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Numerical semigroups

Definition
A numerical semigroup S ⊆ Z≥0: closed under addition, |Z≥0 \ S| <∞.

Example:

McN = ⟨6, 9, 20⟩ =
{

0, 6, 9, 12, 15, 18, 20, 21, 24, . . .
. . . , 36, 38, 39, 40, 41, 42, 44→

}

Example: S = ⟨6, 9, 18, 20, 32⟩

Fact
Every numerical semigroup has a unique minimal generating set.

Multiplicity: m(S) = smallest nonzero element
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Apéry sets

Fix a numerical semigroup S with m(S) = m.

Definition
The Apéry set of S is

Ap(S) = {a ∈ S : a −m /∈ S}

If S = ⟨6, 9, 20⟩, then
Ap(S) = {0, 49, 20, 9, 40, 29}

For 2 mod 6: {2, 8, 14, 20, 26, 32, . . .} ∩ S = {20, 26, 32, . . .}
For 3 mod 6: {3, 9, 15, 21, . . .} ∩ S = {9, 15, 21, . . .}
For 4 mod 6: {4, 10, 16, 22, . . .} ∩ S = {40, 46, 52, . . .}

Observations:
The elements of Ap(S) are distinct modulo m
|Ap(S)| = m
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The Apéry set of S is

Ap(S) = {a ∈ S : a −m /∈ S}

If S = ⟨6, 9, 20⟩, then
Ap(S) = {0, 49, 20, 9, 40, 29}

For 2 mod 6: {2, 8, 14, 20, 26, 32, . . .} ∩ S = {20, 26, 32, . . .}
For 3 mod 6: {3, 9, 15, 21, . . .} ∩ S = {9, 15, 21, . . .}
For 4 mod 6: {4, 10, 16, 22, . . .} ∩ S = {40, 46, 52, . . .}

Observations:
The elements of Ap(S) are distinct modulo m
|Ap(S)| = m

Christopher O’Neill (SDSU) Classifying numerical semigroups using polyhedral geometryMay 7, 2024 3 / 23
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Apéry sets

Fix a numerical semigroup S with m(S) = m.

Definition
The Apéry set of S is

Ap(S) = {a ∈ S : a −m /∈ S}

Many things can be easily recovered from the Apéry set.
Fast membership test:

n ∈ S if n ≥ a for a ∈ Ap(S) with a ≡ n mod m
Frobenius number: F(S) = max(Ap(S))−m
Number of gaps (the genus):

g(S) = |N \ S| =
∑

a∈Ap(S)

⌊ a
m

⌋
The Apéry set is a “one stop shop” for computation.

Christopher O’Neill (SDSU) Classifying numerical semigroups using polyhedral geometryMay 7, 2024 4 / 23
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Fast membership test:

n ∈ S if n ≥ a for a ∈ Ap(S) with a ≡ n mod m

Frobenius number: F(S) = max(Ap(S))−m
Number of gaps (the genus):

g(S) = |N \ S| =
∑

a∈Ap(S)

⌊ a
m

⌋
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Apéry sets

Is A = {0, 11, 7, 23, 19} the Apéry set of some numerical semigroup?

m = |A| = 5, a1 = 11, a2 = 7, a3 = 23, a4 = 19
but a1 + a2 ≡ 3 mod 5 and a1 + a2 < a3.

Is {0, 13, 14, 27, 10, 11} the Apéry set of some numerical semigroup?
m = |A| = 6, a1 = 13, a2 = 14, a3 = 27, a4 = 10, a5 = 11

but a4 + a5 ≡ 3 mod 6 and a4 + a5 < a3.

Theorem
If A = {0, a1, . . . , am−1} with each ai > m and ai ≡ i mod m, then
there exists a numerical semigroup S with Ap(S) = A if and only if

ai + aj ≥ ai+j whenever i + j ̸= 0.

Big idea: the inequalities “ai + aj ≥ ai+j” to define a cone Cm.
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Apéry sets
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Is {0, 13, 14, 27, 10, 11} the Apéry set of some numerical semigroup?
m = |A| = 6, a1 = 13, a2 = 14, a3 = 27, a4 = 10, a5 = 11

but a4 + a5 ≡ 3 mod 6 and a4 + a5 < a3.

Theorem
If A = {0, a1, . . . , am−1} with each ai > m and ai ≡ i mod m, then
there exists a numerical semigroup S with Ap(S) = A if and only if

ai + aj ≥ ai+j whenever i + j ̸= 0.

Big idea: the inequalities “ai + aj ≥ ai+j” to define a cone Cm.

Christopher O’Neill (SDSU) Classifying numerical semigroups using polyhedral geometryMay 7, 2024 5 / 23
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Is A = {0, 11, 7, 23, 19} the Apéry set of some numerical semigroup?
m = |A| = 5, a1 = 11, a2 = 7, a3 = 23, a4 = 19

but a1 + a2 ≡ 3 mod 5 and a1 + a2 < a3.

Is {0, 13, 14, 27, 10, 11} the Apéry set of some numerical semigroup?
m = |A| = 6, a1 = 13, a2 = 14, a3 = 27, a4 = 10, a5 = 11

but a4 + a5 ≡ 3 mod 6 and a4 + a5 < a3.

Theorem
If A = {0, a1, . . . , am−1} with each ai > m and ai ≡ i mod m, then
there exists a numerical semigroup S with Ap(S) = A if and only if

ai + aj ≥ ai+j whenever i + j ̸= 0.

Big idea: the inequalities “ai + aj ≥ ai+j” to define a cone Cm.

Christopher O’Neill (SDSU) Classifying numerical semigroups using polyhedral geometryMay 7, 2024 5 / 23
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Kunz cone

Definition
The Kunz cone Cm ⊆ Rm−1 is a pointed cone with defining inequalities

ai + aj ≥ ai+j whenever i + j ̸= 0.

{S ⊆ Z≥0 : m(S) = m} −→ Cm
Ap(S) = {0, a1, . . . , am−1} 7−→ (a1, . . . , am−1)

Example: C3
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The Kunz cone Cm ⊆ Rm−1 is a pointed cone with defining inequalities

ai + aj ≥ ai+j whenever i + j ̸= 0.

{S ⊆ Z≥0 : m(S) = m} −→ Cm
Ap(S) = {0, a1, . . . , am−1} 7−→ (a1, . . . , am−1)

Example: C3

S = ⟨3, 5, 7⟩
Ap(S) = {0, 7, 5}
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Kunz cone

Definition
The Kunz cone Cm ⊆ Rm−1 is a pointed cone with defining inequalities

ai + aj ≥ ai+j whenever i + j ̸= 0.

{S ⊆ Z≥0 : m(S) = m} −→ Cm
Ap(S) = {0, a1, . . . , am−1} 7−→ (a1, . . . , am−1)

Example: C3

S = ⟨3, 5, 7⟩
Ap(S) = {0, 7, 5}

S = ⟨3, 4⟩
Ap(S) = {0, 4, 8}
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Kunz cone

Definition
The Kunz cone Cm ⊆ Rm−1 is a pointed cone with defining inequalities

ai + aj ≥ ai+j whenever i + j ̸= 0.

{S ⊆ Z≥0 : m(S) = m} −→ Cm
Ap(S) = {0, a1, . . . , am−1} 7−→ (a1, . . . , am−1)

Example: C4
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Faces of the Kunz cone

Question
When are numerical semigroups in (the relative interior of) the same face?

Big picture: “moduli space” approach for studying XYZ ’s
Define a space with XYZ ’s as points
Small changes to an XYZ ⇝ small movements in space
Let geometric/topological structure inform study of XYZ ’s

Basic example: GLn(R) ↪→ Rn2

More interesting example: Cm
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Faces of the Kunz cone

Question
When are numerical semigroups in (the relative interior of) the same face?

Motivation: S ∈ Int(Cm) if and only if S has max embedding dimension
If S = ⟨n1, . . . , nk⟩, then

ni ̸≡ nj mod n1 =⇒ k ≤ m(S)

If k = m(S), then S has max embedding dimension
S = ⟨m, a1, . . . , am−1⟩ where Ap(S) = {0, a1, . . . , am−1}

Geometrically: “most” numerical semigroups with m(S) = m are MED

What about the other faces?
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Faces of the Kunz cone

Question
When are numerical semigroups in (the relative interior of) the same face?

Example: S = ⟨4, 10, 11, 13⟩
Ap(S) = {0, 13, 10, 11}

a1 = 13, a2 = 10, a3 = 11
2a1 > a2 a1 + a2 > a3
2a3 > a2 a2 + a3 > a1

Example: S = ⟨4, 10, 13⟩
Ap(S) = {0, 13, 10, 23}

a1 = 13, a2 = 10, a3 = 23
2a1 > a2 a1 + a2 = a3
2a3 > a2 a2 + a3 > a1

Example: S = ⟨4, 13⟩
Ap(S) = {0, 13, 26, 39}

a1 = 13, a2 = 26, a3 = 39
2a1 = a2 a1 + a2 = a3
2a3 > a2 a2 + a3 > a1
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Faces of the Kunz cone

Question
When are numerical semigroups in (the relative interior of) the same face?

Definition
The Apéry poset of S: define a ⪯ a′ whenever a′ − a ∈ S.

Ap(S) = {0, 13, 10, 23} Ap(S) = {0, 13, 26, 39}
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Faces of the Kunz polyhedron

Question
When are numerical semigroups in (the relative interior of) the same face?

S = ⟨6, 9, 20⟩
Ap(S) = {0, 49, 20, 9, 40, 29}

S ′ = ⟨6, 26, 27⟩
Ap(S ′) = {0, 79, 26, 27, 52, 53}

The Kunz poset of S: use ground set Zm instead of Ap(S).

Theorem (Bruns–Garćıa-Sánchez–O.–Wilburne)
Numerical semigroups lie in the relative interior of the same face of Cm
if and only if their Kunz posets are identical.
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Question
When are numerical semigroups in (the relative interior of) the same face?
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Defining facet equations:
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Theorem (Bruns–Garćıa-Sánchez–O.–Wilburne)
Numerical semigroups lie in the relative interior of the same face of Cm
if and only if their Kunz posets are identical.

Christopher O’Neill (SDSU) Classifying numerical semigroups using polyhedral geometryMay 7, 2024 13 / 23



Faces of the Kunz polyhedron

Question
When are numerical semigroups in (the relative interior of) the same face?

S = ⟨6, 9, 20⟩
Ap(S) = {0, 49, 20, 9, 40, 29}

1 2 3 4 5

Defining facet equations:
2a2 = a4

a2 + a3 = a5

a2 + a5 = a1

a3 + a4 = a1

2 ⪯ 4
2 ⪯ 5
3 ⪯ 5
2 ⪯ 1
5 ⪯ 1
3 ⪯ 1
4 ⪯ 1

The Kunz poset of S: use ground set Zm instead of Ap(S).
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C3 and C4
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A couple of long-standing (hard) conjectures

Genus g = g(S) = |Z≥0 \ S|: number of “gaps” of S.

ng = # of numerical semigroups with genus g .
Example: n3 = 4

⟨2, 7⟩ = {0, 2, 4, 6, 7, 8, . . .}
⟨3, 4⟩ = {0, 3, 4, 6, 7, 8, . . .}
⟨3, 5, 7⟩ = {0, 3, 5, 6, 7, 8, . . .}
⟨4, 5, 6, 7⟩ = {0, 4, 5, 6, 7, 8, . . .}

Suspected: ng ≥ ng−1 + ng−2 for all g (verified for g ≤ 70)
Known: limg→∞

ng+1
ng

= the golden ratio

Conjecture (Bras-Amoros, 2008)
For all g , we have ng ≥ ng−1.

Not true for n′
f = # of numerical semigroups with Frobenius number f

n′
11 = 51 n′

12 = 40 n′
13 = 106
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A couple of long-standing (hard) conjectures

Wilf’s Conjecture
For any S = ⟨n1, . . . , nk⟩, we have F(S) + 1 ≤ k(F(S) + 1− g(S)).

Equivalently,
1
k ≤

F(S) + 1− g(S)
F(S) + 1︸ ︷︷ ︸

% of [0, F (S)] in S

Equality holds when:
S = ⟨a, b⟩

S = ⟨m, m + 1, . . . , 2m − 1⟩

Proved in many special cases, including g(S) ≤ 60.
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A couple of long-standing (hard) conjectures

Wilf’s Conjecture
For any S = ⟨n1, . . . , nk⟩, we have F(S) + 1 ≤ k(F(S) + 1− g(S)).

Bras-Amoros Conjecture
For all g , we have ng ≥ ng−1.

Direct ties to geometry: if S corresponds to x = (a1, . . . , am−1) ∈ Cm,
g(S) = ∥x∥1 − 1

2m(m − 1), F (S) = ∥x∥∞ −m,
and # generators k is determined by the face F ⊆ Cm containing x .

Theorem (Bruns-Garćıa-Sánchez-O.-Wilburne, 2020)
Wilf’s conjecture holds for all numerical semigroups S with m ≤ 18.

Conjecture (Kaplan)
For fixed m, the number of numerical semigroups g gaps is non-decreasing.
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Shared properties within a face
What properties are determined by the Kunz poset P of S = ⟨n1, . . . , nk⟩?

k = 1 + # atoms of P
t(S) = # maximal elements
(Cohen-Macaulay type of S)
Symmetric/Gorenstein?
Complete intersection?
Generalized arithmetical?

Minimal binomial generators of
the defining toric ideal of S:

IS = ker
(
k[x ]→ k[t]

)
xi 7→ tni

Betti numbers of IS over k[x ]
Betti numbers of k over k[x ]/IS
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Shared properties within a face
What properties are determined by the Kunz poset P of S = ⟨n1, . . . , nk⟩?

k = 1 + # atoms of P
t(S) = # maximal elements
(Cohen-Macaulay type of S)
Symmetric/Gorenstein?

Complete intersection?
Generalized arithmetical?

Minimal binomial generators of
the defining toric ideal of S:

IS = ker
(
k[x ]→ k[t]

)
xi 7→ tni

Betti numbers of IS over k[x ]
Betti numbers of k over k[x ]/IS

S = ⟨4, 7⟩

S = ⟨9, 40, 50, 60⟩
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(
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)
xi 7→ tni

Betti numbers of IS over k[x ]
Betti numbers of k over k[x ]/IS

S = ⟨6, 9, 20⟩

IS = ⟨x3 − y2, x4y4 − z3⟩
⊆ k[x , y , z ]
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(
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)
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Betti numbers of IS over k[x ]
Betti numbers of k over k[x ]/IS

S = ⟨10, a2, a3, a4⟩

IS = ⟨ x2
2 − y∗x4, x2x4 − x2

3 ,
x2

3 x4 − y∗, x3
4 − y∗x2 ⟩

⊆ k[y , x2, x3, x4]
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Shared properties within a face
What properties are determined by the Kunz poset P of S = ⟨n1, . . . , nk⟩?

k = 1 + # atoms of P
t(S) = # maximal elements
(Cohen-Macaulay type of S)
Symmetric/Gorenstein?
Complete intersection?
Generalized arithmetical?

Minimal binomial generators of
the defining toric ideal of S:

IS = ker
(
k[x ]→ k[t]

)
xi 7→ tni

Betti numbers of IS over k[x ]

Betti numbers of k over k[x ]/IS

1,12 1,13 2,12 2,23 3,13 3,23 2,13 3,12



1,1 −x2 −x3 y∗ y∗

2,2 −y∗ x1 −x3 y∗

3,3 x1 x2 −y∗

2,1 x1 −x2 y∗ y∗ −x3
3,1 y∗ x1 −x3 −y∗ −x2
3,2 −y∗ −y∗ x2 −x3 x1 x1

1,[3] 2,[3] 3,[3]



1,12 x3 −y∗

1,13 −x2 y∗

2,12 x3 −y∗

2,23 −y∗ x1
3,13 y∗ −x2
3,23 −y∗ x1
2,13 x1 −x2
3,12 −x1 x3

0← R ← R6←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−R8←−−−−−−−−−−−−−−−R3← 0
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Shared properties within a face
What properties are determined by the Kunz poset P of S = ⟨n1, . . . , nk⟩?

k = 1 + # atoms of P
t(S) = # maximal elements
(Cohen-Macaulay type of S)
Symmetric/Gorenstein?
Complete intersection?
Generalized arithmetical?

Minimal binomial generators of
the defining toric ideal of S:

IS = ker
(
k[x ]→ k[t]

)
xi 7→ tni

Betti numbers of IS over k[x ]
Betti numbers of k over k[x ]/IS

0 1 2 3
[ ]∅ y x1 x2 x3

01 02 03 11 12 13 21 22 23 31 32 33


0 x1 x2 x3 −y∗ −y∗ −y∗

1 −y x1 x2 x3 −y∗ −y∗

2 −y −y∗ x1 x2 x3 −y∗

3 −y −y∗ −y∗ x1 x2 x3
0← R ←−−−−−−−−−−−− R4←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− R12

←−−−−−− R36←−−−−−− R108←−−−−−− R324←−−−−−− R972←−−−−−− R2916←−−−−−− · · ·
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A commutative algebra view of Kunz posets
Fix a numerical semigroup S with

Ap(S) = {0, a1, . . . , am−1}, ai ≡ i mod m

Defining toric ideal: IS = ker(k[y , x1, . . . , xm−1]→ k[t])
y 7→ tm xi 7→ tai

Kunz: IS + ⟨y⟩ = IT + ⟨y⟩ if S, T are interior to the same face of Cm,
so βi(IS) = βi(IS + ⟨y⟩) = βi(IT + ⟨y⟩) = βi(IT )

Example: S = ⟨5, 6, 9⟩, IS = ⟨x1x4 − y3, x3
1 − x2

4 , x2
1 − x2, x3

1 − x3⟩
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Fix a numerical semigroup S with

Ap(S) = {0, a1, . . . , am−1}, ai ≡ i mod m
Defining toric ideal: IS = ker(k[y , x1, . . . , xm−1]→ k[t])
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= (Artinian monomial ideal) + (binomials under staircase)
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A commutative algebra view of Kunz posets
Fix a numerical semigroup S with

Ap(S) = {0, a1, . . . , am−1}, ai ≡ i mod m
Defining toric ideal: IS = ker(k[y , x1, . . . , xm−1]→ k[t])

y 7→ tm xi 7→ tai

The Apéry resolution for IS , minimal if and only if S is MED:
1,1 2,2 3,3 2,1 3,1 3,2

[ ]∅ x2
1 − x2y∗ x2

2 − y∗ x2
3 − x2y∗ x1x2 − x3y∗ x1x3 − y∗ x2x3 − x1y∗

0← R ←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

1,12 1,13 2,12 2,23 3,13 3,23 2,13 3,12



1,1 −x2 −x3 y∗ y∗

2,2 −y∗ x1 −x3 y∗

3,3 x1 x2 −y∗

2,1 x1 −x2 y∗ y∗ −x3
3,1 y∗ x1 −x3 −y∗ −x2
3,2 −y∗ −y∗ x2 −x3 x1 x1

1,[3] 2,[3] 3,[3]



1,12 x3 −y∗

1,13 −x2 y∗

2,12 x3 −y∗

2,23 −y∗ x1
3,13 y∗ −x2
3,23 −y∗ x1
2,13 x1 −x2
3,12 −x1 x3

R6←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−R8←−−−−−−−−−−−−−−−R3← 0

Can “specialize” to a minimal resolution, consistent across the face of Cm

Christopher O’Neill (SDSU) Classifying numerical semigroups using polyhedral geometryMay 7, 2024 20 / 23



A commutative algebra view of Kunz posets
Fix a numerical semigroup S with

Ap(S) = {0, a1, . . . , am−1}, ai ≡ i mod m
Defining toric ideal: IS = ker(k[y , x1, . . . , xm−1]→ k[t])

y 7→ tm xi 7→ tai
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A commutative algebra view of Kunz posets
Fix a numerical semigroup S with

Ap(S) = {0, a1, . . . , am−1}, ai ≡ i mod m
Defining toric ideal: IS = ker(k[y , x1, . . . , xm−1]→ k[t])

y 7→ tm xi 7→ tai

Words of caution:
“the same resolution” vs. “structure consistent across the face”
“up to isomorphism” isn’t good enough
S = ⟨4, 9, 10, 11⟩:

IS = ⟨x2
1 − x2y2, x2

2 − y5, x2
3 − x2y3, x1x2 − x3y2, x1x3 − y5, x2x3 − x1y3⟩

= ⟨x2
1 − x2y2, x2

2 − y5, x2
3 − x2y3, x1x2 − x3y2, x1x3 − x2

2 , x2x3 − x1y3⟩
watch the number of variables
S = ⟨4, 5, 7⟩:

IS = ⟨x3
1 − x3y2, x1x3 − y3, x2

3 − x2
1 y , x2

1 − x2⟩ ⊆ k[y , x1, x2, x3]
JS = ⟨x3

1 − x3y2, x1x3 − y3, x2
3 − x2

1 y⟩ ⊆ k[y , x1, x3]
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A commutative algebra view of Kunz posets
Fix a numerical semigroup S = ⟨m, n1, . . . , nk⟩ with

Ap(S) = {0, a1, . . . , am−1}, ai ≡ i mod m
Defining toric ideal: IS = ker(k[y , x1, . . . , xm−1]→ k[t])

y 7→ tm xi 7→ tai

The infinite Apéry resolution of k over R = k[S]:
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