Classifying numerical semigroups using polyhedral geometry

Christopher O'Neill

San Diego State University

cdoneill@sdsu.edu

Joint with (i) Winfred Bruns, Pedro García-Sánchez, Dane Wilbourne; (ii) Nathan Kaplan; (iii) *T. Gomes, *E. Torres Dávila; (iv) B. Braun, T. Gomes, E. Miller, A. Sobieska; (v) T. Gomes, A. Sobieska, E. Torres Dávila

* = undergraduate student

Slides available: https://cdoneill.sdsu.edu/

A numerical semigroup $S \subseteq \mathbb{Z}_{\geq 0}$: closed under addition, $|\mathbb{Z}_{\geq 0} \setminus S| < \infty$.

A numerical semigroup $S \subseteq \mathbb{Z}_{\geq 0}$: closed under addition, $|\mathbb{Z}_{\geq 0} \setminus S| < \infty$.

Example:

$$McN = \langle 6, 9, 20 \rangle = \begin{cases} 0, 6, 9, 12, 15, 18, 20, 21, 24, \dots \\ \dots, 36, 38, 39, 40, 41, 42, 44 \rightarrow \end{cases}$$

A numerical semigroup $S \subseteq \mathbb{Z}_{\geq 0}$: closed under addition, $|\mathbb{Z}_{\geq 0} \setminus S| < \infty$.

Example: "McNugget Semigroup"

$$\mathit{McN} = \langle 6, 9, 20
angle = \left\{ egin{array}{c} 0, 6, 9, 12, 15, 18, 20, 21, 24, \ldots \ \ldots, 36, 38, 39, 40, 41, 42, 44
ightarrow
ight.$$

A numerical semigroup $S \subseteq \mathbb{Z}_{\geq 0}$: closed under addition, $|\mathbb{Z}_{\geq 0} \setminus S| < \infty$.

Example: "McNugget Semigroup"

$$McN = \langle 6, 9, 20 \rangle = \begin{cases} 0, 6, 9, 12, 15, 18, 20, 21, 24, \dots \\ \dots, 36, 38, 39, 40, 41, 42, 44 \end{cases}$$

Example: $S = \langle 6, 9, 18, 20, 32 \rangle$

A numerical semigroup $S \subseteq \mathbb{Z}_{\geq 0}$: closed under addition, $|\mathbb{Z}_{\geq 0} \setminus S| < \infty$.

Example: "McNugget Semigroup"

$$McN = \langle 6, 9, 20 \rangle = \begin{cases} 0, 6, 9, 12, 15, 18, 20, 21, 24, \dots \\ \dots, 36, 38, 39, 40, 41, 42, 44 \end{pmatrix}$$

Example: $S = \langle 6, 9, \frac{18}{20}, \frac{32}{20} \rangle$

A numerical semigroup $S \subseteq \mathbb{Z}_{\geq 0}$: closed under addition, $|\mathbb{Z}_{\geq 0} \setminus S| < \infty$.

Example: "McNugget Semigroup"

$$McN = \langle 6, 9, 20 \rangle = \begin{cases} 0, 6, 9, 12, 15, 18, 20, 21, 24, \dots \\ \dots, 36, 38, 39, 40, 41, 42, 44 \rightarrow \end{cases}$$

Example: $S = \langle 6, 9, \frac{18}{20}, \frac{32}{20} \rangle = McN$

A numerical semigroup $S \subseteq \mathbb{Z}_{\geq 0}$: closed under addition, $|\mathbb{Z}_{\geq 0} \setminus S| < \infty$.

Example: "McNugget Semigroup"

$$\mathit{McN} = \langle 6, 9, 20
angle = \left\{ egin{array}{c} 0, 6, 9, 12, 15, 18, 20, 21, 24, \ldots \ \ldots, 36, 38, 39, 40, 41, 42, 44
ightarrow
ight.$$

Example: $S = \langle 6, 9, \frac{18}{20}, \frac{32}{20} \rangle = McN$

Fact

Every numerical semigroup has a unique minimal generating set.

A numerical semigroup $S \subseteq \mathbb{Z}_{\geq 0}$: closed under addition, $|\mathbb{Z}_{\geq 0} \setminus S| < \infty$.

Example: "McNugget Semigroup"

$$McN = \langle 6, 9, 20 \rangle = \begin{cases} 0, 6, 9, 12, 15, 18, 20, 21, 24, \dots \\ \dots, 36, 38, 39, 40, 41, 42, 44 \rightarrow \end{cases}$$

Example: $S = \langle 6, 9, \frac{18}{20}, \frac{32}{20} \rangle = McN$

Fact

Every numerical semigroup has a unique minimal generating set.

Multiplicity: m(S) =smallest nonzero element

Fix a numerical semigroup S with m(S) = m.

Fix a numerical semigroup S with m(S) = m.

Definition

The Apéry set of S is

$$\mathsf{Ap}(S) = \{a \in S : a - m \notin S\}$$

Fix a numerical semigroup S with m(S) = m.

Definition

The Apéry set of S is

$$\mathsf{Ap}(S) = \{a \in S : a - m \notin S\}$$

If $S = \langle 6, 9, 20 \rangle$, then

$$\mathsf{Ap}(S) = \{0, 49, 20, 9, 40, 29\}$$

Fix a numerical semigroup S with m(S) = m.

Definition

The Apéry set of S is

$$\mathsf{Ap}(S) = \{a \in S : a - m \notin S\}$$

If $S = \langle 6, 9, 20 \rangle$, then

$$\mathsf{Ap}(S) = \{0, 49, 20, 9, 40, 29\}$$

For 2 mod 6: $\{2, 8, 14, 20, 26, 32, \ldots\} \cap S = \{20, 26, 32, \ldots\}$ For 3 mod 6: $\{3, 9, 15, 21, \ldots\} \cap S = \{9, 15, 21, \ldots\}$ For 4 mod 6: $\{4, 10, 16, 22, \ldots\} \cap S = \{40, 46, 52, \ldots\}$

Fix a numerical semigroup S with m(S) = m.

Definition

The Apéry set of S is

$$\mathsf{Ap}(S) = \{a \in S : a - m \notin S\}$$

If $S = \langle 6, 9, 20 \rangle$, then

$$\mathsf{Ap}(S) = \{0, 49, 20, 9, 40, 29\}$$

For 2 mod 6: $\{2, 8, 14, 20, 26, 32, \ldots\} \cap S = \{20, 26, 32, \ldots\}$ For 3 mod 6: $\{3, 9, 15, 21, \ldots\} \cap S = \{9, 15, 21, \ldots\}$ For 4 mod 6: $\{4, 10, 16, 22, \ldots\} \cap S = \{40, 46, 52, \ldots\}$

Fix a numerical semigroup S with m(S) = m.

Definition

The Apéry set of S is

$$\mathsf{Ap}(S) = \{a \in S : a - m \notin S\}$$

If $S = \langle 6, 9, 20 \rangle$, then

$$\mathsf{Ap}(S) = \{0, 49, 20, 9, 40, 29\}$$

For 2 mod 6: $\{2, 8, 14, 20, 26, 32, \ldots\} \cap S = \{20, 26, 32, \ldots\}$ For 3 mod 6: $\{3, 9, 15, 21, \ldots\} \cap S = \{9, 15, 21, \ldots\}$ For 4 mod 6: $\{4, 10, 16, 22, \ldots\} \cap S = \{40, 46, 52, \ldots\}$

Fix a numerical semigroup S with m(S) = m.

Definition

The Apéry set of S is

$$\mathsf{Ap}(S) = \{a \in S : a - m \notin S\}$$

If $S = \langle 6, 9, 20 \rangle$, then

$$\mathsf{Ap}(S) = \{0, 49, 20, 9, 40, 29\}$$

For 2 mod 6: $\{2, 8, 14, 20, 26, 32, \ldots\} \cap S = \{20, 26, 32, \ldots\}$ For 3 mod 6: $\{3, 9, 15, 21, \ldots\} \cap S = \{9, 15, 21, \ldots\}$ For 4 mod 6: $\{4, 10, 16, 22, \ldots\} \cap S = \{40, 46, 52, \ldots\}$

Observations:

Fix a numerical semigroup S with m(S) = m.

Definition

The Apéry set of S is

$$\mathsf{Ap}(S) = \{a \in S : a - m \notin S\}$$

If $S = \langle 6, 9, 20 \rangle$, then

$$\mathsf{Ap}(S) = \{0, 49, 20, 9, 40, 29\}$$

For 2 mod 6: $\{2, 8, 14, 20, 26, 32, \ldots\} \cap S = \{20, 26, 32, \ldots\}$ For 3 mod 6: $\{3, 9, 15, 21, \ldots\} \cap S = \{9, 15, 21, \ldots\}$ For 4 mod 6: $\{4, 10, 16, 22, \ldots\} \cap S = \{40, 46, 52, \ldots\}$

Observations:

• The elements of Ap(S) are distinct modulo m

Fix a numerical semigroup S with m(S) = m.

Definition

The Apéry set of S is

$$\mathsf{Ap}(S) = \{a \in S : a - m \notin S\}$$

If $S = \langle 6, 9, 20 \rangle$, then

$$\mathsf{Ap}(S) = \{0, 49, 20, 9, 40, 29\}$$

For 2 mod 6: $\{2, 8, 14, 20, 26, 32, \ldots\} \cap S = \{20, 26, 32, \ldots\}$ For 3 mod 6: $\{3, 9, 15, 21, \ldots\} \cap S = \{9, 15, 21, \ldots\}$ For 4 mod 6: $\{4, 10, 16, 22, \ldots\} \cap S = \{40, 46, 52, \ldots\}$

Observations:

- The elements of Ap(S) are distinct modulo m
- $|\operatorname{Ap}(S)| = m$

Fix a numerical semigroup S with m(S) = m.

Definition

The Apéry set of S is

$$\mathsf{Ap}(S) = \{a \in S : a - m \notin S\}$$

Fix a numerical semigroup S with m(S) = m.

Definition

The Apéry set of S is

$$\mathsf{Ap}(S) = \{a \in S : a - m \notin S\}$$

Many things can be easily recovered from the Apéry set.

Fix a numerical semigroup S with m(S) = m.

Definition

The Apéry set of S is

$$\mathsf{Ap}(S) = \{a \in S : a - m \notin S\}$$

Many things can be easily recovered from the Apéry set.

• Fast membership test:

 $n \in S$ if $n \ge a$ for $a \in Ap(S)$ with $a \equiv n \mod m$

Fix a numerical semigroup S with m(S) = m.

Definition

The Apéry set of S is

$$\mathsf{Ap}(S) = \{a \in S : a - m \notin S\}$$

Many things can be easily recovered from the Apéry set.

• Fast membership test:

 $n \in S$ if $n \ge a$ for $a \in Ap(S)$ with $a \equiv n \mod m$

• Frobenius number: F(S) = max(Ap(S)) - m

Fix a numerical semigroup S with m(S) = m.

Definition

The Apéry set of S is

$$\mathsf{Ap}(S) = \{a \in S : a - m \notin S\}$$

Many things can be easily recovered from the Apéry set.

• Fast membership test:

 $n \in S$ if $n \ge a$ for $a \in Ap(S)$ with $a \equiv n \mod m$

- Frobenius number: F(S) = max(Ap(S)) m
- Number of gaps (the genus):

$$g(S) = |\mathbb{N} \setminus S| = \sum_{a \in Ap(S)} \left\lfloor \frac{a}{m} \right\rfloor$$

1 - 1

Fix a numerical semigroup S with m(S) = m.

Definition

The Apéry set of S is

$$\mathsf{Ap}(S) = \{a \in S : a - m \notin S\}$$

Many things can be easily recovered from the Apéry set.

• Fast membership test:

 $n \in S$ if $n \ge a$ for $a \in Ap(S)$ with $a \equiv n \mod m$

• Frobenius number: F(S) = max(Ap(S)) - m

Number of gaps (the genus):

$$g(S) = |\mathbb{N} \setminus S| = \sum_{a \in Ap(S)} \left\lfloor \frac{a}{m} \right\rfloor$$

The Apéry set is a "one stop shop" for computation.

Is $A = \{0, 11, 7, 23, 19\}$ the Apéry set of some numerical semigroup?

Is $A = \{0, 11, 7, 23, 19\}$ the Apéry set of some numerical semigroup? m = |A| = 5, $a_1 = 11$, $a_2 = 7$, $a_3 = 23$, $a_4 = 19$

Is $\{0, 13, 14, 27, 10, 11\}$ the Apéry set of some numerical semigroup? m = |A| = 6, $a_1 = 13$, $a_2 = 14$, $a_3 = 27$, $a_4 = 10$, $a_5 = 11$

Is $\{0, 13, 14, 27, 10, 11\}$ the Apéry set of some numerical semigroup? m = |A| = 6, $a_1 = 13$, $a_2 = 14$, $a_3 = 27$, $a_4 = 10$, $a_5 = 11$ but $a_4 + a_5 \equiv 3 \mod 6$ and $a_4 + a_5 < a_3$.

Is $\{0, 13, 14, 27, 10, 11\}$ the Apéry set of some numerical semigroup? m = |A| = 6, $a_1 = 13$, $a_2 = 14$, $a_3 = 27$, $a_4 = 10$, $a_5 = 11$ but $a_4 + a_5 \equiv 3 \mod 6$ and $a_4 + a_5 < a_3$.

Theorem

If $A = \{0, a_1, \dots, a_{m-1}\}$ with each $a_i > m$ and $a_i \equiv i \mod m$, then there exists a numerical semigroup S with Ap(S) = A if and only if $a_i + a_j \ge a_{i+j}$ whenever $i + j \ne 0$.

Is $\{0, 13, 14, 27, 10, 11\}$ the Apéry set of some numerical semigroup? m = |A| = 6, $a_1 = 13$, $a_2 = 14$, $a_3 = 27$, $a_4 = 10$, $a_5 = 11$ but $a_4 + a_5 \equiv 3 \mod 6$ and $a_4 + a_5 < a_3$.

Theorem

If $A = \{0, a_1, \dots, a_{m-1}\}$ with each $a_i > m$ and $a_i \equiv i \mod m$, then there exists a numerical semigroup S with Ap(S) = A if and only if $a_i + a_j \ge a_{i+j}$ whenever $i + j \ne 0$.

Big idea: the inequalities " $a_i + a_j \ge a_{i+j}$ " to define a **cone** C_m .

Definition

The Kunz cone $C_m \subseteq \mathbb{R}^{m-1}$ is a pointed cone with defining inequalities $a_i + a_j \ge a_{i+j}$ whenever $i + j \ne 0$.

$$\{S \subseteq \mathbb{Z}_{\geq 0} : \mathsf{m}(S) = m\} \longrightarrow C_m$$
$$\mathsf{Ap}(S) = \{0, a_1, \dots, a_{m-1}\} \longmapsto (a_1, \dots, a_{m-1})$$

Definition

The Kunz cone $C_m \subseteq \mathbb{R}^{m-1}$ is a pointed cone with defining inequalities $a_i + a_j \ge a_{i+j}$ whenever $i + j \ne 0$. $\{S \subseteq \mathbb{Z}_{\ge 0} : m(S) = m\} \longrightarrow C_m$ $Ap(S) = \{0, a_1, \dots, a_{m-1}\} \longmapsto (a_1, \dots, a_{m-1})$ Example: C_3

Definition

The Kunz cone $C_m \subseteq \mathbb{R}^{m-1}$ is a pointed cone with defining inequalities $a_i + a_i \ge a_{i+i}$ whenever $i + j \ne 0$. $\{S \subseteq \mathbb{Z}_{\geq 0} : \mathsf{m}(S) = m\} \longrightarrow C_m$ $\mathsf{Ap}(S) = \{0, a_1, \dots, a_{m-1}\} \longmapsto (a_1, \dots, a_{m-1})$ Example: C_3 $S = \langle 3, 5, 7 \rangle$ $Ap(S) = \{0, 7, 5\}$ 50' 202 2 01

Definition

The Kunz cone $C_m \subseteq \mathbb{R}^{m-1}$ is a pointed cone with defining inequalities $a_i + a_i \ge a_{i+i}$ whenever $i + j \ne 0$. $\{S \subseteq \mathbb{Z}_{\geq 0} : \mathsf{m}(S) = m\} \longrightarrow C_m$ $Ap(S) = \{\overline{0}, a_1, \dots, a_{m-1}\} \mapsto (a_1, \dots, a_{m-1})$ Example: C_3 $S = \langle 3, 5, 7 \rangle$ $Ap(S) = \{0, 7, 5\}$ $S = \langle 3, 4 \rangle$ $Ap(S) = \{0, 4, 8\}$ 50' 202 2 01

Definition

The Kunz cone $C_m \subseteq \mathbb{R}^{m-1}$ is a pointed cone with defining inequalities $a_i + a_j \ge a_{i+j}$ whenever $i + j \ne 0$.

$$\{S \subseteq \mathbb{Z}_{\geq 0} : \mathsf{m}(S) = m\} \longrightarrow C_m$$
$$\mathsf{Ap}(S) = \{0, a_1, \dots, a_{m-1}\} \longmapsto (a_1, \dots, a_{m-1})$$
Kunz cone

Definition

The Kunz cone $C_m \subseteq \mathbb{R}^{m-1}$ is a pointed cone with defining inequalities $a_i + a_j \ge a_{i+j}$ whenever $i + j \ne 0$.

$$\begin{cases} S \subseteq \mathbb{Z}_{\geq 0} : \mathsf{m}(S) = m \} & \longrightarrow & C_m \\ \mathsf{Ap}(S) = \{0, a_1, \dots, a_{m-1}\} & \longmapsto & (a_1, \dots, a_{m-1}) \end{cases}$$

Example: C₄

Question

Question

When are numerical semigroups in (the relative interior of) the same face?

Big picture: "moduli space" approach for studying XYZ's

- Define a space with XYZ's as points
 Small changes to an XYZ → small movements in space
- Let geometric/topological structure inform study of XYZ's

May 7, 2024

Question

When are numerical semigroups in (the relative interior of) the same face?

Big picture: "moduli space" approach for studying XYZ's

- Define a space with XYZ's as points
 Small changes to an XYZ → small movements in space
- Let geometric/topological structure inform study of XYZ's

Basic example: $\operatorname{GL}_n(\mathbb{R}) \hookrightarrow \mathbb{R}^{n^2}$

Question

When are numerical semigroups in (the relative interior of) the same face?

Big picture: "moduli space" approach for studying XYZ's

- Define a space with XYZ's as points
 Small changes to an XYZ → small movements in space
- Let geometric/topological structure inform study of XYZ's

Basic example: $GL_n(\mathbb{R}) \hookrightarrow \mathbb{R}^{n^2}$ More interesting example: C_m

Question

Question

When are numerical semigroups in (the relative interior of) the same face?

Motivation: $S \in Int(C_m)$ if and only if S has max embedding dimension

Question

When are numerical semigroups in (the relative interior of) the same face?

Motivation: $S \in Int(C_m)$ if and only if S has max embedding dimension If $S = \langle n_1, \ldots, n_k \rangle$, then $n_i \not\equiv n_i \mod n_1 \implies k \le m(S)$

May 7, 2024

Question

When are numerical semigroups in (the relative interior of) the same face?

Motivation: $S \in Int(C_m)$ if and only if S has max embedding dimension If $S = \langle n_1, \dots, n_k \rangle$, then $n_i \neq n_j \mod n_1 \implies k \leq m(S)$

If k = m(S), then S has max embedding dimension

May 7, 2024

Question

When are numerical semigroups in (the relative interior of) the same face?

Motivation: $S \in Int(C_m)$ if and only if S has max embedding dimension If $S = \langle n_1, \dots, n_k \rangle$, then $n_i \not\equiv n_j \mod n_1 \implies k \le m(S)$ If k = m(S), then S has max embedding dimension $S = \langle m, a_1, \dots, a_{m-1} \rangle$ where $Ap(S) = \{0, a_1, \dots, a_{m-1}\}$

Question

When are numerical semigroups in (the relative interior of) the same face?

Motivation: $S \in Int(C_m)$ if and only if S has max embedding dimension If $S = \langle n_1, \dots, n_k \rangle$, then $n_i \not\equiv n_j \mod n_1 \implies k \le m(S)$ If k = m(S), then S has max embedding dimension $S = \langle m, a_1, \dots, a_{m-1} \rangle$ where $Ap(S) = \{0, a_1, \dots, a_{m-1}\}$

Geometrically: "most" numerical semigroups with m(S) = m are MED

Question

When are numerical semigroups in (the relative interior of) the same face?

Motivation: $S \in Int(C_m)$ if and only if S has max embedding dimension If $S = \langle n_1, \dots, n_k \rangle$, then $n_i \not\equiv n_j \mod n_1 \implies k \le m(S)$ If k = m(S), then S has max embedding dimension $S = \langle m, a_1, \dots, a_{m-1} \rangle$ where $Ap(S) = \{0, a_1, \dots, a_{m-1}\}$ Geometrically: "most" numerical semigroups with m(S) = m are MED What about the other faces?

May 7, 2024

Question

Question

Example:
$$S = \langle 4, 10, 11, 13 \rangle$$

 $Ap(S) = \{0, 13, 10, 11\}$
 $a_1 = 13, a_2 = 10, a_3 = 11$
 $2a_1 > a_2$
 $a_1 + a_2 > a_3$
 $a_2 + a_3 > a_1$

Question

Example:
$$S = \langle 4, 10, 11, 13 \rangle$$

 $Ap(S) = \{0, 13, 10, 11\}$
 $a_1 = 13, a_2 = 10, a_3 = 11$
Example: $S = \langle 4, 10, 13 \rangle$
 $Ap(S) = \{0, 13, 10, 23\}$
 $a_1 = 13, a_2 = 10, a_3 = 23$
 $2a_1 > a_2$
 $2a_1 > a_2$
 $a_1 + a_2 > a_3$
 $2a_1 > a_2$
 $a_1 + a_2 = a_3$
 $a_1 + a_2 = a_3$
 $a_2 + a_3 > a_1$

Question

Example:
$$S = \langle 4, 10, 11, 13 \rangle$$

Ap $(S) = \{0, 13, 10, 11\}$
 $a_1 = 13, a_2 = 10, a_3 = 11$
Example: $S = \langle 4, 10, 13 \rangle$
Ap $(S) = \{0, 13, 10, 23\}$
 $a_1 = 13, a_2 = 10, a_3 = 23$
Example: $S = \langle 4, 13 \rangle$
Ap $(S) = \{0, 13, 26, 39\}$
 $a_1 = 13, a_2 = 26, a_3 = 39$
 $2a_1 > a_2$
 $a_1 + a_2 = a_3$
 $a_1 + a_2 = a_3$
 $a_2 + a_3 > a_1$

Question

Question

When are numerical semigroups in (the relative interior of) the same face?

Definition

The *Apéry poset* of *S*: define $a \leq a'$ whenever $a' - a \in S$.

Question

Question

$$S = \langle 6, 9, 20 \rangle$$

Ap $(S) = \{0, 49, 20, 9, 40, 29\}$

$$S' = \langle 6, 26, 27
angle$$

Ap $(S') = \{0, 79, 26, 27, 52, 53\}$

Question

When are numerical semigroups in (the relative interior of) the same face?

$$S = \langle 6, 9, 20
angle$$

Ap $(S) = \{0, 49, 20, 9, 40, 29\}$

 $\begin{array}{l} S' = \langle 6, 26, 27 \rangle \\ \mathsf{Ap}(S') = \{0, 79, 26, 27, 52, 53\} \end{array}$

Question

Question

When are numerical semigroups in (the relative interior of) the same face?

The *Kunz poset* of *S*: use ground set \mathbb{Z}_m instead of Ap(*S*).

Question

When are numerical semigroups in (the relative interior of) the same face?

Theorem (Bruns–García-Sánchez–O.–Wilburne)

Numerical semigroups lie in the relative interior of the same face of C_m if and only if their Kunz posets are identical.

Question

When are numerical semigroups in (the relative interior of) the same face?

The *Kunz poset* of *S*: use ground set \mathbb{Z}_m instead of Ap(*S*).

Theorem (Bruns–García-Sánchez–O.–Wilburne)

Numerical semigroups lie in the relative interior of the same face of C_m if and only if their Kunz posets are identical.

Question

When are numerical semigroups in (the relative interior of) the same face?

Defining facet equations:

$$2a_2 = a_4$$

$$a_2 + a_3 = a_5$$

$$a_2 + a_5 = a_1$$

 $a_3 + a_4 = a_1$

The *Kunz poset* of *S*: use ground set \mathbb{Z}_m instead of Ap(*S*).

Theorem (Bruns–García-Sánchez–O.–Wilburne)

Numerical semigroups lie in the relative interior of the same face of C_m if and only if their Kunz posets are identical.

Christopher O'Neill (SDSU) Classifying numerical semigroups using polyhe May 7, 2024

Question

When are numerical semigroups in (the relative interior of) the same face?

The *Kunz poset* of *S*: use ground set \mathbb{Z}_m instead of Ap(*S*).

Theorem (Bruns–García-Sánchez–O.–Wilburne)

Numerical semigroups lie in the relative interior of the same face of C_m if and only if their Kunz posets are identical.

 C_3 and C_4

Genus $g = g(S) = |\mathbb{Z}_{\geq 0} \setminus S|$: number of "gaps" of S.

Genus $g = g(S) = |\mathbb{Z}_{\geq 0} \setminus S|$: number of "gaps" of S. $n_g = \#$ of numerical semigroups with genus g.

Genus $g = g(S) = |\mathbb{Z}_{\geq 0} \setminus S|$: number of "gaps" of S. $n_g = \#$ of numerical semigroups with genus g. Example: $n_3 = 4$

$\langle 2,7 angle = \{0,$	2, 4,	$6, 7, 8, \ldots \}$
$\langle 3,4\rangle = \{0,$	3,4,	$6,7,8,\ldots\}$
$\langle 3,5,7\rangle = \{0,$	3, 5	, 6, 7, 8, }
$\langle 4,5,6,7 angle = \{0,$	4, 5	, 6, 7, 8, }

Genus $g = g(S) = |\mathbb{Z}_{\geq 0} \setminus S|$: number of "gaps" of S. $n_g = \#$ of numerical semigroups with genus g. Example: $n_3 = 4$

$$\begin{array}{ll} \langle 2,7\rangle = \{0, \ 2, \ 4, \ 6,7,8,\ldots\} \\ \langle 3,4\rangle = \{0, \ 3,4, \ 6,7,8,\ldots\} \\ \langle 3,5,7\rangle = \{0, \ 3, \ 5,6,7,8,\ldots\} \\ \langle 4,5,6,7\rangle = \{0, \ 4,5,6,7,8,\ldots\} \end{array}$$

Suspected: $n_g \ge n_{g-1} + n_{g-2}$ for all g (verified for $g \le 70$)

May 7, 2024

Genus $g = g(S) = |\mathbb{Z}_{\geq 0} \setminus S|$: number of "gaps" of S. $n_g = \#$ of numerical semigroups with genus g. Example: $n_3 = 4$

$\langle 2,7 angle = \{0,$	2, 4, 6,7,8,}
$\langle {\bf 3}, {\bf 4} \rangle = \{ {\bf 0},$	$3, 4, 6, 7, 8, \ldots \}$
$\langle 3,5,7\rangle = \{0,$	$3, \ 5, 6, 7, 8, \ldots \}$
$\langle 4,5,6,7 angle = \{0,$	$4, 5, 6, 7, 8, \ldots\}$

Suspected: $n_g \ge n_{g-1} + n_{g-2}$ for all g (verified for $g \le 70$) Known: $\lim_{g\to\infty} \frac{n_{g+1}}{n_g}$ = the golden ratio

Genus $g = g(S) = |\mathbb{Z}_{\geq 0} \setminus S|$: number of "gaps" of S. $n_g = \#$ of numerical semigroups with genus g. Example: $n_3 = 4$

$\langle 2,7 angle = \{0,$	2, 4, 6,7,8	3, }
$\langle {\bf 3}, {\bf 4} \rangle = \{ {\bf 0},$	3,4, 6,7,8	3,}
$\langle 3,5,7\rangle = \{0,$	3, 5, 6, 7, 8	3,}
$\langle 4,5,6,7\rangle = \{0,$	4, 5, 6, 7, 8	3, }

Suspected: $n_g \ge n_{g-1} + n_{g-2}$ for all g (verified for $g \le 70$) Known: $\lim_{g\to\infty} \frac{n_{g+1}}{n_g}$ = the golden ratio

Conjecture (Bras-Amoros, 2008)

For all g, we have $n_g \ge n_{g-1}$.

Genus $g = g(S) = |\mathbb{Z}_{\geq 0} \setminus S|$: number of "gaps" of S. $n_g = \#$ of numerical semigroups with genus g. Example: $n_3 = 4$

$\langle 2,7 angle = \{0,$	2, 4, 6,7,8,}
$\langle {\bf 3}, {\bf 4} \rangle = \{ {\bf 0},$	$3, 4, 6, 7, 8, \ldots \}$
$\langle 3,5,7\rangle = \{0,$	$3, \ 5, 6, 7, 8, \ldots \}$
$\langle 4,5,6,7 angle = \{0,$	$4, 5, 6, 7, 8, \ldots\}$

Suspected: $n_g \ge n_{g-1} + n_{g-2}$ for all g (verified for $g \le 70$) Known: $\lim_{g\to\infty} \frac{n_{g+1}}{n_g}$ = the golden ratio

Conjecture (Bras-Amoros, 2008)

For all g, we have $n_g \ge n_{g-1}$.

Not true for $n'_f = \#$ of numerical semigroups with Frobenius number f $n'_{11} = 51$ $n'_{12} = 40$ $n'_{13} = 106$

May 7, 2024

Wilf's Conjecture

For any
$$S = \langle n_1, \ldots, n_k \rangle$$
, we have $F(S) + 1 \le k(F(S) + 1 - g(S))$.
Wilf's Conjecture

For any
$$S = \langle n_1, \ldots, n_k \rangle$$
, we have $F(S) + 1 \leq k(F(S) + 1 - g(S))$.

Equivalently,

$$\frac{1}{k} \leq \underbrace{\frac{\mathsf{F}(S) + 1 - \mathsf{g}(S)}{\mathsf{F}(S) + 1}}_{\% \text{ of } [0, \mathcal{F}(S)] \text{ in } S}$$

Wilf's Conjecture

For any
$$S = \langle n_1, \ldots, n_k \rangle$$
, we have $F(S) + 1 \le k(F(S) + 1 - g(S))$.

Equivalently,

Wilf's Conjecture

For any
$$S = \langle n_1, \ldots, n_k \rangle$$
, we have $F(S) + 1 \le k(F(S) + 1 - g(S))$.

Equivalently,

Equality holds when:

Wilf's Conjecture

For any
$$S = \langle n_1, \ldots, n_k \rangle$$
, we have $F(S) + 1 \le k(F(S) + 1 - g(S))$.

Equivalently,

16 / 23

Wilf's Conjecture

For any
$$S = \langle n_1, \ldots, n_k \rangle$$
, we have $F(S) + 1 \le k(F(S) + 1 - g(S))$.

Equivalently,

Wilf's Conjecture

For any
$$S = \langle n_1, \ldots, n_k \rangle$$
, we have $F(S) + 1 \le k(F(S) + 1 - g(S))$.

Equivalently,

Christopher O'Neill (SDSU) Classifying numerical semigroups using polyhe

Wilf's Conjecture

For any
$$S = \langle n_1, \ldots, n_k \rangle$$
, we have $\mathsf{F}(S) + 1 \leq k(\mathsf{F}(S) + 1 - \mathsf{g}(S))$.

Bras-Amoros Conjecture

For all g, we have $n_g \ge n_{g-1}$.

May 7, 2024

Wilf's Conjecture

For any
$$S = \langle n_1, \ldots, n_k \rangle$$
, we have $\mathsf{F}(S) + 1 \leq k(\mathsf{F}(S) + 1 - \mathsf{g}(S))$.

Bras-Amoros Conjecture

For all g, we have $n_g \ge n_{g-1}$.

Direct ties to geometry: if S corresponds to $x = (a_1, \ldots, a_{m-1}) \in C_m$,

$$g(S) = ||x||_1 - \frac{1}{2}m(m-1), \qquad F(S) = ||x||_{\infty} - m,$$

and # generators k is determined by the face $F \subseteq C_m$ containing x.

Wilf's Conjecture

For any
$$S = \langle n_1, \ldots, n_k
angle$$
, we have $\mathsf{F}(S) + 1 \leq k(\mathsf{F}(S) + 1 - \mathsf{g}(S)).$

Bras-Amoros Conjecture

For all g, we have $n_g \ge n_{g-1}$.

Direct ties to geometry: if S corresponds to $x = (a_1, \ldots, a_{m-1}) \in C_m$,

$$g(S) = ||x||_1 - \frac{1}{2}m(m-1), \qquad F(S) = ||x||_{\infty} - m,$$

and # generators k is determined by the face $F \subseteq C_m$ containing x.

Theorem (Bruns-García-Sánchez-O.-Wilburne, 2020)

Wilf's conjecture holds for all numerical semigroups S with $m \leq 18$.

Wilf's Conjecture

For any
$$S = \langle n_1, \ldots, n_k \rangle$$
, we have $\mathsf{F}(S) + 1 \leq k(\mathsf{F}(S) + 1 - \mathsf{g}(S)).$

Bras-Amoros Conjecture

For all g, we have $n_g \ge n_{g-1}$.

Direct ties to geometry: if S corresponds to $x = (a_1, \ldots, a_{m-1}) \in C_m$,

$$g(S) = ||x||_1 - \frac{1}{2}m(m-1), \qquad F(S) = ||x||_{\infty} - m,$$

and # generators k is determined by the face $F \subseteq C_m$ containing x.

Theorem (Bruns-García-Sánchez-O.-Wilburne, 2020)

Wilf's conjecture holds for all numerical semigroups S with $m \leq 18$.

Conjecture (Kaplan)

For fixed m, the number of numerical semigroups g gaps is non-decreasing.

Christopher O'Neill (SDSU) Classifying numerical semigroups using polyhe

What properties are determined by the Kunz poset *P* of $S = \langle n_1, \ldots, n_k \rangle$?

• k = 1 + # atoms of P

What properties are determined by the Kunz poset *P* of $S = \langle n_1, \ldots, n_k \rangle$?

• k = 1 + # atoms of P

- k = 1 + # atoms of P
- t(S) = # maximal elements (Cohen-Macaulay type of S)

- k = 1 + # atoms of P
- t(S) = # maximal elements (Cohen-Macaulay type of S)
- Symmetric/Gorenstein?

- k = 1 + # atoms of P
- t(S) = # maximal elements (Cohen-Macaulay type of S)
- Symmetric/Gorenstein?
- Complete intersection?
- Generalized arithmetical?

What properties are determined by the Kunz poset *P* of $S = \langle n_1, \ldots, n_k \rangle$?

- k = 1 + # atoms of P
- t(S) = # maximal elements (Cohen-Macaulay type of S)
- Symmetric/Gorenstein?
- Complete intersection?
- Generalized arithmetical?

• Minimal binomial generators of
the *defining toric ideal* of *S*:
$$I_S = \ker (\mathbb{k}[\overline{x}] \to \mathbb{k}[t])$$

 $S = \langle 6, 9, 20 \rangle$ $I_S = \langle x^3 - y^2, x^4 y^4 - z^3 \rangle$ $\subseteq \mathbb{k}[x, y, z]$

What properties are determined by the Kunz poset *P* of $S = \langle n_1, \ldots, n_k \rangle$?

- k = 1 + # atoms of P
- t(S) = # maximal elements (Cohen-Macaulay type of S)
- Symmetric/Gorenstein?
- Complete intersection?
- Generalized arithmetical?

• Minimal binomial generators of the *defining toric ideal* of *S*: $I_S = \ker (\mathbb{k}[\overline{x}] \to \mathbb{k}[t])$ $x_i \mapsto t^{n_i}$

- k = 1 + # atoms of P
- t(S) = # maximal elements (Cohen-Macaulay type of S)
- Symmetric/Gorenstein?
- Complete intersection?
- Generalized arithmetical?

What properties are determined by the Kunz poset *P* of $S = \langle n_1, \ldots, n_k \rangle$?

- k = 1 + # atoms of P
- t(S) = # maximal elements (Cohen-Macaulay type of S)
- Symmetric/Gorenstein?
- Complete intersection?
- Generalized arithmetical?

• Minimal binomial generators of the *defining toric ideal* of *S*: $I_S = \ker (\mathbb{k}[\overline{x}] \to \mathbb{k}[t])$ $x_i \mapsto t^{n_i}$

What properties are determined by the Kunz poset *P* of $S = \langle n_1, \ldots, n_k \rangle$?

- k = 1 + # atoms of P
- t(S) = # maximal elements (Cohen-Macaulay type of S)
- Symmetric/Gorenstein?
- Complete intersection?
- Generalized arithmetical?

• Minimal binomial generators of the *defining toric ideal* of *S*: $I_S = \ker (\mathbb{k}[\overline{x}] \to \mathbb{k}[t])$ $x_i \mapsto t^{n_i}$

$$S = \langle 10, a_2, a_3, a_4 \rangle$$

$$I_S = \langle x_2^2 - y^* x_4, x_2 x_4 - x_3^2 x_4 - y^*, x_4^3 - y^* \rangle$$

$$\subseteq \mathbb{k}[y, x_2, x_3, x_4]$$

 x_3^2 ,

What properties are determined by the Kunz poset *P* of $S = \langle n_1, \ldots, n_k \rangle$?

- k = 1 + # atoms of P
- t(S) = # maximal elements (Cohen-Macaulay type of S)
- Symmetric/Gorenstein?
- Complete intersection?
- Generalized arithmetical?

- Minimal binomial generators of the *defining toric ideal* of *S*: $I_S = \ker (\mathbb{k}[\overline{x}] \to \mathbb{k}[t])$ $x_i \mapsto t^{n_i}$
- Betti numbers of I_S over $\Bbbk[\overline{x}]$

May 7, 2024

- k = 1 + # atoms of P
- t(S) = # maximal elements (Cohen-Macaulay type of S)
- Symmetric/Gorenstein?
- Complete intersection?
- Generalized arithmetical?

- Minimal binomial generators of the *defining toric ideal* of *S*: $I_S = \ker (\mathbb{k}[\overline{x}] \to \mathbb{k}[t])$ $x_i \mapsto t^{n_i}$
- Betti numbers of I_S over $\Bbbk[\overline{x}]$
- Betti numbers of \Bbbk over $\Bbbk[\overline{x}]/I_S$

Fix a numerical semigroup S with

$$Ap(S) = \{0, a_1, \ldots, a_{m-1}\}, \qquad a_i \equiv i \mod m$$

Fix a numerical semigroup S with

$$\begin{array}{ll} \mathsf{Ap}(S) = \{0, a_1, \dots, a_{m-1}\}, & a_i \equiv i \bmod m \\ \mathsf{Defining toric ideal:} \ I_S = \ker(\Bbbk[y, x_1, \dots, x_{m-1}] \to \Bbbk[t]) \\ & y \mapsto t^m & x_i \mapsto t^{a_i} \end{array}$$

Fix a numerical semigroup S with

$$\begin{array}{ll} \mathsf{Ap}(S) = \{0, a_1, \dots, a_{m-1}\}, & a_i \equiv i \bmod m \\ \mathsf{Defining \ toric \ ideal:} \ I_S = \ker(\Bbbk[y, x_1, \dots, x_{m-1}] \to \Bbbk[t]) \\ & y \mapsto t^m & x_i \mapsto t^{a_i} \end{array}$$

Fix a numerical semigroup S with

$$\begin{array}{ll} \mathsf{Ap}(S) = \{0, a_1, \dots, a_{m-1}\}, & a_i \equiv i \bmod m \\ \mathsf{Defining toric ideal:} \ I_S = \ker(\Bbbk[y, x_1, \dots, x_{m-1}] \to \Bbbk[t]) \\ & y \mapsto t^m & x_i \mapsto t^{a_i} \end{array}$$

Kunz: $I_S + \langle y \rangle = I_T + \langle y \rangle$ if S, T are interior to the same face of C_m , so $\beta_i(I_S) = \beta_i(I_S + \langle y \rangle) = \beta_i(I_T + \langle y \rangle) = \beta_i(I_T)$

Example: $S = \langle 5, 6, 9 \rangle$, $I_S = \langle x_1 x_4 - y^3, x_1^3 - x_4^2, x_1^2 - x_2, x_1^3 - x_3 \rangle$

Fix a numerical semigroup S with

$$\begin{array}{ll} \mathsf{Ap}(S) = \{0, a_1, \dots, a_{m-1}\}, & a_i \equiv i \bmod m \\ \mathsf{Defining toric ideal:} \ I_S = \ker(\Bbbk[y, x_1, \dots, x_{m-1}] \to \Bbbk[t]) \\ & y \mapsto t^m & x_i \mapsto t^{a_i} \end{array}$$

Kunz: $I_S + \langle y \rangle = I_T + \langle y \rangle$ if S, T are interior to the same face of C_m , so $\beta_i(I_S) = \beta_i(I_S + \langle y \rangle) = \beta_i(I_T + \langle y \rangle) = \beta_i(I_T)$

Example: $S = \langle 5, 6, 9 \rangle$, $I_S = \langle x_1 x_4 - y^3, x_1^3 - x_4^2, x_1^2 - x_2, x_1^3 - x_3 \rangle$

Fix a numerical semigroup S with

$$\begin{array}{ll} \mathsf{Ap}(S) = \{0, a_1, \dots, a_{m-1}\}, & a_i \equiv i \bmod m \\ \mathsf{Defining toric ideal:} \ I_S = \ker(\Bbbk[y, x_1, \dots, x_{m-1}] \to \Bbbk[t]) \\ & y \mapsto t^m & x_i \mapsto t^{a_i} \end{array}$$

Fix a numerical semigroup S with

$$\begin{array}{ll} \mathsf{Ap}(S) = \{0, a_1, \dots, a_{m-1}\}, & a_i \equiv i \bmod m \\ \mathsf{Defining toric ideal:} \ I_S = \ker(\Bbbk[y, x_1, \dots, x_{m-1}] \to \Bbbk[t]) \\ & y \mapsto t^m & x_i \mapsto t^{a_i} \end{array}$$

Fix a numerical semigroup S with

$$\begin{array}{ll} \mathsf{Ap}(S) = \{0, a_1, \dots, a_{m-1}\}, & a_i \equiv i \bmod m \\ \mathsf{Defining toric ideal:} \ I_S = \ker(\Bbbk[y, x_1, \dots, x_{m-1}] \to \Bbbk[t]) \\ & y \mapsto t^m & x_i \mapsto t^{a_i} \end{array}$$

Fix a numerical semigroup S with

$$\begin{array}{ll} \mathsf{Ap}(S) = \{0, a_1, \dots, a_{m-1}\}, & a_i \equiv i \bmod m \\ \mathsf{Defining toric ideal:} \ I_S = \ker(\Bbbk[y, x_1, \dots, x_{m-1}] \to \Bbbk[t]) \\ & y \mapsto t^m & x_i \mapsto t^{a_i} \end{array}$$

Fix a numerical semigroup S with

$$\begin{array}{ll} \mathsf{Ap}(S) = \{0, a_1, \dots, a_{m-1}\}, & a_i \equiv i \bmod m \\ \mathsf{Defining toric ideal:} \ I_S = \ker(\Bbbk[y, x_1, \dots, x_{m-1}] \to \Bbbk[t]) \\ & y \mapsto t^m & x_i \mapsto t^{a_i} \end{array}$$

Fix a numerical semigroup S with

$$\begin{array}{ll} \mathsf{Ap}(S) = \{0, a_1, \dots, a_{m-1}\}, & a_i \equiv i \bmod m \\ \mathsf{Defining \ toric \ ideal:} \ I_S = \ker(\Bbbk[y, x_1, \dots, x_{m-1}] \to \Bbbk[t]) \\ & y \mapsto t^m & x_i \mapsto t^{a_i} \end{array}$$

The Apéry resolution for I_S , minimal if and only if S is MED:

May 7, 2024

Fix a numerical semigroup S with

$$\begin{array}{ll} \mathsf{Ap}(S) = \{0, a_1, \dots, a_{m-1}\}, & a_i \equiv i \bmod m \\ \mathsf{Defining \ toric \ ideal:} \ I_S = \ker(\Bbbk[y, x_1, \dots, x_{m-1}] \to \Bbbk[t]) \\ & y \mapsto t^m & x_i \mapsto t^{a_i} \end{array}$$

The Apéry resolution for I_S , minimal if and only if S is MED:

$$\begin{array}{c} 1,1 & 2,2 & 3,3 & 2,1 & 3,1 & 3,2 \\ & & [x_1^2 - x_2y^* & x_2^2 - y^* & x_3^2 - x_2y^* & x_1x_2 - x_3y^* & x_1x_3 - y^* & x_2x_3 - x_1y^*] \\ 0 \leftarrow R \leftarrow & & & & \\ 1,12 & 1,13 & 2,12 & 2,23 & 3,13 & 3,23 & 2,13 & 3,12 & 1,13 \\ 1,12 & [-x_2 & -x_3 & y^* & y^*] \\ 1,1 & [-x_2 - x_3 & y^* & y^*] \\ -y^* & x_1 - x_3 & y^* & & \\ 3,3 & 2,1 & x_1 & x_2 - y^* & \\ 3,1 & x_1 & -x_2 & y^* & y^* & -x_3 \\ 3,2 & x_1 & -x_2 & y^* & y^* & -x_3 \\ 3,2 & y^* & x_1 & -x_3 - y^* & -x_2 \\ 3,3 & x_1 & -x_3 - y^* & -x_3 & \\ 3,2 & y^* & x_1 & -x_3 - y^* & -x_2 \\ 3,2 & y^* & x_1 & -x_3 - y^* & -x_3 \\ 3,2 & y^* & x_1 & -x_3 & y^* & -x_3 \\ 3,2 & y^* & x_1 & -x_2 & -x_3 & x_1 & x_1 \\ \end{array}$$

Can "specialize" to a minimal resolution, consistent across the face of C_m

Christopher O'Neill (SDSU) Classifying n
Fix a numerical semigroup S with

$$\begin{array}{ll} \mathsf{Ap}(S) = \{0, a_1, \dots, a_{m-1}\}, & a_i \equiv i \bmod m \\ \mathsf{Defining toric ideal:} \ I_S = \ker(\Bbbk[y, x_1, \dots, x_{m-1}] \to \Bbbk[t]) \\ & y \mapsto t^m & x_i \mapsto t^{a_i} \end{array}$$

Fix a numerical semigroup S with

$$\begin{array}{ll} \mathsf{Ap}(S) = \{0, a_1, \dots, a_{m-1}\}, & a_i \equiv i \bmod m \\ \mathsf{Defining \ toric \ ideal:} \ I_S = \ker(\Bbbk[y, x_1, \dots, x_{m-1}] \to \Bbbk[t]) \\ & y \mapsto t^m & x_i \mapsto t^{a_i} \end{array}$$

Words of caution:

Fix a numerical semigroup S with

$$\begin{array}{ll} \mathsf{Ap}(S) = \{0, a_1, \dots, a_{m-1}\}, & a_i \equiv i \bmod m \\ \mathsf{Defining \ toric \ ideal:} \ I_S = \ker(\Bbbk[y, x_1, \dots, x_{m-1}] \to \Bbbk[t]) \\ & y \mapsto t^m & x_i \mapsto t^{a_i} \end{array}$$

Words of caution:

• "the same resolution" vs. "structure consistent across the face"

Fix a numerical semigroup S with

$$\begin{array}{ll} \mathsf{Ap}(S) = \{0, a_1, \dots, a_{m-1}\}, & a_i \equiv i \bmod m \\ \mathsf{Defining \ toric \ ideal:} \ I_S = \ker(\Bbbk[y, x_1, \dots, x_{m-1}] \to \Bbbk[t]) \\ & y \mapsto t^m & x_i \mapsto t^{a_i} \end{array}$$

Words of caution:

- "the same resolution" vs. "structure consistent across the face"
- "up to isomorphism" isn't good enough

May 7, 2024

Fix a numerical semigroup S with

$$\begin{array}{ll} \mathsf{Ap}(S) = \{0, a_1, \dots, a_{m-1}\}, & a_i \equiv i \bmod m \\ \mathsf{Defining \ toric \ ideal:} \ I_S = \ker(\Bbbk[y, x_1, \dots, x_{m-1}] \to \Bbbk[t]) \\ & y \mapsto t^m & x_i \mapsto t^{a_i} \end{array}$$

Words of caution:

- "the same resolution" vs. "structure consistent across the face"
- "up to isomorphism" isn't good enough $S = \langle 4, 9, 10, 11 \rangle:$ $I_{S} = \langle x_{1}^{2} - x_{2}y^{2}, x_{2}^{2} - y^{5}, x_{3}^{2} - x_{2}y^{3}, x_{1}x_{2} - x_{3}y^{2}, x_{1}x_{3} - y^{5}, x_{2}x_{3} - x_{1}y^{3} \rangle$ $= \langle x_{1}^{2} - x_{2}y^{2}, x_{2}^{2} - y^{5}, x_{3}^{2} - x_{2}y^{3}, x_{1}x_{2} - x_{3}y^{2}, x_{1}x_{3} - x_{2}^{2}, x_{2}x_{3} - x_{1}y^{3} \rangle$

May 7, 2024

Fix a numerical semigroup S with

$$\begin{array}{ll} \mathsf{Ap}(S) = \{0, a_1, \dots, a_{m-1}\}, & a_i \equiv i \bmod m \\ \mathsf{Defining \ toric \ ideal:} \ I_S = \ker(\Bbbk[y, x_1, \dots, x_{m-1}] \to \Bbbk[t]) \\ & y \mapsto t^m & x_i \mapsto t^{a_i} \end{array}$$

Words of caution:

- "the same resolution" vs. "structure consistent across the face"
- "up to isomorphism" isn't good enough $S = \langle 4, 9, 10, 11 \rangle:$ $I_{5} = \langle x_{1}^{2} - x_{2}y^{2}, x_{2}^{2} - y^{5}, x_{3}^{2} - x_{2}y^{3}, x_{1}x_{2} - x_{3}y^{2}, x_{1}x_{3} - y^{5}, x_{2}x_{3} - x_{1}y^{3} \rangle$ $= \langle x_{1}^{2} - x_{2}y^{2}, x_{2}^{2} - y^{5}, x_{3}^{2} - x_{2}y^{3}, x_{1}x_{2} - x_{3}y^{2}, x_{1}x_{3} - x_{2}^{2}, x_{2}x_{3} - x_{1}y^{3} \rangle$
- watch the number of variables

May 7, 2024

Fix a numerical semigroup S with

$$\begin{array}{ll} \mathsf{Ap}(S) = \{0, a_1, \dots, a_{m-1}\}, & a_i \equiv i \bmod m \\ \mathsf{Defining \ toric \ ideal:} \ I_S = \ker(\Bbbk[y, x_1, \dots, x_{m-1}] \to \Bbbk[t]) \\ & y \mapsto t^m & x_i \mapsto t^{a_i} \end{array}$$

Words of caution:

- "the same resolution" vs. "structure consistent across the face"
- "up to isomorphism" isn't good enough $S = \langle 4, 9, 10, 11 \rangle:$ $I_{S} = \langle x_{1}^{2} - x_{2}y^{2}, x_{2}^{2} - y^{5}, x_{3}^{2} - x_{2}y^{3}, x_{1}x_{2} - x_{3}y^{2}, x_{1}x_{3} - y^{5}, x_{2}x_{3} - x_{1}y^{3} \rangle$ $= \langle x_{1}^{2} - x_{2}y^{2}, x_{2}^{2} - y^{5}, x_{3}^{2} - x_{2}y^{3}, x_{1}x_{2} - x_{3}y^{2}, x_{1}x_{3} - x_{2}^{2}, x_{2}x_{3} - x_{1}y^{3} \rangle$
- watch the number of variables

$$S = \langle 4, 5, 7 \rangle:$$

$$I_{S} = \langle x_{1}^{3} - x_{3}y^{2}, x_{1}x_{3} - y^{3}, x_{3}^{2} - x_{1}^{2}y, x_{1}^{2} - x_{2} \rangle \subseteq \Bbbk[y, x_{1}, x_{2}, x_{3}]$$

$$J_{S} = \langle x_{1}^{3} - x_{3}y^{2}, x_{1}x_{3} - y^{3}, x_{3}^{2} - x_{1}^{2}y \rangle \subseteq \Bbbk[y, x_{1}, x_{3}]$$

Fix a numerical semigroup
$$S = \langle m, n_1, \dots, n_k \rangle$$
 with

$$Ap(S) = \{0, a_1, \dots, a_{m-1}\}, \qquad a_i \equiv i \mod m$$
Defining toric ideal: $I_S = ker(k[y, x_1, \dots, x_{m-1}] \rightarrow k[t])$
 $y \mapsto t^m \qquad x_i \mapsto t^{a_i}$

Fix a numerical semigroup
$$S = \langle m, n_1, \dots, n_k \rangle$$
 with

$$Ap(S) = \{0, a_1, \dots, a_{m-1}\}, \qquad a_i \equiv i \mod m$$
Defining toric ideal: $I_S = ker(\Bbbk[y, x_1, \dots, x_{m-1}] \rightarrow \Bbbk[t])$
 $y \mapsto t^m \qquad x_i \mapsto t^{a_i}$

The *infinite Apéry resolution* of \Bbbk over $R = \Bbbk[S]$:

References

W. Bruns, P. García-Sánchez, C. O'Neill, D. Wilburne (2020)
Wilf's conjecture in fixed multiplicity
International Journal of Algebra and Computation 30 (2020), no. 4, 861–882. (arXiv:1903.04342)

N. Kaplan, C. O'Neill, (2021) Numerical semigroups, polyhedra, and posets I: the group cone Combinatorial Theory 1 (2021), #19. (arXiv:1912.03741)

T. Gomes, C. O'Neill, E. Torres Davila (2023) Numerical semigroups, polyhedra, and posets III: minimal presentations and face dimension.

Electronic Journal of Combinatorics 30 (2023), no. 2, #P2.5. (arXiv:2009.05921)

B. Braun, T. Gomes, E. Miller, C. O'Neill, and A. Sobieska (2023) Minimal free resolutions of numerical semigroup algebras via Apéry specialization under review. (arXiv:2310.03612)

T. Gomes, C. O'Neill, A. Sobieska, and E. Torres Dávila (2024) Infinite free resolutions over numerical semigroup algebras via specialization under review.

References

W. Bruns, P. García-Sánchez, C. O'Neill, D. Wilburne (2020)
Wilf's conjecture in fixed multiplicity
International Journal of Algebra and Computation 30 (2020), no. 4, 861–882. (arXiv:1903.04342)

N. Kaplan, C. O'Neill, (2021) Numerical semigroups, polyhedra, and posets I: the group cone Combinatorial Theory 1 (2021), #19. (arXiv:1912.03741)

T. Gomes, C. O'Neill, E. Torres Davila (2023) Numerical semigroups, polyhedra, and posets III: minimal presentations and face dimension.

Electronic Journal of Combinatorics 30 (2023), no. 2, #P2.5. (arXiv:2009.05921)

B. Braun, T. Gomes, E. Miller, C. O'Neill, and A. Sobieska (2023) Minimal free resolutions of numerical semigroup algebras via Apéry specialization under review. (arXiv:2310.03612)

T. Gomes, C. O'Neill, A. Sobieska, and E. Torres Dávila (2024) Infinite free resolutions over numerical semigroup algebras via specialization under review.

Thanks!