{2}^{2}}, x_{2} x_{3}-x_{1} y^{3}\right\rangle
\end{aligned}
$$

- watch the number of variables

$$
\begin{aligned}
S= & \langle 4,5,7\rangle: \\
\quad I_{S} & =\left\langle x_{1}^{3}-x_{3} y^{2}, x_{1} x_{3}-y^{3}, x_{3}^{2}-x_{1}^{2} y, x_{1}^{2}-x_{2}\right\rangle \subseteq \mathbb{k}\left[y, x_{1}, x_{2}, x_{3}\right] \\
& J_{S}=\left\langle x_{1}^{3}-x_{3} y^{2}, x_{1} x_{3}-y^{3}, x_{3}^{2}-x_{1}^{2} y\right\rangle \subseteq \mathbb{k}\left[y, x_{1}, x_{3}\right]
\end{aligned}
$$

A commutative algebra view of Kunz posets

Fix a numerical semigroup $S=\left\langle m, n_{1}, \ldots, n_{k}\right\rangle$ with

$$
\operatorname{Ap}(S)=\left\{0, a_{1}, \ldots, a_{m-1}\right\}, \quad a_{i} \equiv i \bmod m
$$

Defining toric ideal: $I_{S}=\operatorname{ker}\left(\mathbb{k}\left[y, x_{1}, \ldots, x_{m-1}\right] \rightarrow \mathbb{k}[t]\right)$

$$
y \mapsto t^{m} \quad x_{i} \mapsto t^{a_{i}}
$$

A commutative algebra view of Kunz posets

Fix a numerical semigroup $S=\left\langle m, n_{1}, \ldots, n_{k}\right\rangle$ with

$$
\operatorname{Ap}(S)=\left\{0, a_{1}, \ldots, a_{m-1}\right\}, \quad a_{i} \equiv i \bmod m
$$

Defining toric ideal: $I_{S}=\operatorname{ker}\left(\mathbb{k}\left[y, x_{1}, \ldots, x_{m-1}\right] \rightarrow \mathbb{k}[t]\right)$

$$
y \mapsto t^{m} \quad x_{i} \mapsto t^{a_{i}}
$$

The infinite Apéry resolution of \mathbb{k} over $R=\mathbb{k}[S]$:

References

盽 W. Bruns, P. García-Sánchez, C. O'Neill, D. Wilburne (2020)
Wilf's conjecture in fixed multiplicity
International Journal of Algebra and Computation 30 (2020), no. 4, 861-882. (arXiv:1903.04342)
N. Kaplan, C. O'Neill, (2021)

Numerical semigroups, polyhedra, and posets I: the group cone Combinatorial Theory 1 (2021), \#19. (arXiv:1912.03741)

T. Gomes, C. O'Neill, E. Torres Davila (2023)

Numerical semigroups, polyhedra, and posets III: minimal presentations and face dimension.
Electronic Journal of Combinatorics 30 (2023), no. 2, \#P2.5. (arXiv:2009.05921)

B. Braun, T. Gomes, E. Miller, C. O'Neill, and A. Sobieska (2023)

Minimal free resolutions of numerical semigroup algebras via Apéry specialization under review. (arXiv:2310.03612)

T. Gomes, C. O'Neill, A. Sobieska, and E. Torres Dávila (2024) Infinite free resolutions over numerical semigroup algebras via specialization under review.

References

盽 W. Bruns, P. García-Sánchez, C. O'Neill, D. Wilburne (2020)
Wilf's conjecture in fixed multiplicity
International Journal of Algebra and Computation 30 (2020), no. 4, 861-882. (arXiv:1903.04342)
N. Kaplan, C. O'Neill, (2021)

Numerical semigroups, polyhedra, and posets I: the group cone Combinatorial Theory 1 (2021), \#19. (arXiv:1912.03741)

T. Gomes, C. O'Neill, E. Torres Davila (2023)

Numerical semigroups, polyhedra, and posets III: minimal presentations and face dimension.
Electronic Journal of Combinatorics 30 (2023), no. 2, \#P2.5. (arXiv:2009.05921)

B. Braun, T. Gomes, E. Miller, C. O'Neill, and A. Sobieska (2023)

Minimal free resolutions of numerical semigroup algebras via Apéry specialization under review. (arXiv:2310.03612)
T. Gomes, C. O'Neill, A. Sobieska, and E. Torres Dávila (2024) Infinite free resolutions over numerical semigroup algebras via specialization under review.

Thanks!

