Classifying numerical semigroups using polyhedral geometry

Christopher O'Neill

San Diego State University

cdoneill@sdsu.edu

Joint with (i) Winfred Bruns, Pedro García-Sánchez, Dane Wilbourne; (ii) Nathan Kaplan; (iii) J. Autry, *A. Ezell, *T. Gomes, *C. Preuss, *T. Saluja, *E. Torres Dávila (iv) B. Braun, T. Gomes, E. Miller, C. O'Neill, and A. Sobieska

 $* =$ undergraduate student

Slides available: <https://cdoneill.sdsu.edu/>

November 18, 2024

A numerical semigroup $S \subseteq \mathbb{Z}_{\geq 0}$: closed under **addition**, $|\mathbb{Z}_{\geq 0} \setminus S| < \infty$.

A numerical semigroup $S \subseteq \mathbb{Z}_{\geq 0}$: closed under **addition**, $|\mathbb{Z}_{\geq 0} \setminus S| < \infty$.

Example:

$$
McN = \langle 6, 9, 20 \rangle = \left\{ \begin{array}{c} 0, 6, 9, 12, 15, 18, 20, 21, 24, \dots \\ \dots, 36, 38, 39, 40, 41, 42, 44 \rightarrow \end{array} \right\}
$$

A numerical semigroup $S \subseteq \mathbb{Z}_{\geq 0}$: closed under **addition**, $|\mathbb{Z}_{\geq 0} \setminus S| < \infty$.

Example: "McNugget Semigroup"

$$
\textit{McN} = \langle 6, 9, 20 \rangle = \left\{ \begin{array}{l} 0, 6, 9, 12, 15, 18, 20, 21, 24, \dots \\ \dots, 36, 38, 39, 40, 41, 42, 44 \rightarrow \end{array} \right\}
$$

A numerical semigroup $S \subseteq \mathbb{Z}_{\geq 0}$: closed under **addition**, $|\mathbb{Z}_{\geq 0} \setminus S| < \infty$.

Example: "McNugget Semigroup"

$$
McN = \langle 6, 9, 20 \rangle = \left\{ \begin{array}{l} 0, 6, 9, 12, 15, 18, 20, 21, 24, \dots \\ \dots, 36, 38, 39, 40, 41, 42, 44 \rightarrow \end{array} \right\}
$$

Example: $S = \langle 6, 9, 18, 20, 32 \rangle$

A numerical semigroup $S \subseteq \mathbb{Z}_{\geq 0}$: closed under **addition**, $|\mathbb{Z}_{\geq 0} \setminus S| < \infty$.

Example: "McNugget Semigroup"

$$
McN = \langle 6, 9, 20 \rangle = \left\{ \begin{array}{l} 0, 6, 9, 12, 15, 18, 20, 21, 24, \dots \\ \dots, 36, 38, 39, 40, 41, 42, 44 \rightarrow \end{array} \right\}
$$

Example: $S = \langle 6, 9, 18, 20, 32 \rangle$

A numerical semigroup $S \subseteq \mathbb{Z}_{\geq 0}$: closed under **addition**, $|\mathbb{Z}_{\geq 0} \setminus S| < \infty$.

Example: "McNugget Semigroup"

$$
\textit{McN} = \langle 6, 9, 20 \rangle = \left\{ \begin{array}{c} 0, 6, 9, 12, 15, 18, 20, 21, 24, \dots \\ \dots, 36, 38, 39, 40, 41, 42, 44 \rightarrow \end{array} \right\}
$$

Example: $S = \langle 6, 9, \pm 8, 20, \pm 32 \rangle = McN$

A numerical semigroup $S \subseteq \mathbb{Z}_{\geq 0}$: closed under **addition**, $|\mathbb{Z}_{\geq 0} \setminus S| < \infty$.

Example: "McNugget Semigroup"

$$
McN = \langle 6, 9, 20 \rangle = \left\{ \begin{array}{c} 0, 6, 9, 12, 15, 18, 20, 21, 24, \dots \\ \dots, 36, 38, 39, 40, 41, 42, 44 \rightarrow \end{array} \right\}
$$

Example: $S = \langle 6, 9, \pm 8, 20, \pm 32 \rangle = McN$

Fact

Every numerical semigroup has a unique minimal generating set.

A numerical semigroup $S \subseteq \mathbb{Z}_{\geq 0}$: closed under **addition**, $|\mathbb{Z}_{\geq 0} \setminus S| < \infty$.

Example: "McNugget Semigroup"

$$
\textit{McN} = \langle 6, 9, 20 \rangle = \left\{ \begin{array}{l} 0, 6, 9, 12, 15, 18, 20, 21, 24, \dots \\ \dots, 36, 38, 39, 40, 41, 42, 44 \rightarrow \end{array} \right\}
$$

Example: $S = \langle 6, 9, 18, 20, 32 \rangle = McN$

Fact

Every numerical semigroup has a unique minimal generating set.

Multiplicity: $m(S)$ = smallest nonzero element

Fix a numerical semigroup S with $m(S) = m$.

Fix a numerical semigroup S with $m(S) = m$.

Definition

The $Apéry$ set of S is

$$
Ap(S) = \{a \in S : a - m \notin S\}
$$

Fix a numerical semigroup S with $m(S) = m$.

Definition

The $Apéry$ set of S is

$$
Ap(S) = \{a \in S : a - m \notin S\}
$$

If $S = \langle 6, 9, 20 \rangle$, then

$$
Ap(S) = \{0, 49, 20, 9, 40, 29\}
$$

Fix a numerical semigroup S with $m(S) = m$.

Definition

The $Apéry$ set of S is

$$
Ap(S) = \{a \in S : a - m \notin S\}
$$

If $S = \langle 6, 9, 20 \rangle$, then

$$
Ap(S) = \{0, 49, 20, 9, 40, 29\}
$$

For 2 mod 6: {2*,* 8*,* 14*,* 20*,* 26*,* 32*, . . .*} ∩ S = {20*,* 26*,* 32*, . . .*} For 3 mod 6: $\{3, 9, 15, 21, ...\} \cap S = \{9, 15, 21, ...\}$ For 4 mod 6: $\{4, 10, 16, 22, ...\} \cap S = \{40, 46, 52, ...\}$

Fix a numerical semigroup S with $m(S) = m$.

Definition

The $Apéry$ set of S is

$$
Ap(S) = \{a \in S : a - m \notin S\}
$$

If $S = \langle 6, 9, 20 \rangle$, then

$$
Ap(S) = \{0, 49, 20, 9, 40, 29\}
$$

For 2 mod 6: {2*,* 8*,* 14*,* 20*,* 26*,* 32*, . . .*} ∩ S = {20*,* 26*,* 32*, . . .*} For 3 mod 6: $\{3, 9, 15, 21, ...\} \cap S = \{9, 15, 21, ...\}$ For 4 mod 6: $\{4, 10, 16, 22, ...\} \cap S = \{40, 46, 52, ...\}$

Fix a numerical semigroup S with $m(S) = m$.

Definition

The $Apéry$ set of S is

$$
Ap(S) = \{a \in S : a - m \notin S\}
$$

If $S = \langle 6, 9, 20 \rangle$, then

$$
Ap(S) = \{0, 49, 20, 9, 40, 29\}
$$

For 2 mod 6: {2*,* 8*,* 14*,* 20*,* 26*,* 32*, . . .*} ∩ S = {20*,* 26*,* 32*, . . .*} For 3 mod 6: $\{3, 9, 15, 21, ...\} \cap S = \{9, 15, 21, ...\}$ For 4 mod 6: $\{4, 10, 16, 22, ...\} \cap S = \{40, 46, 52, ...\}$

Fix a numerical semigroup S with $m(S) = m$.

Definition

The $Apéry$ set of S is

$$
Ap(S) = \{a \in S : a - m \notin S\}
$$

If $S = \langle 6, 9, 20 \rangle$, then

$$
Ap(S) = \{0, 49, 20, 9, 40, 29\}
$$

For 2 mod 6: {2*,* 8*,* 14*,* 20*,* 26*,* 32*, . . .*} ∩ S = {20*,* 26*,* 32*, . . .*} For 3 mod 6: $\{3, 9, 15, 21, ...\} \cap S = \{9, 15, 21, ...\}$ For 4 mod 6: $\{4, 10, 16, 22, ...\} \cap S = \{40, 46, 52, ...\}$

Observations:

Fix a numerical semigroup S with $m(S) = m$.

Definition

The $Apéry$ set of S is

$$
Ap(S) = \{a \in S : a - m \notin S\}
$$

If $S = \langle 6, 9, 20 \rangle$, then

$$
Ap(S) = \{0, 49, 20, 9, 40, 29\}
$$

For 2 mod 6: {2*,* 8*,* 14*,* 20*,* 26*,* 32*, . . .*} ∩ S = {20*,* 26*,* 32*, . . .*} For 3 mod 6: $\{3, 9, 15, 21, ...\} \cap S = \{9, 15, 21, ...\}$ For 4 mod 6: $\{4, 10, 16, 22, ...\} \cap S = \{40, 46, 52, ...\}$

Observations:

• The elements of $Ap(S)$ are distinct modulo m

Fix a numerical semigroup S with $m(S) = m$.

Definition

The $Apéry$ set of S is

$$
Ap(S) = \{a \in S : a - m \notin S\}
$$

If $S = \langle 6, 9, 20 \rangle$, then

$$
Ap(S) = \{0, 49, 20, 9, 40, 29\}
$$

For 2 mod 6: {2*,* 8*,* 14*,* 20*,* 26*,* 32*, . . .*} ∩ S = {20*,* 26*,* 32*, . . .*} For 3 mod 6: $\{3, 9, 15, 21, ...\} \cap S = \{9, 15, 21, ...\}$ For 4 mod 6: $\{4, 10, 16, 22, ...\} \cap S = \{40, 46, 52, ...\}$

Observations:

- The elements of $Ap(S)$ are distinct modulo m
- \bullet $|$ Ap(S) $| = m$

Fix a numerical semigroup S with $m(S) = m$.

Definition

The $Apéry$ set of S is

$$
Ap(S) = \{a \in S : a - m \notin S\}
$$

Fix a numerical semigroup S with $m(S) = m$.

Definition

The $Apéry$ set of S is

$$
Ap(S) = \{a \in S : a - m \notin S\}
$$

Many things can be easily recovered from the Apéry set.

Fix a numerical semigroup S with $m(S) = m$.

Definition

The $Apéry$ set of S is

$$
Ap(S) = \{a \in S : a - m \notin S\}
$$

Many things can be easily recovered from the Apéry set.

• Fast membership test:

 $n \in S$ if $n \ge a$ for $a \in Ap(S)$ with $a \equiv n \mod m$

Fix a numerical semigroup S with $m(S) = m$.

Definition

The $Apéry$ set of S is

$$
Ap(S) = \{a \in S : a - m \notin S\}
$$

Many things can be easily recovered from the Apéry set.

• Fast membership test:

 $n \in S$ if $n \ge a$ for $a \in Ap(S)$ with $a \equiv n \mod m$

• Frobenius number: $F(S) = max(Ap(S)) - m$

Fix a numerical semigroup S with $m(S) = m$.

Definition

The $Apéry$ set of S is

$$
Ap(S) = \{a \in S : a - m \notin S\}
$$

Many things can be easily recovered from the Apéry set.

• Fast membership test:

 $n \in S$ if $n \ge a$ for $a \in Ap(S)$ with $a \equiv n \mod m$

- Frobenius number: $F(S) = max(Ap(S)) m$
- Number of gaps (the genus):

$$
g(S) = |N \setminus S| = \sum_{a \in Ap(S)} \left\lfloor \frac{a}{m} \right\rfloor
$$

T.

Fix a numerical semigroup S with $m(S) = m$.

Definition

The $Apéry$ set of S is

$$
Ap(S) = \{a \in S : a - m \notin S\}
$$

Many things can be easily recovered from the Apéry set.

• Fast membership test:

 $n \in S$ if $n \ge a$ for $a \in Ap(S)$ with $a \equiv n \mod m$

m $\overline{}$

- Frobenius number: $F(S) = max(Ap(S)) m$
- Number of gaps (the *genus*): $g(S) = |N \setminus S| = \sum$ a∈Ap(S) $|a$

The Apéry set is a "one stop shop" for computation.

Is $A = \{0, 11, 7, 23, 19\}$ the Apéry set of some numerical semigroup?

Is $A = \{0, 11, 7, 23, 19\}$ the Apéry set of some numerical semigroup? $m = |A| = 5$, $a_1 = 11$, $a_2 = 7$, $a_3 = 23$, $a_4 = 19$

Is $\{0, 13, 14, 27, 10, 11\}$ the Apéry set of some numerical semigroup? $m = |A| = 6$, $a_1 = 13$, $a_2 = 14$, $a_3 = 27$, $a_4 = 10$, $a_5 = 11$

Is $\{0, 13, 14, 27, 10, 11\}$ the Apéry set of some numerical semigroup? $m = |A| = 6$, $a_1 = 13$, $a_2 = 14$, $a_3 = 27$, $a_4 = 10$, $a_5 = 11$ but $a_4 + a_5 \equiv 3 \mod 6$ and $a_4 + a_5 < a_3$.

Is $\{0, 13, 14, 27, 10, 11\}$ the Apéry set of some numerical semigroup? $m = |A| = 6$, $a_1 = 13$, $a_2 = 14$, $a_3 = 27$, $a_4 = 10$, $a_5 = 11$ but $a_4 + a_5 \equiv 3 \mod 6$ and $a_4 + a_5 < a_3$.

Theorem

If $A = \{0, a_1, \ldots, a_{m-1}\}\$ with each $a_i > m$ and $a_i \equiv i \mod m$, then there exists a numerical semigroup S with $Ap(S) = A$ if and only if $a_i + a_j \ge a_{i+1}$ whenever $i + j \ne 0$.

Is $\{0, 13, 14, 27, 10, 11\}$ the Apéry set of some numerical semigroup? $m = |A| = 6$, $a_1 = 13$, $a_2 = 14$, $a_3 = 27$, $a_4 = 10$, $a_5 = 11$ but $a_4 + a_5 \equiv 3 \mod 6$ and $a_4 + a_5 < a_3$.

Theorem

If $A = \{0, a_1, \ldots, a_{m-1}\}\$ with each $a_i > m$ and $a_i \equiv i \mod m$, then there exists a numerical semigroup S with $Ap(S) = A$ if and only if $a_i + a_j \ge a_{i+1}$ whenever $i + j \ne 0$.

Big idea: the inequalities " $a_i + a_j \ge a_{i+j}$ " to define a **cone** C_m .

Definition

The *Kunz cone* $\mathsf{C}_m \subseteq \mathbb{R}^{m-1}$ is a pointed cone with defining inequalities $a_i + a_j \ge a_{i+1}$ whenever $i + j \ne 0$. ${S \subseteq \mathbb{Z}_{\geq 0} : m(S) = m} \longrightarrow C_m$ $Ap(S) = \{0, a_1, \ldots, a_{m-1}\} \longmapsto (a_1, \ldots, a_{m-1})$

Definition

The *Kunz cone* $\mathsf{C}_m \subseteq \mathbb{R}^{m-1}$ is a pointed cone with defining inequalities $a_i + a_j \ge a_{i+1}$ whenever $i + j \ne 0$. ${S \subseteq \mathbb{Z}_{\geq 0} : \mathsf{m}(S) = m} \longrightarrow C_m$ $\mathsf{Ap}(\mathcal{S}) = \{0, a_1, \ldots, a_{m-1}\} \longmapsto (a_1, \ldots, a_{m-1})$ Example: C_3 $\sqrt{\frac{2}{3}}$ $\frac{1}{202}$ $\frac{1}{2}$ $\frac{1}{2}$

Definition

The *Kunz cone* $\mathsf{C}_m \subseteq \mathbb{R}^{m-1}$ is a pointed cone with defining inequalities $a_i + a_j \ge a_{i+1}$ whenever $i + j \ne 0$. ${S \subseteq \mathbb{Z}_{\geq 0} : m(S) = m} \longrightarrow C_m$ $Ap(S) = \{0, a_1, \ldots, a_{m-1}\} \longmapsto (a_1, \ldots, a_{m-1})$ Example: C_3 $S = \langle 3, 5, 7 \rangle$ $Ap(S) = \{0, 7, 5\}$ $\sqrt{\frac{2}{3}}$ $\frac{1}{202}$ $\frac{1}{2}$ $\frac{1}{2}$

Definition

The *Kunz cone* $\mathsf{C}_m \subseteq \mathbb{R}^{m-1}$ is a pointed cone with defining inequalities $a_i + a_j \ge a_{i+1}$ whenever $i + j \ne 0$. ${S \subseteq \mathbb{Z}_{\geq 0} : \mathsf{m}(S) = m} \longrightarrow C_m$ $Ap(S) = \{0, a_1, \ldots, a_{m-1}\} \longmapsto (a_1, \ldots, a_{m-1})$ Example: C_3 $S = \langle 3, 5, 7 \rangle$ $Ap(S) = \{0, 7, 5\}$ $S = \langle 3, 4 \rangle$ $Ap(S) = \{0, 4, 8\}$ $\sqrt{\frac{2}{3}}$ $\frac{1}{202}$ av

Definition

The *Kunz cone* $\mathsf{C}_m \subseteq \mathbb{R}^{m-1}$ is a pointed cone with defining inequalities $a_i + a_j \ge a_{i+1}$ whenever $i + j \ne 0$. ${S \subseteq \mathbb{Z}_{\geq 0} : \mathsf{m}(S) = m} \longrightarrow C_m$ $Ap(S) = \{0, a_1, \ldots, a_{m-1}\} \longmapsto (a_1, \ldots, a_{m-1})$
Kunz cone

Definition

The *Kunz cone* $\mathsf{C}_m \subseteq \mathbb{R}^{m-1}$ is a pointed cone with defining inequalities $a_i + a_j \ge a_{i+1}$ whenever $i + j \ne 0$. ${S \subseteq \mathbb{Z}_{\geq 0} : m(S) = m} \longrightarrow C_m$ $Ap(S) = \{0, a_1, \ldots, a_{m-1}\} \longmapsto (a_1, \ldots, a_{m-1})$

Example: C₄

Question

Question

When are numerical semigroups in (the relative interior of) the same face?

First steps: $S \in \text{Int}(C_m)$ if and only if S has max embedding dimension

Question

When are numerical semigroups in (the relative interior of) the same face?

First steps: $S \in \text{Int}(C_m)$ if and only if S has max embedding dimension If $S = \langle n_1, \ldots, n_k \rangle$, then $n_i \not\equiv n_i \mod n_1 \implies k \leq m(S)$

Question

When are numerical semigroups in (the relative interior of) the same face?

First steps: $S \in \text{Int}(C_m)$ if and only if S has max embedding dimension If $S = \langle n_1, \ldots, n_k \rangle$, then $n_i \not\equiv n_i \mod n_1 \implies k \leq m(S)$

If $k = m(S)$, then S has max embedding dimension

Question

When are numerical semigroups in (the relative interior of) the same face?

First steps: $S \in \text{Int}(\mathcal{C}_m)$ if and only if S has max embedding dimension If $S = \langle n_1, \ldots, n_k \rangle$, then $n_i \not\equiv n_i \mod n_1 \implies k \leq m(S)$ If $k = m(S)$, then S has max embedding dimension $S = \langle m, a_1, \ldots, a_{m-1} \rangle$ where $Ap(S) = \{0, a_1, \ldots, a_{m-1}\}$

Question

When are numerical semigroups in (the relative interior of) the same face?

First steps: $S \in \text{Int}(\mathcal{C}_m)$ if and only if S has max embedding dimension If $S = \langle n_1, \ldots, n_k \rangle$, then $n_i \not\equiv n_i \mod n_1 \implies k \leq m(S)$ If $k = m(S)$, then S has max embedding dimension $S = \langle m, a_1, \ldots, a_{m-1} \rangle$ where $Ap(S) = \{0, a_1, \ldots, a_{m-1}\}$

Geometrically: "most" numerical semigroups with $m(S) = m$ are MED

Question

When are numerical semigroups in (the relative interior of) the same face?

First steps: $S \in \text{Int}(\mathcal{C}_m)$ if and only if S has max embedding dimension If $S = \langle n_1, \ldots, n_k \rangle$, then $n_i \not\equiv n_i \mod n_1 \implies k \leq m(S)$ If $k = m(S)$, then S has max embedding dimension $S = \langle m, a_1, \ldots, a_{m-1} \rangle$ where $Ap(S) = \{0, a_1, \ldots, a_{m-1}\}$ Geometrically: "most" numerical semigroups with $m(S) = m$ are MED What about the other faces?

Question

Question

Example:
$$
S = \langle 4, 10, 11, 13 \rangle
$$

\n $Ap(S) = \{0, 13, 10, 11\}$
\n $a_1 = 13, a_2 = 10, a_3 = 11$
\n $2a_1 > a_2$
\n $2a_1 > a_2$
\n $2a_2 > a_2$
\n $a_2 + a_3 > a_1$

Question

Example: $S = \langle 4, 10, 11, 13 \rangle$	$2a_1 > a_2$	$a_1 + a_2 > a_3$
$a_1 = 13$, $a_2 = 10$, $a_3 = 11$	$2a_3 > a_2$	$a_2 + a_3 > a_1$
Example: $S = \langle 4, 10, 13 \rangle$	$2a_1 > a_2$	$a_2 + a_3 > a_1$
$Ap(S) = \{0, 13, 10, 23\}$	$2a_1 > a_2$	$a_1 + a_2 = a_3$
$a_1 = 13$, $a_2 = 10$, $a_3 = 23$	$2a_3 > a_2$	$a_2 + a_3 > a_1$

Question

Example: $S = \langle 4, 10, 11, 13 \rangle$	$2a_1 > a_2$	$a_1 + a_2 > a_3$
$a_1 = 13, \quad a_2 = 10, \quad a_3 = 11$	$2a_3 > a_2$	$a_2 + a_3 > a_1$
Example: $S = \langle 4, 10, 13 \rangle$	$2a_1 > a_2$	$a_2 + a_3 > a_1$
Example: $S = \langle 4, 10, 13 \rangle$	$2a_1 > a_2$	$a_1 + a_2 = a_3$
$a_1 = 13, \quad a_2 = 10, \quad a_3 = 23$	$2a_3 > a_2$	$a_2 + a_3 > a_1$
Example: $S = \langle 4, 13 \rangle$	$2a_1 = a_2$	$a_1 + a_2 = a_3$
$a_1 = 13, \quad a_2 = 26, \quad a_3 = 39$	$2a_3 > a_2$	$a_2 + a_3 > a_1$

Question

Question

When are numerical semigroups in (the relative interior of) the same face?

Definition

The Apéry poset of S: define $a \preceq a'$ whenever $a' - a \in S$.

Question

Question

$$
S = \langle 6, 9, 20 \rangle
$$

Ap(S) = {0, 49, 20, 9, 40, 29}

$$
S' = \langle 6, 26, 27 \rangle
$$

Ap(S') = {0, 79, 26, 27, 52, 53}

Question

When are numerical semigroups in (the relative interior of) the same face?

$$
S = \langle 6, 9, 20 \rangle
$$

Ap(S) = {0, 49, 20, 9, 40, 29}

 $S' = \langle 6, 26, 27 \rangle$ $Ap(S') = \{0, 79, 26, 27, 52, 53\}$

Question

Question

When are numerical semigroups in (the relative interior of) the same face?

The Kunz poset of S: use ground set \mathbb{Z}_m instead of Ap(S).

Question

When are numerical semigroups in (the relative interior of) the same face?

The Kunz poset of S: use ground set \mathbb{Z}_m instead of Ap(S).

Theorem (Bruns–García-Sánchez–O.–Wilburne)

Question

When are numerical semigroups in (the relative interior of) the same face?

The Kunz poset of S: use ground set \mathbb{Z}_m instead of Ap(S).

Theorem (Bruns–García-Sánchez–O.–Wilburne)

Question

When are numerical semigroups in (the relative interior of) the same face?

Defining facet equations:

$$
\underset{\cdot}{2}a_2=a_4
$$

$$
a_2+a_3=a_5
$$

$$
a_2+a_5=a_1
$$

 $a_3 + a_4 = a_1$

The Kunz poset of S: use ground set \mathbb{Z}_m instead of Ap(S).

Theorem (Bruns–García-Sánchez–O.–Wilburne)

Question

When are numerical semigroups in (the relative interior of) the same face?

The Kunz poset of S: use ground set \mathbb{Z}_m instead of Ap(S).

Theorem (Bruns–García-Sánchez–O.–Wilburne)

 C_3 and C_4

Theorem (Kaplan–O.)

There is a natural labeling of the faces of C_m by finite posets.

 $Christopher O'Neill (SDSU)$ Classifying numerical semigroups using polyhe November 18, 2024 13/18

What properties are determined by the Kunz poset P of $S = \langle n_1, \ldots, n_k \rangle$?

• $k = 1 + \#$ atoms of P

What properties are determined by the Kunz poset P of $S = \langle n_1, \ldots, n_k \rangle$?

• $k = 1 + \#$ atoms of P

- $k = 1 + \#$ atoms of P
- $t(S) = #$ maximal elements (Cohen-Macaulay type of S)

- $k = 1 + \#$ atoms of P
- $t(S) = #$ maximal elements (Cohen-Macaulay type of S)
- Symmetric/Gorenstein?

- $k = 1 + \#$ atoms of P
- $t(S) = #$ maximal elements (Cohen-Macaulay type of S)
- Symmetric/Gorenstein?
- Complete intersection?
- Generalized arithmetical?

What properties are determined by the Kunz poset P of $S = \langle n_1, \ldots, n_k \rangle$?

- $k = 1 + \#$ atoms of P
- $t(S) = #$ maximal elements (Cohen-Macaulay type of S)
- Symmetric/Gorenstein?
- Complete intersection?
- Generalized arithmetical?

• Minimal binomial generators of the defining toric ideal of S: $I_S = \mathop{\sf ker} \left(\mathbb{k}[\overline{x}] \to \mathbb{k}[t] \right)$

$$
x_i\mapsto t^{n_i}
$$

What properties are determined by the Kunz poset P of $S = \langle n_1, \ldots, n_k \rangle$?

- $k = 1 + \#$ atoms of P
- $t(S) = #$ maximal elements (Cohen-Macaulay type of S)
- Symmetric/Gorenstein?
- Complete intersection?
- Generalized arithmetical?

• Minimal binomial generators of the defining toric ideal of S: $I_S = \mathop{\sf ker} \left(\mathbb{k}[\overline{x}] \to \mathbb{k}[t] \right)$

$$
x_i\mapsto t^{n_i}
$$

What properties are determined by the Kunz poset P of $S = \langle n_1, \ldots, n_k \rangle$?

- $k = 1 + \#$ atoms of P
- $t(S) = #$ maximal elements (Cohen-Macaulay type of S)
- Symmetric/Gorenstein?
- Complete intersection?
- Generalized arithmetical?

• Minimal binomial generators of the defining toric ideal of S: $I_S = \mathop{\sf ker} \left(\mathbb{k}[\overline{x}] \to \mathbb{k}[t] \right)$ $x_i \mapsto t^{n_i}$

What properties are determined by the Kunz poset P of $S = \langle n_1, \ldots, n_k \rangle$?

- $k = 1 + \#$ atoms of P
- $t(S) = #$ maximal elements (Cohen-Macaulay type of S)
- Symmetric/Gorenstein?
- Complete intersection?
- Generalized arithmetical?

• Minimal binomial generators of the defining toric ideal of S: $I_S = \mathop{\sf ker} \left(\mathbb{k}[\overline{x}] \to \mathbb{k}[t] \right)$ $x_i \mapsto t^{n_i}$

Shared properties within a face

What properties are determined by the Kunz poset P of $S = \langle n_1, \ldots, n_k \rangle$?

- $k = 1 + \#$ atoms of P
- $t(S) = #$ maximal elements (Cohen-Macaulay type of S)
- Symmetric/Gorenstein?
- Complete intersection?
- Generalized arithmetical?

• Minimal binomial generators of the defining toric ideal of S: $I_S = \mathop{\sf ker} \left(\mathbb{k}[\overline{x}] \to \mathbb{k}[t] \right)$

$$
x_i \mapsto t^{n_i}
$$

$$
S = \langle 10, a_2, a_3, a_4 \rangle
$$

\n
$$
I_S = \langle x_2^2 - y^* x_4, x_2 x_4 - x_3^2, x_3^2 x_4 - y^*, x_4^3 - y^* x_2 \rangle
$$

\n
$$
\subseteq \mathbb{K}[y, x_2, x_3, x_4]
$$

Shared properties within a face

What properties are determined by the Kunz poset P of $S = \langle n_1, \ldots, n_k \rangle$?

- $k = 1 + \#$ atoms of P
- $t(S) = #$ maximal elements (Cohen-Macaulay type of S)
- Symmetric/Gorenstein?
- Complete intersection?
- Generalized arithmetical?
- Minimal binomial generators of the defining toric ideal of S: $I_S = \mathop{\sf ker} \left(\mathbb{k}[\overline{x}] \to \mathbb{k}[t] \right)$ $x_i \mapsto t^{n_i}$
- Betti numbers of I_S over $\mathbb{k}[\overline{x}]$

Shared properties within a face

What properties are determined by the Kunz poset P of $S = \langle n_1, \ldots, n_k \rangle$?

- $k = 1 + \#$ atoms of P
- $t(S) = #$ maximal elements (Cohen-Macaulay type of S)
- Symmetric/Gorenstein?
- Complete intersection?
- Generalized arithmetical?
- Minimal binomial generators of the defining toric ideal of S: $I_S = \mathop{\sf ker} \left(\mathbb{k}[\overline{x}] \to \mathbb{k}[t] \right)$ $x_i \mapsto t^{n_i}$
- Betti numbers of I_S over $\mathbb{k}[\overline{x}]$
- Betti numbers of \Bbbk over $\Bbbk[\overline{x}]/I_{S}$

Question

Question

Question

Question

Question

Question

Question

Question

$$
F(S) = \max(\mathbb{Z}_{\geq 0} \setminus S) \qquad \qquad g(S) = |\mathbb{Z}_{\geq 0} \setminus S|
$$

$$
F(S) = \max(\mathbb{Z}_{\geq 0} \setminus S) \qquad \qquad g(S) = |\mathbb{Z}_{\geq 0} \setminus S|
$$

Wilf's Conjecture

For any $S = \langle n_1, ..., n_k \rangle$, we have $F(S) + 1 \le k(F(S) + 1 - g(S))$.

$$
F(S) = \max(\mathbb{Z}_{\geq 0} \setminus S) \qquad \qquad g(S) = |\mathbb{Z}_{\geq 0} \setminus S|
$$

Wilf's Conjecture

For any
$$
S = \langle n_1, ..., n_k \rangle
$$
, we have $F(S) + 1 \le k(F(S) + 1 - g(S))$.

Equivalently,

$$
F(S) = \max(\mathbb{Z}_{\geq 0} \setminus S) \qquad \qquad g(S) = |\mathbb{Z}_{\geq 0} \setminus S|
$$

Wilf's Conjecture

For any
$$
S = \langle n_1, \ldots, n_k \rangle
$$
, we have $F(S) + 1 \le k(F(S) + 1 - g(S))$.

Equivalently,

Equality holds when:

$$
F(S) = \max(\mathbb{Z}_{\geq 0} \setminus S) \qquad \qquad g(S) = |\mathbb{Z}_{\geq 0} \setminus S|
$$

Wilf's Conjecture

For any $S = \langle n_1, ..., n_k \rangle$, we have $F(S) + 1 \le k(F(S) + 1 - g(S))$.

$$
F(S) = \max(\mathbb{Z}_{\geq 0} \setminus S) \qquad \qquad g(S) = |\mathbb{Z}_{\geq 0} \setminus S|
$$

Wilf's Conjecture

For any
$$
S = \langle n_1, ..., n_k \rangle
$$
, we have $F(S) + 1 \le k(F(S) + 1 - g(S))$.

Proved in many special cases, including $g(S) \leq 66$

$$
F(S) = \max(\mathbb{Z}_{\geq 0} \setminus S) \qquad \qquad g(S) = |\mathbb{Z}_{\geq 0} \setminus S|
$$

Wilf's Conjecture

For any
$$
S = \langle n_1, ..., n_k \rangle
$$
, we have $F(S) + 1 \le k(F(S) + 1 - g(S))$.

Proved in many special cases, including $g(S) \leq 66$ 100

$$
F(S) = \max(\mathbb{Z}_{\geq 0} \setminus S) \qquad \qquad g(S) = |\mathbb{Z}_{\geq 0} \setminus S|
$$

Wilf's Conjecture

For any
$$
S = \langle n_1, \ldots, n_k \rangle
$$
, we have $F(S) + 1 \le k(F(S) + 1 - g(S))$.

Proved in many special cases, including $g(S) \le 66$ 100 ($\sim 10^{21}$ sgps)

$$
F(S) = \max(\mathbb{Z}_{\geq 0} \setminus S) \qquad \qquad g(S) = |\mathbb{Z}_{\geq 0} \setminus S|
$$

Wilf's Conjecture

For any
$$
S = \langle n_1, \ldots, n_k \rangle
$$
, we have $F(S) + 1 \le k(F(S) + 1 - g(S))$.

Proved in many special cases, including $g(S) \le 66$ 100 ($\sim 10^{21}$ sgps)

Theorem (Bruns-García-Sánchez-O.-Wilburne, 2020)

Wilf's conjecture holds for all numerical semigroups S with $m < 18$.

$$
F(S) = \max(\mathbb{Z}_{\geq 0} \setminus S) \qquad \qquad g(S) = |\mathbb{Z}_{\geq 0} \setminus S|
$$

Wilf's Conjecture

For any
$$
S = \langle n_1, \ldots, n_k \rangle
$$
, we have $F(S) + 1 \le k(F(S) + 1 - g(S))$.

Proved in many special cases, including g(S) ≤ 66 100 ($\sim 10^{21}$ sgps)

Theorem (Bruns-García-Sánchez-O.-Wilburne, 2020)

Wilf's conjecture holds for all numerical semigroups S with $m \leq 18$.

Proved *computationally*!!?! But that's infinitely many semigroups!

$$
F(S) = \max(\mathbb{Z}_{\geq 0} \setminus S) \qquad \qquad g(S) = |\mathbb{Z}_{\geq 0} \setminus S|
$$

Wilf's Conjecture

For any
$$
S = \langle n_1, \ldots, n_k \rangle
$$
, we have $F(S) + 1 \le k(F(S) + 1 - g(S))$.

Proved in many special cases, including g(S) ≤ 66 100 ($\sim 10^{21}$ sgps)

Theorem (Bruns-García-Sánchez-O.-Wilburne, 2020)

Wilf's conjecture holds for all numerical semigroups S with $m \leq 18$.

Proved *computationally*!!?! But that's infinitely many semigroups! The key: discrete optimization (integer solutions to linear inequalities)

$$
F(S) = \max(\mathbb{Z}_{\geq 0} \setminus S) \qquad \qquad g(S) = |\mathbb{Z}_{\geq 0} \setminus S|
$$

Wilf's Conjecture

For any
$$
S = \langle n_1, \ldots, n_k \rangle
$$
, we have $F(S) + 1 \le k(F(S) + 1 - g(S))$.

Proved in many special cases, including $g(S) \le 66$ 100 ($\sim 10^{21}$ sgps)

Theorem (Bruns-García-Sánchez-O.-Wilburne, 2020)

Wilf's conjecture holds for all numerical semigroups S with $m \leq 18$.

Proved *computationally*!!?! But that's infinitely many semigroups! The key: discrete optimization (integer solutions to linear inequalities)

If S corresponds to $x = (a_1, \ldots, a_{m-1}) \in C_m$,

$$
g(S) = ||x||_1 - \frac{1}{2}m(m-1),
$$
 $F(S) = ||x||_{\infty} - m,$

and # generators k is determined by the face $F \subseteq C_m$ containing x.

References

W. Bruns, P. García-Sánchez, C. O'Neill, D. Wilburne (2020) Wilf's conjecture in fixed multiplicity International Journal of Algebra and Computation **30** (2020), no. 4, 861–882. (arXiv:1903.04342)

N. Kaplan, C. O'Neill, (2021) Numerical semigroups, polyhedra, and posets I: the group cone Combinatorial Theory **1** (2021), #19. (arXiv:1912.03741)

J. Autry, A. Ezell, T. Gomes, C. O'Neill, C. Preuss, T. Saluja, E. Torres Davila (2022) Numerical semigroups, polyhedra, and posets II: locating certain families of semigroups. Advances in Geometry **22** (2022), no. 1, 33–48. (arXiv:1912.04460)

T. Gomes, C. O'Neill, E. Torres Davila (2023)

Numerical semigroups, polyhedra, and posets III: minimal presentations and face dimension.

Electronic Journal of Combinatorics **30** (2023), no. 2, #P2.5. (arXiv:2009.05921)

B. Braun, T. Gomes, E. Miller, C. O'Neill, and A. Sobieska (2023) Minimal free resolutions of numerical semigroup algebras via Apéry specialization under review. (arXiv:2310.03612)

References

W. Bruns, P. García-Sánchez, C. O'Neill, D. Wilburne (2020) Wilf's conjecture in fixed multiplicity International Journal of Algebra and Computation **30** (2020), no. 4, 861–882. (arXiv:1903.04342)

N. Kaplan, C. O'Neill, (2021) Numerical semigroups, polyhedra, and posets I: the group cone Combinatorial Theory **1** (2021), #19. (arXiv:1912.03741)

J. Autry, A. Ezell, T. Gomes, C. O'Neill, C. Preuss, T. Saluja, E. Torres Davila (2022) Numerical semigroups, polyhedra, and posets II: locating certain families of semigroups. Advances in Geometry **22** (2022), no. 1, 33–48. (arXiv:1912.04460)

T. Gomes, C. O'Neill, E. Torres Davila (2023)

Numerical semigroups, polyhedra, and posets III: minimal presentations and face dimension.

Electronic Journal of Combinatorics **30** (2023), no. 2, #P2.5. (arXiv:2009.05921)

B. Braun, T. Gomes, E. Miller, C. O'Neill, and A. Sobieska (2023) Minimal free resolutions of numerical semigroup algebras via Apéry specialization under review. (arXiv:2310.03612)

Thanks!