Classifying numerical semigroups using polyhedral geometry

Christopher O'Neill

San Diego State University

cdoneill@sdsu.edu

Joint with (i) Winfred Bruns, Pedro García-Sánchez, Dane Wilbourne; (ii) Nathan Kaplan;
(iii) J. Autry, *A. Ezell, *T. Gomes, *C. Preuss, *T. Saluja, *E. Torres Dávila
(iv) B. Braun, T. Gomes, E. Miller, C. O'Neill, and A. Sobieska

* = undergraduate student

Slides available: https://cdoneill.sdsu.edu/

October 31, 2024

A numerical semigroup $S \subseteq \mathbb{Z}_{\geq 0}$: closed under addition, $|\mathbb{Z}_{\geq 0} \setminus S| < \infty$.

A numerical semigroup $S \subseteq \mathbb{Z}_{\geq 0}$: closed under addition, $|\mathbb{Z}_{\geq 0} \setminus S| < \infty$.

Example:

$$McN = \langle 6, 9, 20 \rangle = \begin{cases} 0, 6, 9, 12, 15, 18, 20, 21, 24, \dots \\ \dots, 36, 38, 39, 40, 41, 42, 44 \rightarrow \end{cases}$$

A numerical semigroup $S \subseteq \mathbb{Z}_{\geq 0}$: closed under addition, $|\mathbb{Z}_{\geq 0} \setminus S| < \infty$.

Example: "McNugget Semigroup"

$$\mathit{McN} = \langle 6, 9, 20
angle = \left\{ egin{array}{c} 0, 6, 9, 12, 15, 18, 20, 21, 24, \ldots \ \ldots, 36, 38, 39, 40, 41, 42, 44
ightarrow
ight.$$

A numerical semigroup $S \subseteq \mathbb{Z}_{\geq 0}$: closed under addition, $|\mathbb{Z}_{\geq 0} \setminus S| < \infty$.

Example: "McNugget Semigroup"

$$McN = \langle 6, 9, 20 \rangle = \begin{cases} 0, 6, 9, 12, 15, 18, 20, 21, 24, \dots \\ \dots, 36, 38, 39, 40, 41, 42, 44 \end{cases}$$

Example: $S = \langle 6, 9, 18, 20, 32 \rangle$

A numerical semigroup $S \subseteq \mathbb{Z}_{\geq 0}$: closed under addition, $|\mathbb{Z}_{\geq 0} \setminus S| < \infty$.

Example: "McNugget Semigroup"

$$McN = \langle 6, 9, 20 \rangle = \begin{cases} 0, 6, 9, 12, 15, 18, 20, 21, 24, \dots \\ \dots, 36, 38, 39, 40, 41, 42, 44 \end{pmatrix}$$

Example: $S = \langle 6, 9, \frac{18}{20}, \frac{32}{20} \rangle$

A numerical semigroup $S \subseteq \mathbb{Z}_{\geq 0}$: closed under addition, $|\mathbb{Z}_{\geq 0} \setminus S| < \infty$.

Example: "McNugget Semigroup"

$$McN = \langle 6, 9, 20 \rangle = \begin{cases} 0, 6, 9, 12, 15, 18, 20, 21, 24, \dots \\ \dots, 36, 38, 39, 40, 41, 42, 44 \rightarrow \end{cases}$$

Example: $S = \langle 6, 9, \frac{18}{20}, \frac{32}{20} \rangle = McN$

A numerical semigroup $S \subseteq \mathbb{Z}_{\geq 0}$: closed under addition, $|\mathbb{Z}_{\geq 0} \setminus S| < \infty$.

Example: "McNugget Semigroup"

$$McN = \langle 6, 9, 20 \rangle = \begin{cases} 0, 6, 9, 12, 15, 18, 20, 21, 24, \dots \\ \dots, 36, 38, 39, 40, 41, 42, 44 \rightarrow \end{cases}$$

Example: $S = \langle 6, 9, \frac{18}{20}, \frac{32}{20} \rangle = McN$

Fact

Every numerical semigroup has a unique minimal generating set.

A numerical semigroup $S \subseteq \mathbb{Z}_{\geq 0}$: closed under addition, $|\mathbb{Z}_{\geq 0} \setminus S| < \infty$.

Example: "McNugget Semigroup"

$$McN = \langle 6, 9, 20 \rangle = \begin{cases} 0, 6, 9, 12, 15, 18, 20, 21, 24, \dots \\ \dots, 36, 38, 39, 40, 41, 42, 44 \rightarrow \end{cases}$$

Example: $S = \langle 6, 9, \frac{18}{20}, \frac{32}{20} \rangle = McN$

Fact

Every numerical semigroup has a unique minimal generating set.

Multiplicity: m(S) =smallest nonzero element

Fix a numerical semigroup S with m(S) = m.

Fix a numerical semigroup S with m(S) = m.

Definition

The Apéry set of S is

$$\mathsf{Ap}(S) = \{a \in S : a - m \notin S\}$$

Fix a numerical semigroup S with m(S) = m.

Definition

The Apéry set of S is

$$\mathsf{Ap}(S) = \{a \in S : a - m \notin S\}$$

If $S = \langle 6, 9, 20 \rangle$, then

$$\mathsf{Ap}(S) = \{0, 49, 20, 9, 40, 29\}$$

Fix a numerical semigroup S with m(S) = m.

Definition

The Apéry set of S is

$$\mathsf{Ap}(S) = \{a \in S : a - m \notin S\}$$

If $S = \langle 6, 9, 20 \rangle$, then

$$\mathsf{Ap}(S) = \{0, 49, 20, 9, 40, 29\}$$

For 2 mod 6: $\{2, 8, 14, 20, 26, 32, \ldots\} \cap S = \{20, 26, 32, \ldots\}$ For 3 mod 6: $\{3, 9, 15, 21, \ldots\} \cap S = \{9, 15, 21, \ldots\}$ For 4 mod 6: $\{4, 10, 16, 22, \ldots\} \cap S = \{40, 46, 52, \ldots\}$

Fix a numerical semigroup S with m(S) = m.

Definition

The Apéry set of S is

$$\mathsf{Ap}(S) = \{a \in S : a - m \notin S\}$$

If $S = \langle 6, 9, 20 \rangle$, then

$$\mathsf{Ap}(S) = \{0, 49, 20, 9, 40, 29\}$$

For 2 mod 6: $\{2, 8, 14, 20, 26, 32, \ldots\} \cap S = \{20, 26, 32, \ldots\}$ For 3 mod 6: $\{3, 9, 15, 21, \ldots\} \cap S = \{9, 15, 21, \ldots\}$ For 4 mod 6: $\{4, 10, 16, 22, \ldots\} \cap S = \{40, 46, 52, \ldots\}$

Fix a numerical semigroup S with m(S) = m.

Definition

The Apéry set of S is

$$\mathsf{Ap}(S) = \{a \in S : a - m \notin S\}$$

If $S = \langle 6, 9, 20 \rangle$, then

$$\mathsf{Ap}(S) = \{0, 49, 20, 9, 40, 29\}$$

For 2 mod 6: $\{2, 8, 14, 20, 26, 32, \ldots\} \cap S = \{20, 26, 32, \ldots\}$ For 3 mod 6: $\{3, 9, 15, 21, \ldots\} \cap S = \{9, 15, 21, \ldots\}$ For 4 mod 6: $\{4, 10, 16, 22, \ldots\} \cap S = \{40, 46, 52, \ldots\}$

Fix a numerical semigroup S with m(S) = m.

Definition

The Apéry set of S is

$$\mathsf{Ap}(S) = \{a \in S : a - m \notin S\}$$

If $S = \langle 6, 9, 20 \rangle$, then

$$\mathsf{Ap}(S) = \{0, 49, 20, 9, 40, 29\}$$

For 2 mod 6: $\{2, 8, 14, 20, 26, 32, \ldots\} \cap S = \{20, 26, 32, \ldots\}$ For 3 mod 6: $\{3, 9, 15, 21, \ldots\} \cap S = \{9, 15, 21, \ldots\}$ For 4 mod 6: $\{4, 10, 16, 22, \ldots\} \cap S = \{40, 46, 52, \ldots\}$

Observations:

Fix a numerical semigroup S with m(S) = m.

Definition

The Apéry set of S is

$$\mathsf{Ap}(S) = \{a \in S : a - m \notin S\}$$

If $S = \langle 6, 9, 20 \rangle$, then

$$\mathsf{Ap}(S) = \{0, 49, 20, 9, 40, 29\}$$

For 2 mod 6: $\{2, 8, 14, 20, 26, 32, \ldots\} \cap S = \{20, 26, 32, \ldots\}$ For 3 mod 6: $\{3, 9, 15, 21, \ldots\} \cap S = \{9, 15, 21, \ldots\}$ For 4 mod 6: $\{4, 10, 16, 22, \ldots\} \cap S = \{40, 46, 52, \ldots\}$

Observations:

• The elements of Ap(S) are distinct modulo m

Fix a numerical semigroup S with m(S) = m.

Definition

The Apéry set of S is

$$\mathsf{Ap}(S) = \{a \in S : a - m \notin S\}$$

If $S = \langle 6, 9, 20 \rangle$, then

$$\mathsf{Ap}(S) = \{0, 49, 20, 9, 40, 29\}$$

For 2 mod 6: $\{2, 8, 14, 20, 26, 32, \ldots\} \cap S = \{20, 26, 32, \ldots\}$ For 3 mod 6: $\{3, 9, 15, 21, \ldots\} \cap S = \{9, 15, 21, \ldots\}$ For 4 mod 6: $\{4, 10, 16, 22, \ldots\} \cap S = \{40, 46, 52, \ldots\}$

Observations:

- The elements of Ap(S) are distinct modulo m
- $|\operatorname{Ap}(S)| = m$

Fix a numerical semigroup S with m(S) = m.

Definition

The Apéry set of S is

$$\mathsf{Ap}(S) = \{a \in S : a - m \notin S\}$$

Fix a numerical semigroup S with m(S) = m.

Definition

The Apéry set of S is

$$\mathsf{Ap}(S) = \{a \in S : a - m \notin S\}$$

Many things can be easily recovered from the Apéry set.

Fix a numerical semigroup S with m(S) = m.

Definition

The Apéry set of S is

$$\mathsf{Ap}(S) = \{a \in S : a - m \notin S\}$$

Many things can be easily recovered from the Apéry set.

• Fast membership test:

 $n \in S$ if $n \ge a$ for $a \in Ap(S)$ with $a \equiv n \mod m$

Fix a numerical semigroup S with m(S) = m.

Definition

The Apéry set of S is

$$\mathsf{Ap}(S) = \{a \in S : a - m \notin S\}$$

Many things can be easily recovered from the Apéry set.

• Fast membership test:

 $n \in S$ if $n \ge a$ for $a \in Ap(S)$ with $a \equiv n \mod m$

• Frobenius number: F(S) = max(Ap(S)) - m

Fix a numerical semigroup S with m(S) = m.

Definition

The Apéry set of S is

$$\mathsf{Ap}(S) = \{a \in S : a - m \notin S\}$$

Many things can be easily recovered from the Apéry set.

• Fast membership test:

 $n \in S$ if $n \ge a$ for $a \in Ap(S)$ with $a \equiv n \mod m$

- Frobenius number: F(S) = max(Ap(S)) m
- Number of gaps (the genus):

$$g(S) = |\mathbb{N} \setminus S| = \sum_{a \in Ap(S)} \left\lfloor \frac{a}{m} \right\rfloor$$

. .

Fix a numerical semigroup S with m(S) = m.

Definition

The Apéry set of S is

$$\mathsf{Ap}(S) = \{a \in S : a - m \notin S\}$$

Many things can be easily recovered from the Apéry set.

• Fast membership test:

 $n \in S$ if $n \ge a$ for $a \in Ap(S)$ with $a \equiv n \mod m$

• Frobenius number: F(S) = max(Ap(S)) - m

Number of gaps (the genus):

$$g(S) = |\mathbb{N} \setminus S| = \sum_{a \in Ap(S)} \left\lfloor \frac{a}{m} \right\rfloor$$

1 - 1

The Apéry set is a "one stop shop" for computation.

Is $A = \{0, 11, 7, 23, 19\}$ the Apéry set of some numerical semigroup?

Is $A = \{0, 11, 7, 23, 19\}$ the Apéry set of some numerical semigroup? m = |A| = 5, $a_1 = 11$, $a_2 = 7$, $a_3 = 23$, $a_4 = 19$

Is $\{0, 13, 14, 27, 10, 11\}$ the Apéry set of some numerical semigroup? m = |A| = 6, $a_1 = 13$, $a_2 = 14$, $a_3 = 27$, $a_4 = 10$, $a_5 = 11$

Is $\{0, 13, 14, 27, 10, 11\}$ the Apéry set of some numerical semigroup? m = |A| = 6, $a_1 = 13$, $a_2 = 14$, $a_3 = 27$, $a_4 = 10$, $a_5 = 11$ but $a_4 + a_5 \equiv 3 \mod 6$ and $a_4 + a_5 < a_3$.

Is $\{0, 13, 14, 27, 10, 11\}$ the Apéry set of some numerical semigroup? m = |A| = 6, $a_1 = 13$, $a_2 = 14$, $a_3 = 27$, $a_4 = 10$, $a_5 = 11$ but $a_4 + a_5 \equiv 3 \mod 6$ and $a_4 + a_5 < a_3$.

Theorem

If $A = \{0, a_1, \dots, a_{m-1}\}$ with each $a_i > m$ and $a_i \equiv i \mod m$, then there exists a numerical semigroup S with Ap(S) = A if and only if $a_i + a_j \ge a_{i+j}$ whenever $i + j \ne 0$.

Is $\{0, 13, 14, 27, 10, 11\}$ the Apéry set of some numerical semigroup? m = |A| = 6, $a_1 = 13$, $a_2 = 14$, $a_3 = 27$, $a_4 = 10$, $a_5 = 11$ but $a_4 + a_5 \equiv 3 \mod 6$ and $a_4 + a_5 < a_3$.

Theorem

If $A = \{0, a_1, \dots, a_{m-1}\}$ with each $a_i > m$ and $a_i \equiv i \mod m$, then there exists a numerical semigroup S with Ap(S) = A if and only if $a_i + a_j \ge a_{i+j}$ whenever $i + j \ne 0$.

Big idea: the inequalities " $a_i + a_j \ge a_{i+j}$ " to define a **cone** C_m .

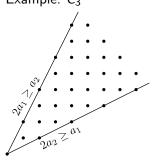
Definition

The Kunz cone $C_m \subseteq \mathbb{R}^{m-1}$ is a pointed cone with defining inequalities $a_i + a_j \ge a_{i+j}$ whenever $i + j \ne 0$.

$$\{S \subseteq \mathbb{Z}_{\geq 0} : \mathsf{m}(S) = m\} \longrightarrow C_m$$
$$\mathsf{Ap}(S) = \{0, a_1, \dots, a_{m-1}\} \longmapsto (a_1, \dots, a_{m-1})$$

Definition

The Kunz cone $C_m \subseteq \mathbb{R}^{m-1}$ is a pointed cone with defining inequalities $a_i + a_j \ge a_{i+j}$ whenever $i+j \ne 0$. $\{S \subseteq \mathbb{Z}_{\ge 0} : m(S) = m\} \longrightarrow C_m$ $Ap(S) = \{0, a_1, \dots, a_{m-1}\} \longmapsto (a_1, \dots, a_{m-1})$ Example: C_3



Definition

The Kunz cone $C_m \subseteq \mathbb{R}^{m-1}$ is a pointed cone with defining inequalities $a_i + a_i \ge a_{i+i}$ whenever $i + j \ne 0$. $\{S \subseteq \mathbb{Z}_{\geq 0} : \mathsf{m}(S) = m\} \longrightarrow C_m$ $\mathsf{Ap}(S) = \{0, a_1, \dots, a_{m-1}\} \longmapsto (a_1, \dots, a_{m-1})$ Example: C_3 $S = \langle 3, 5, 7 \rangle$ $Ap(S) = \{0, 7, 5\}$ 50' 202 2 01

Definition

The Kunz cone $C_m \subseteq \mathbb{R}^{m-1}$ is a pointed cone with defining inequalities $a_i + a_i \ge a_{i+i}$ whenever $i + j \ne 0$. $\{S \subseteq \mathbb{Z}_{\geq 0} : \mathsf{m}(S) = m\} \longrightarrow C_m$ $Ap(S) = \{\overline{0}, a_1, \dots, a_{m-1}\} \mapsto (a_1, \dots, a_{m-1})$ Example: C_3 $S = \langle 3, 5, 7 \rangle$ $Ap(S) = \{0, 7, 5\}$ $S = \langle 3, 4 \rangle$ $Ap(S) = \{0, 4, 8\}$ 50' 202 2 01

Definition

The Kunz cone $C_m \subseteq \mathbb{R}^{m-1}$ is a pointed cone with defining inequalities $a_i + a_j \ge a_{i+j}$ whenever $i + j \ne 0$.

$$\{S \subseteq \mathbb{Z}_{\geq 0} : \mathsf{m}(S) = m\} \longrightarrow C_m$$
$$\mathsf{Ap}(S) = \{0, a_1, \dots, a_{m-1}\} \longmapsto (a_1, \dots, a_{m-1})$$

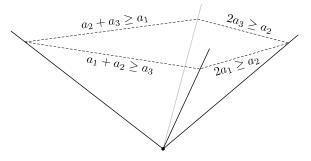
Kunz cone

Definition

The Kunz cone $C_m \subseteq \mathbb{R}^{m-1}$ is a pointed cone with defining inequalities $a_i + a_j \ge a_{i+j}$ whenever $i + j \ne 0$.

$$\begin{cases} S \subseteq \mathbb{Z}_{\geq 0} : \mathsf{m}(S) = m \} & \longrightarrow & C_m \\ \mathsf{Ap}(S) = \{0, a_1, \dots, a_{m-1}\} & \longmapsto & (a_1, \dots, a_{m-1}) \end{cases}$$

Example: C₄



Question

Question

When are numerical semigroups in (the relative interior of) the same face?

Big picture: "moduli space" approach for studying XYZ's

- Define a space with XYZ's as points
 Small changes to an XYZ → small movements in space
- Let geometric/topological structure inform study of XYZ's

Question

When are numerical semigroups in (the relative interior of) the same face?

Big picture: "moduli space" approach for studying XYZ's

- Define a space with XYZ's as points
 Small changes to an XYZ → small movements in space
- Let geometric/topological structure inform study of XYZ's

Basic example: $\operatorname{GL}_n(\mathbb{R}) \hookrightarrow \mathbb{R}^{n^2}$

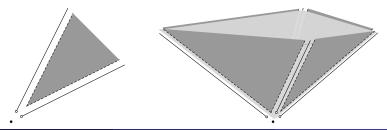
Question

When are numerical semigroups in (the relative interior of) the same face?

Big picture: "moduli space" approach for studying XYZ's

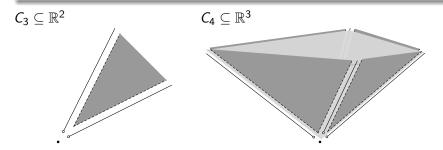
- Define a space with XYZ's as points
 Small changes to an XYZ → small movements in space
- Let geometric/topological structure inform study of XYZ's

Basic example: $GL_n(\mathbb{R}) \hookrightarrow \mathbb{R}^{n^2}$ More interesting example: C_m



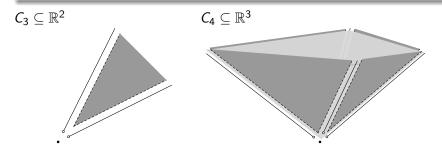
Question

Question



Question

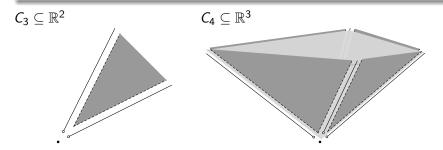
When are numerical semigroups in (the relative interior of) the same face?



 $C_5 \subseteq \mathbb{R}^4$?

Question

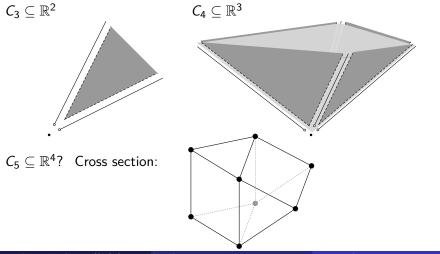
When are numerical semigroups in (the relative interior of) the same face?



 $C_5 \subseteq \mathbb{R}^4$? Cross section:

Question

When are numerical semigroups in (the relative interior of) the same face?



Christopher O'Neill (SDSU)

Classifying numerical semigroups using polyhe

Question

When are numerical semigroups in (the relative interior of) the same face?

Question

When are numerical semigroups in (the relative interior of) the same face?

First steps: $S \in Int(C_m)$ if and only if S has max embedding dimension

Question

When are numerical semigroups in (the relative interior of) the same face?

First steps: $S \in Int(C_m)$ if and only if S has max embedding dimension If $S = \langle n_1, \dots, n_k \rangle$, then $n_i \neq n_i \mod n_1 \implies k \leq m(S)$

Question

When are numerical semigroups in (the relative interior of) the same face?

First steps: $S \in Int(C_m)$ if and only if S has max embedding dimension If $S = \langle n_1, \dots, n_k \rangle$, then $n_i \not\equiv n_j \mod n_1 \implies k \leq m(S)$

If k = m(S), then S has max embedding dimension

Question

When are numerical semigroups in (the relative interior of) the same face?

First steps: $S \in Int(C_m)$ if and only if S has max embedding dimension If $S = \langle n_1, \dots, n_k \rangle$, then $n_i \not\equiv n_j \mod n_1 \implies k \le m(S)$ If k = m(S), then S has max embedding dimension $S = \langle m, a_1, \dots, a_{m-1} \rangle$ where $Ap(S) = \{0, a_1, \dots, a_{m-1}\}$

Question

When are numerical semigroups in (the relative interior of) the same face?

First steps: $S \in Int(C_m)$ if and only if S has max embedding dimension If $S = \langle n_1, \ldots, n_k \rangle$, then $n_i \not\equiv n_j \mod n_1 \implies k \le m(S)$ If k = m(S), then S has max embedding dimension

 $S = \langle m, a_1, \dots, a_{m-1} \rangle$ where $Ap(S) = \{0, a_1, \dots, a_{m-1}\}$

Geometrically: "most" numerical semigroups with m(S) = m are MED

Question

When are numerical semigroups in (the relative interior of) the same face?

First steps: $S \in Int(C_m)$ if and only if S has max embedding dimension If $S = \langle n_1, \dots, n_k \rangle$, then $n_i \not\equiv n_j \mod n_1 \implies k \leq m(S)$ If k = m(S), then S has max embedding dimension $S = \langle m, a_1, \dots, a_{m-1} \rangle$ where $Ap(S) = \{0, a_1, \dots, a_{m-1}\}$ Geometrically: "most" numerical semigroups with m(S) = m are MED What about the other faces?

Question

Question

Example:
$$S = \langle 4, 10, 11, 13 \rangle$$

 $Ap(S) = \{0, 13, 10, 11\}$
 $a_1 = 13, a_2 = 10, a_3 = 11$
 $2a_1 > a_2$
 $a_1 + a_2 > a_3$
 $a_2 + a_3 > a_1$

Question

Example:
$$S = \langle 4, 10, 11, 13 \rangle$$

 $Ap(S) = \{0, 13, 10, 11\}$
 $a_1 = 13, a_2 = 10, a_3 = 11$
Example: $S = \langle 4, 10, 13 \rangle$
 $Ap(S) = \{0, 13, 10, 23\}$
 $a_1 = 13, a_2 = 10, a_3 = 23$
 $2a_1 > a_2$
 $2a_1 > a_2$
 $a_1 + a_2 > a_3$
 $2a_1 > a_2$
 $a_1 + a_2 = a_3$
 $a_2 + a_3 > a_1$

Question

Example:
$$S = \langle 4, 10, 11, 13 \rangle$$

Ap $(S) = \{0, 13, 10, 11\}$
 $a_1 = 13, a_2 = 10, a_3 = 11$
Example: $S = \langle 4, 10, 13 \rangle$
Ap $(S) = \{0, 13, 10, 23\}$
 $a_1 = 13, a_2 = 10, a_3 = 23$
Example: $S = \langle 4, 13 \rangle$
Ap $(S) = \{0, 13, 26, 39\}$
 $a_1 = 13, a_2 = 26, a_3 = 39$
 $2a_1 > a_2$
 $a_1 + a_2 = a_3$
 $a_1 + a_2 = a_3$
 $a_2 + a_3 > a_1$

Question

When are numerical semigroups in (the relative interior of) the same face?

Question

When are numerical semigroups in (the relative interior of) the same face?

Definition

The *Apéry poset* of *S*: define $a \leq a'$ whenever $a' - a \in S$.

Question

When are numerical semigroups in (the relative interior of) the same face?

Question

When are numerical semigroups in (the relative interior of) the same face?

$$S = \langle 6, 9, 20 \rangle$$

Ap(S) = {0, 49, 20, 9, 40, 29}

$$S' = \langle 6, 26, 27
angle$$

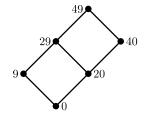
Ap $(S') = \{0, 79, 26, 27, 52, 53\}$

Question

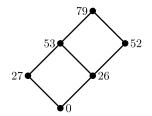
When are numerical semigroups in (the relative interior of) the same face?

$$S = \langle 6, 9, 20
angle$$

Ap $(S) = \{0, 49, 20, 9, 40, 29\}$

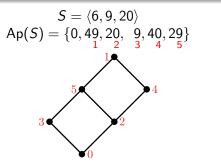


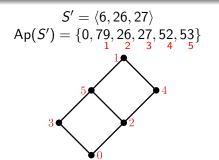
 $\begin{array}{l} S' = \langle 6, 26, 27 \rangle \\ \mathsf{Ap}(S') = \{0, 79, 26, 27, 52, 53\} \end{array}$



Question

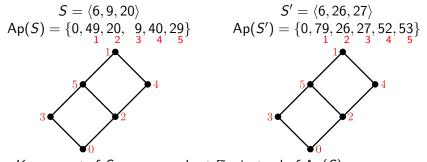
When are numerical semigroups in (the relative interior of) the same face?





Question

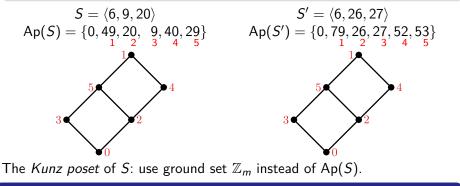
When are numerical semigroups in (the relative interior of) the same face?



The *Kunz poset* of *S*: use ground set \mathbb{Z}_m instead of Ap(*S*).

Question

When are numerical semigroups in (the relative interior of) the same face?

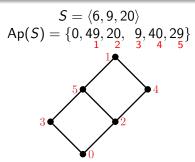


Theorem (Bruns–García-Sánchez–O.–Wilburne)

Numerical semigroups lie in the relative interior of the same face of C_m if and only if their Kunz posets are identical.

Question

When are numerical semigroups in (the relative interior of) the same face?



The *Kunz poset* of *S*: use ground set \mathbb{Z}_m instead of Ap(*S*).

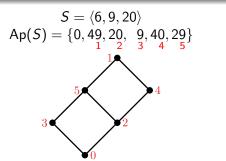
Theorem (Bruns–García-Sánchez–O.–Wilburne)

Numerical semigroups lie in the relative interior of the same face of C_m if and only if their Kunz posets are identical.

Christopher O'Neill (SDSU) Classifying numerical semigroups using polyhe October 31, 2024

Question

When are numerical semigroups in (the relative interior of) the same face?



Defining facet equations:

14 / 20

$$2a_2 = a_4$$

$$a_2 + a_3 = a_5$$

$$a_2 + a_5 = a_1$$

 $a_3 + a_4 = a_1$

The *Kunz poset* of *S*: use ground set \mathbb{Z}_m instead of Ap(*S*).

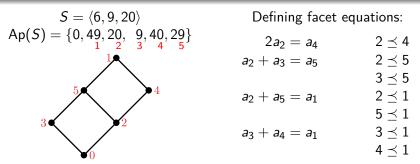
Theorem (Bruns–García-Sánchez–O.–Wilburne)

Numerical semigroups lie in the relative interior of the same face of C_m if and only if their Kunz posets are identical.

Christopher O'Neill (SDSU) Classifying numerical semigroups using polyhe October 31, 2024

Question

When are numerical semigroups in (the relative interior of) the same face?

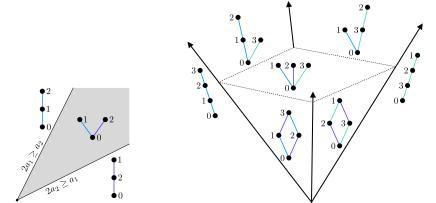


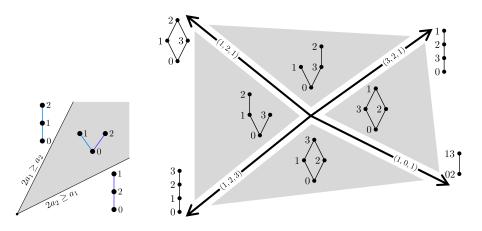
The *Kunz poset* of *S*: use ground set \mathbb{Z}_m instead of Ap(*S*).

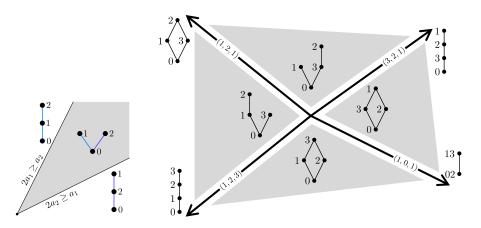
Theorem (Bruns–García-Sánchez–O.–Wilburne)

Numerical semigroups lie in the relative interior of the same face of C_m if and only if their Kunz posets are identical.

 C_3 and C_4







Theorem (Kaplan–O.)

There is a natural labeling of the faces of C_m by finite posets.

Christopher O'Neill (SDSU)

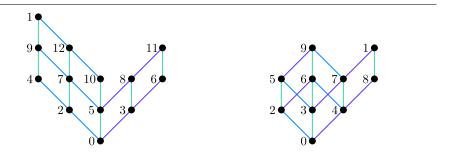
Classifying numerical semigroups using polyhe

Shared properties within a face

What properties are determined by the Kunz poset *P* of $S = \langle n_1, \ldots, n_k \rangle$?

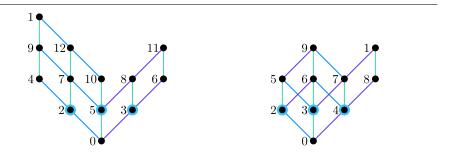
What properties are determined by the Kunz poset *P* of $S = \langle n_1, \ldots, n_k \rangle$?

• k = 1 + # atoms of P

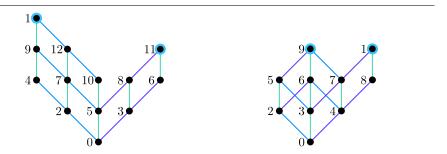


What properties are determined by the Kunz poset *P* of $S = \langle n_1, \ldots, n_k \rangle$?

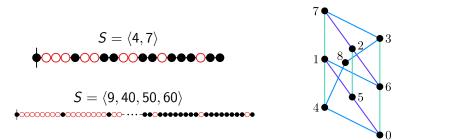
• k = 1 + # atoms of P



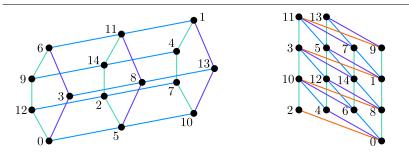
- k = 1 + # atoms of P
- t(S) = # maximal elements (Cohen-Macaulay type of S)



- k = 1 + # atoms of P
- t(S) = # maximal elements (Cohen-Macaulay type of S)
- Symmetric/Gorenstein?



- k = 1 + # atoms of P
- t(S) = # maximal elements (Cohen-Macaulay type of S)
- Symmetric/Gorenstein?
- Complete intersection?
- Generalized arithmetical?

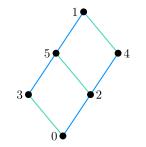


What properties are determined by the Kunz poset *P* of $S = \langle n_1, \ldots, n_k \rangle$?

- k = 1 + # atoms of P
- t(S) = # maximal elements (Cohen-Macaulay type of S)
- Symmetric/Gorenstein?
- Complete intersection?
- Generalized arithmetical?

Minimal binomial generators of
the *defining toric ideal* of *S*:
$$I_S = \ker (\mathbb{k}[\overline{x}] \to \mathbb{k}[t])$$

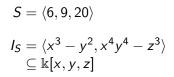
 $S = \langle 6, 9, 20 \rangle$ $I_S = \langle x^3 - y^2, x^4 y^4 - z^3 \rangle$ $\subseteq \mathbb{k}[x, y, z]$

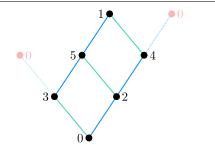


What properties are determined by the Kunz poset *P* of $S = \langle n_1, \ldots, n_k \rangle$?

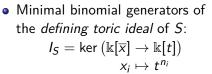
- k = 1 + # atoms of P
- t(S) = # maximal elements (Cohen-Macaulay type of S)
- Symmetric/Gorenstein?
- Complete intersection?
- Generalized arithmetical?

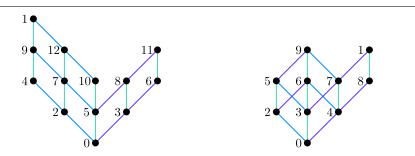
• Minimal binomial generators of the *defining toric ideal* of *S*: $I_S = \ker (\mathbb{k}[\overline{x}] \to \mathbb{k}[t])$ $x_i \mapsto t^{n_i}$





- k = 1 + # atoms of P
- t(S) = # maximal elements (Cohen-Macaulay type of S)
- Symmetric/Gorenstein?
- Complete intersection?
- Generalized arithmetical?

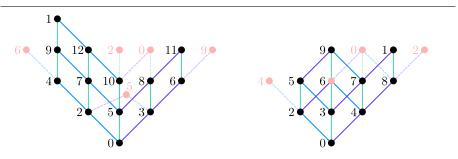




What properties are determined by the Kunz poset *P* of $S = \langle n_1, \ldots, n_k \rangle$?

- k = 1 + # atoms of P
- t(S) = # maximal elements (Cohen-Macaulay type of S)
- Symmetric/Gorenstein?
- Complete intersection?
- Generalized arithmetical?

• Minimal binomial generators of the *defining toric ideal* of *S*: $I_S = \ker (\mathbb{k}[\overline{x}] \to \mathbb{k}[t])$ $x_i \mapsto t^{n_i}$



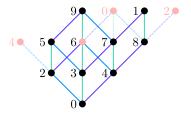
What properties are determined by the Kunz poset *P* of $S = \langle n_1, \ldots, n_k \rangle$?

- k = 1 + # atoms of P
- t(S) = # maximal elements (Cohen-Macaulay type of S)
- Symmetric/Gorenstein?
- Complete intersection?
- Generalized arithmetical?

• Minimal binomial generators of the *defining toric ideal* of *S*: $I_S = \ker (\mathbb{k}[\overline{x}] \to \mathbb{k}[t])$ $x_i \mapsto t^{n_i}$

$$S = \langle 10, a_2, a_3, a_4 \rangle$$
$$I_S = \langle x_2^2 - y^* x_4, x_2 x_4 - x_3 x_4 \rangle$$

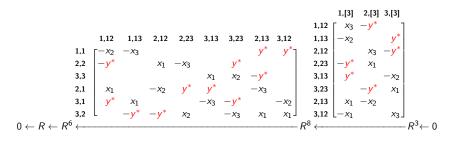
$$5 = \langle x_2^2 - y^* x_4, x_2 x_4 - x_3^2, x_3^2 x_4 - y^*, x_4^3 - y^* x_2 \rangle \subseteq \Bbbk [y, x_2, x_3, x_4]$$



2

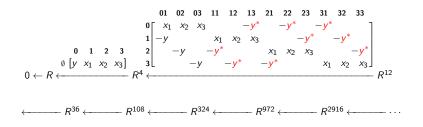
- k = 1 + # atoms of P
- t(S) = # maximal elements (Cohen-Macaulay type of S)
- Symmetric/Gorenstein?
- Complete intersection?
- Generalized arithmetical?

- Minimal binomial generators of the *defining toric ideal* of *S*: $I_S = \ker (\mathbb{k}[\overline{x}] \to \mathbb{k}[t])$ $x_i \mapsto t^{n_i}$
- Betti numbers of I_S over $\Bbbk[\overline{x}]$



- k = 1 + # atoms of P
- t(S) = # maximal elements (Cohen-Macaulay type of S)
- Symmetric/Gorenstein?
- Complete intersection?
- Generalized arithmetical?

- Minimal binomial generators of the *defining toric ideal* of *S*: $I_S = \ker (\mathbb{k}[\overline{x}] \to \mathbb{k}[t])$ $x_i \mapsto t^{n_i}$
- Betti numbers of I_S over $\Bbbk[\overline{x}]$
- Betti numbers of \Bbbk over $\Bbbk[\overline{x}]/I_S$



$$\mathsf{F}(S) = \max(\mathbb{Z}_{\geq 0} \setminus S)$$
 $\mathsf{g}(S) = |\mathbb{Z}_{\geq 0} \setminus S|$

$$\mathsf{F}(S) = \max(\mathbb{Z}_{\geq 0} \setminus S) \qquad \qquad \mathsf{g}(S) = |\mathbb{Z}_{\geq 0} \setminus S|$$

Wilf's Conjecture

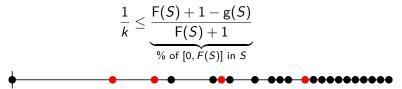
For any $S = \langle n_1, \ldots, n_k \rangle$, we have $F(S) + 1 \leq k(F(S) + 1 - g(S))$.

$$\mathsf{F}(S) = \max(\mathbb{Z}_{\geq 0} \setminus S) \qquad \qquad \mathsf{g}(S) = |\mathbb{Z}_{\geq 0} \setminus S|$$

Wilf's Conjecture

For any
$$S = \langle n_1, \ldots, n_k \rangle$$
, we have $F(S) + 1 \le k(F(S) + 1 - g(S))$.

Equivalently,

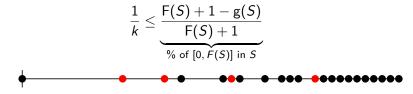


$$\mathsf{F}(S) = \max(\mathbb{Z}_{\geq 0} \setminus S) \qquad \qquad \mathsf{g}(S) = |\mathbb{Z}_{\geq 0} \setminus S|$$

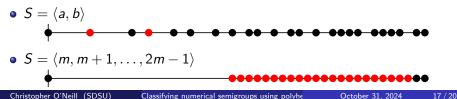
Wilf's Conjecture

For any
$$S = \langle n_1, \ldots, n_k \rangle$$
, we have $F(S) + 1 \le k(F(S) + 1 - g(S))$.

Equivalently,



Equality holds when:



$$\mathsf{F}(S) = \max(\mathbb{Z}_{\geq 0} \setminus S) \qquad \qquad \mathsf{g}(S) = |\mathbb{Z}_{\geq 0} \setminus S|$$

Wilf's Conjecture

For any $S = \langle n_1, \ldots, n_k \rangle$, we have $F(S) + 1 \leq k(F(S) + 1 - g(S))$.

$$\mathsf{F}(S) = \max(\mathbb{Z}_{\geq 0} \setminus S) \qquad \qquad \mathsf{g}(S) = |\mathbb{Z}_{\geq 0} \setminus S|$$

Wilf's Conjecture

For any
$$S = \langle n_1, \ldots, n_k \rangle$$
, we have $F(S) + 1 \le k(F(S) + 1 - g(S))$.

Proved in many special cases, including $g(S) \le 66$

$$\mathsf{F}(S) = \max(\mathbb{Z}_{\geq 0} \setminus S) \qquad \qquad \mathsf{g}(S) = |\mathbb{Z}_{\geq 0} \setminus S|$$

Wilf's Conjecture

For any
$$S = \langle n_1, \ldots, n_k \rangle$$
, we have $F(S) + 1 \le k(F(S) + 1 - g(S))$.

Proved in many special cases, including $g(S) \leq 66$ 100

$$\mathsf{F}(S) = \max(\mathbb{Z}_{\geq 0} \setminus S) \qquad \qquad \mathsf{g}(S) = |\mathbb{Z}_{\geq 0} \setminus S|$$

Wilf's Conjecture

For any
$$S = \langle n_1, \ldots, n_k \rangle$$
, we have $F(S) + 1 \le k(F(S) + 1 - g(S))$.

Proved in many special cases, including $g(S) \le 66$ 100 ($\sim 10^{21}$ sgps)

$$\mathsf{F}(S) = \max(\mathbb{Z}_{\geq 0} \setminus S) \qquad \qquad \mathsf{g}(S) = |\mathbb{Z}_{\geq 0} \setminus S|$$

Wilf's Conjecture

For any
$$S = \langle n_1, \ldots, n_k \rangle$$
, we have $F(S) + 1 \leq k(F(S) + 1 - g(S))$.

Proved in many special cases, including g(S) \leq 66 100 (\sim 10²¹ sgps)

Theorem (Bruns-García-Sánchez-O.-Wilburne, 2020)

Wilf's conjecture holds for all numerical semigroups S with $m \leq 18$.

Proved *computationally*!!?! But that's infinitely many semigroups!

$$\mathsf{F}(S) = \max(\mathbb{Z}_{\geq 0} \setminus S) \qquad \qquad \mathsf{g}(S) = |\mathbb{Z}_{\geq 0} \setminus S|$$

Wilf's Conjecture

For any
$$S = \langle n_1, \ldots, n_k \rangle$$
, we have $F(S) + 1 \leq k(F(S) + 1 - g(S))$.

Proved in many special cases, including g(S) \leq 66 100 (\sim 10²¹ sgps)

Theorem (Bruns-García-Sánchez-O.-Wilburne, 2020)

Wilf's conjecture holds for all numerical semigroups S with $m \leq 18$.

Proved *computationally*!!?! But that's infinitely many semigroups! The key: discrete optimization (integer solutions to linear inequalities)

$$\mathsf{F}(S) = \max(\mathbb{Z}_{\geq 0} \setminus S) \qquad \qquad \mathsf{g}(S) = |\mathbb{Z}_{\geq 0} \setminus S|$$

Wilf's Conjecture

For any
$$S = \langle n_1, \ldots, n_k \rangle$$
, we have $F(S) + 1 \leq k(F(S) + 1 - g(S))$.

Proved in many special cases, including g(S) $\leq 66~100~~(\sim 10^{21}~{\rm sgps})$

Theorem (Bruns-García-Sánchez-O.-Wilburne, 2020)

Wilf's conjecture holds for all numerical semigroups S with $m \leq 18$.

Proved *computationally*!!?! But that's infinitely many semigroups! The key: discrete optimization (integer solutions to linear inequalities)

If S corresponds to $x=(a_1,\ldots,a_{m-1})\in \mathit{C}_m$,

$$g(S) = ||x||_1 - \frac{1}{2}m(m-1), \qquad F(S) = ||x||_{\infty} - m,$$

and # generators k is determined by the face $F \subseteq C_m$ containing x.

Genus $g = g(S) = |\mathbb{Z}_{\geq 0} \setminus S|$: number of "gaps" of S.

Genus $g = g(S) = |\mathbb{Z}_{\geq 0} \setminus S|$: number of "gaps" of S. $n_g = \#$ of numerical semigroups with genus g.

Genus $g = g(S) = |\mathbb{Z}_{\geq 0} \setminus S|$: number of "gaps" of S. $n_g = \#$ of numerical semigroups with genus g. Example: $n_3 = 4$

$$\begin{array}{l} \langle 2,7\rangle = \{0, \ 2, \ 4, \ 6,7,8,\ldots\}\\ \langle 3,4\rangle = \{0, \ 3,4, \ 6,7,8,\ldots\}\\ \langle 3,5,7\rangle = \{0, \ 3, \ 5,6,7,8,\ldots\}\\ 4,5,6,7\rangle = \{0, \ 4,5,6,7,8,\ldots\}\end{array}$$

Genus $g = g(S) = |\mathbb{Z}_{\geq 0} \setminus S|$: number of "gaps" of *S*. $n_g = \#$ of numerical semigroups with genus *g*. Example: $n_3 = 4$

$$\begin{array}{ll} \langle 2,7\rangle = \{0, \ 2, \ 4, \ 6,7,8,\ldots\} \\ \langle 3,4\rangle = \{0, \ 3,4, \ 6,7,8,\ldots\} \\ \langle 3,5,7\rangle = \{0, \ 3, \ 5,6,7,8,\ldots\} \\ \langle 4,5,6,7\rangle = \{0, \ 4,5,6,7,8,\ldots\} \end{array}$$

Suspected: $n_g \ge n_{g-1} + n_{g-2}$ for all g (verified for $g \le 70$)

Genus $g = g(S) = |\mathbb{Z}_{\geq 0} \setminus S|$: number of "gaps" of *S*. $n_g = \#$ of numerical semigroups with genus *g*. Example: $n_3 = 4$

$$\begin{array}{l} \langle 2,7\rangle = \{0, \ 2, \ 4, \ 6,7,8,\ldots\} \\ \langle 3,4\rangle = \{0, \ 3,4, \ 6,7,8,\ldots\} \\ \langle 3,5,7\rangle = \{0, \ 3, \ 5,6,7,8,\ldots\} \\ \langle 4,5,6,7\rangle = \{0, \ 4,5,6,7,8,\ldots\} \end{array}$$

Suspected: $n_g \ge n_{g-1} + n_{g-2}$ for all g (verified for $g \le 70$ 105)

Genus $g = g(S) = |\mathbb{Z}_{\geq 0} \setminus S|$: number of "gaps" of *S*. $n_g = \#$ of numerical semigroups with genus *g*. Example: $n_3 = 4$

$$\begin{array}{l} \langle 2,7\rangle = \{0, \ 2, \ 4, \ 6,7,8,\ldots\} \\ \langle 3,4\rangle = \{0, \ 3,4, \ 6,7,8,\ldots\} \\ \langle 3,5,7\rangle = \{0, \ 3, \ 5,6,7,8,\ldots\} \\ 4,5,6,7\rangle = \{0, \ 4,5,6,7,8,\ldots\} \end{array}$$

Suspected: $n_g \ge n_{g-1} + n_{g-2}$ for all g (verified for $g \le 70$ 105) Known: $\lim_{g\to\infty} \frac{n_{g+1}}{n_g}$ = the golden ratio

Genus $g = g(S) = |\mathbb{Z}_{\geq 0} \setminus S|$: number of "gaps" of S. $n_g = \#$ of numerical semigroups with genus g. Example: $n_3 = 4$

$$\begin{array}{l} \langle 2,7\rangle = \{0, \ 2, \ 4, \ 6,7,8,\ldots\} \\ \langle 3,4\rangle = \{0, \ 3,4, \ 6,7,8,\ldots\} \\ \langle 3,5,7\rangle = \{0, \ 3, \ 5,6,7,8,\ldots\} \\ \langle 4,5,6,7\rangle = \{0, \ 4,5,6,7,8,\ldots\} \end{array}$$

Suspected: $n_g \ge n_{g-1} + n_{g-2}$ for all g (verified for $g \le$ 70 105)

Known: $\lim_{g\to\infty}\frac{n_{g+1}}{n_g}=$ the golden ratio

Conjecture (Bras-Amoros, 2008)

For all g, we have $n_g \ge n_{g-1}$.

Genus $g = g(S) = |\mathbb{Z}_{\geq 0} \setminus S|$: number of "gaps" of S. $n_g = \#$ of numerical semigroups with genus g. Example: $n_3 = 4$

$$\begin{array}{ll} \langle 2,7\rangle = \{0, \ 2, \ 4, \ 6,7,8,\ldots\} \\ \langle 3,4\rangle = \{0, \ 3,4, \ 6,7,8,\ldots\} \\ \langle 3,5,7\rangle = \{0, \ 3, \ 5,6,7,8,\ldots\} \\ 4,5,6,7\rangle = \{0, \ 4,5,6,7,8,\ldots\} \end{array}$$

Suspected: $n_g \ge n_{g-1} + n_{g-2}$ for all g (verified for $g \le 70$ 105)

Known: $\lim_{g\to\infty}\frac{n_{g+1}}{n_g}=$ the golden ratio

Conjecture (Bras-Amoros, 2008)

For all g, we have $n_g \ge n_{g-1}$.

Not true for $n'_f = \#$ of numerical semigroups with Frobenius number f $n'_{11} = 51$ $n'_{12} = 40$ $n'_{13} = 106$

References

W. Bruns, P. García-Sánchez, C. O'Neill, D. Wilburne (2020)
Wilf's conjecture in fixed multiplicity
International Journal of Algebra and Computation 30 (2020), no. 4, 861–882. (arXiv:1903.04342)

N. Kaplan, C. O'Neill, (2021)

Numerical semigroups, polyhedra, and posets I: the group cone Combinatorial Theory 1 (2021), #19. (arXiv:1912.03741)

J. Autry, A. Ezell, T. Gomes, C. O'Neill, C. Preuss, T. Saluja, E. Torres Davila (2022) Numerical semigroups, polyhedra, and posets II: locating certain families of semigroups. Advances in Geometry **22** (2022), no. 1, 33–48. (arXiv:1912.04460)

T. Gomes, C. O'Neill, E. Torres Davila (2023)

Numerical semigroups, polyhedra, and posets III: minimal presentations and face dimension.

Electronic Journal of Combinatorics 30 (2023), no. 2, #P2.5. (arXiv:2009.05921)

B. Braun, T. Gomes, E. Miller, C. O'Neill, and A. Sobieska (2023) Minimal free resolutions of numerical semigroup algebras via Apéry specialization under review. (arXiv:2310.03612)

References

 W. Bruns, P. García-Sánchez, C. O'Neill, D. Wilburne (2020)
 Wilf's conjecture in fixed multiplicity
 International Journal of Algebra and Computation 30 (2020), no. 4, 861–882. (arXiv:1903.04342)

N. Kaplan, C. O'Neill, (2021)

Numerical semigroups, polyhedra, and posets I: the group cone Combinatorial Theory 1 (2021), #19. (arXiv:1912.03741)

J. Autry, A. Ezell, T. Gomes, C. O'Neill, C. Preuss, T. Saluja, E. Torres Davila (2022) Numerical semigroups, polyhedra, and posets II: locating certain families of semigroups. Advances in Geometry **22** (2022), no. 1, 33–48. (arXiv:1912.04460)

T. Gomes, C. O'Neill, E. Torres Davila (2023)

Numerical semigroups, polyhedra, and posets III: minimal presentations and face dimension.

Electronic Journal of Combinatorics 30 (2023), no. 2, #P2.5. (arXiv:2009.05921)

B. Braun, T. Gomes, E. Miller, C. O'Neill, and A. Sobieska (2023) Minimal free resolutions of numerical semigroup algebras via Apéry specialization under review. (arXiv:2310.03612)

Thanks!