Classifying numerical semigroups using polyhedral geometry

Christopher O'Neill

San Diego State University

cdoneill@sdsu.edu

Joint with (i) Winfred Bruns, Pedro García-Sánchez, Dane Wilbourne; (ii) Nathan Kaplan;
(iii) J. Autry, *A. Ezell, *T. Gomes, *C. Preuss, *T. Saluja, *E. Torres Dávila
(iv) B. Braun, T. Gomes, E. Miller, C. O'Neill, and A. Sobieska

* = undergraduate student

Slides available: https://cdoneill.sdsu.edu/

December 3, 2024

A numerical semigroup $S \subseteq \mathbb{Z}_{\geq 0}$: closed under addition, $|\mathbb{Z}_{\geq 0} \setminus S| < \infty$.

A numerical semigroup $S \subseteq \mathbb{Z}_{\geq 0}$: closed under addition, $|\mathbb{Z}_{\geq 0} \setminus S| < \infty$.

Example:

$$McN = \langle 6, 9, 20 \rangle = \begin{cases} 0, 6, 9, 12, 15, 18, 20, 21, 24, \dots \\ \dots, 36, 38, 39, 40, 41, 42, 44 \rightarrow \end{cases}$$

A numerical semigroup $S \subseteq \mathbb{Z}_{\geq 0}$: closed under addition, $|\mathbb{Z}_{\geq 0} \setminus S| < \infty$.

Example: "McNugget Semigroup"

$$McN = \langle 6, 9, 20 \rangle = \begin{cases} 0, 6, 9, 12, 15, 18, 20, 21, 24, \dots \\ \dots, 36, 38, 39, 40, 41, 42, 44 \rightarrow \end{cases}$$

A numerical semigroup $S \subseteq \mathbb{Z}_{\geq 0}$: closed under addition, $|\mathbb{Z}_{\geq 0} \setminus S| < \infty$.

Example: "McNugget Semigroup"

$$McN = \langle 6, 9, 20 \rangle = \begin{cases} 0, 6, 9, 12, 15, 18, 20, 21, 24, \dots \\ \dots, 36, 38, 39, 40, 41, 42, 44 \rightarrow \end{cases}$$

Example: $S = \langle 6, 9, 18, 20, 32 \rangle$

A numerical semigroup $S \subseteq \mathbb{Z}_{\geq 0}$: closed under addition, $|\mathbb{Z}_{\geq 0} \setminus S| < \infty$.

Example: "McNugget Semigroup"

$$McN = \langle 6, 9, 20 \rangle = \begin{cases} 0, 6, 9, 12, 15, 18, 20, 21, 24, \dots \\ \dots, 36, 38, 39, 40, 41, 42, 44 \rightarrow \end{cases}$$

Example: $S = \langle 6, 9, \frac{18}{2}, 20, \frac{32}{2} \rangle$

A numerical semigroup $S \subseteq \mathbb{Z}_{\geq 0}$: closed under addition, $|\mathbb{Z}_{\geq 0} \setminus S| < \infty$.

Example: "McNugget Semigroup"

$$McN = \langle 6, 9, 20 \rangle = \begin{cases} 0, 6, 9, 12, 15, 18, 20, 21, 24, \dots \\ \dots, 36, 38, 39, 40, 41, 42, 44 \rightarrow \end{cases}$$

Example: $S = \langle 6, 9, \mathbf{18}, 20, \mathbf{32} \rangle = McN$

A numerical semigroup $S \subseteq \mathbb{Z}_{\geq 0}$: closed under addition, $|\mathbb{Z}_{\geq 0} \setminus S| < \infty$.

Example: "McNugget Semigroup"

$$McN = \langle 6, 9, 20 \rangle = \begin{cases} 0, 6, 9, 12, 15, 18, 20, 21, 24, \dots \\ \dots, 36, 38, 39, 40, 41, 42, 44 \rightarrow \end{cases}$$

Example: $S = \langle 6, 9, \frac{18}{20}, \frac{32}{20} \rangle = McN$

Fact

Every numerical semigroup has a unique minimal generating set.

Fix a numerical semigroup S.

Definition

 $F(S) = \max(\mathbb{N} \setminus S)$ is the *Frobenius number* of *S* $g(S) = |\mathbb{N} \setminus S|$ is the *genus* of *S*

Fix a numerical semigroup S.

Definition

 $F(S) = \max(\mathbb{N} \setminus S)$ is the *Frobenius number* of *S* $g(S) = |\mathbb{N} \setminus S|$ is the *genus* of *S*

Example: if $S = \langle 6, 9, 20 \rangle$, then F(S) = 43 and g(S) = 22 since $\mathbb{N} \setminus S = \{1, 2, 3, 4, 5, 7, 8, 10, 11, 13, \dots, 31, 34, 37, 43\}$

Fix a numerical semigroup S.

Definition

 $F(S) = \max(\mathbb{N} \setminus S)$ is the *Frobenius number* of *S* $g(S) = |\mathbb{N} \setminus S|$ is the *genus* of *S*

Example: if $S = \langle 6, 9, 20 \rangle$, then F(S) = 43 and g(S) = 22 since $\mathbb{N} \setminus S = \{1, 2, 3, 4, 5, 7, 8, 10, 11, 13, \dots, 31, 34, 37, 43\}$

Computing the Frobenius number for general S is hard

Fix a numerical semigroup S.

Definition

 $F(S) = \max(\mathbb{N} \setminus S)$ is the *Frobenius number* of *S* $g(S) = |\mathbb{N} \setminus S|$ is the *genus* of *S*

Example: if $S = \langle 6, 9, 20 \rangle$, then F(S) = 43 and g(S) = 22 since $\mathbb{N} \setminus S = \{1, 2, 3, 4, 5, 7, 8, 10, 11, 13, \dots, 31, 34, 37, 43\}$

Computing the Frobenius number for general S is hard

• If
$$S = \langle a, b \rangle$$
, then $F(S) = ab - (a + b)$

Fix a numerical semigroup S.

Definition

 $F(S) = \max(\mathbb{N} \setminus S)$ is the *Frobenius number* of *S* $g(S) = |\mathbb{N} \setminus S|$ is the *genus* of *S*

Example: if $S = \langle 6, 9, 20 \rangle$, then F(S) = 43 and g(S) = 22 since $\mathbb{N} \setminus S = \{1, 2, 3, 4, 5, 7, 8, 10, 11, 13, \dots, 31, 34, 37, 43\}$

Computing the Frobenius number for general S is hard

• If
$$S = \langle a, b \rangle$$
, then $F(S) = ab - (a + b)$

• If $S = \langle n_1, n_2, n_3 \rangle$, then there is a fast algorithm for F(S)

Fix a numerical semigroup S.

Definition

 $F(S) = \max(\mathbb{N} \setminus S)$ is the *Frobenius number* of *S* $g(S) = |\mathbb{N} \setminus S|$ is the *genus* of *S*

Example: if $S = \langle 6, 9, 20 \rangle$, then F(S) = 43 and g(S) = 22 since $\mathbb{N} \setminus S = \{1, 2, 3, 4, 5, 7, 8, 10, 11, 13, \dots, 31, 34, 37, 43\}$

Computing the Frobenius number for general S is hard

• If
$$S = \langle a, b \rangle$$
, then $F(S) = ab - (a + b)$

• If $S = \langle n_1, n_2, n_3 \rangle$, then there is a fast algorithm for F(S)

• Formulas in a few other special cases

Fix a numerical semigroup S.

Definition

 $F(S) = \max(\mathbb{N} \setminus S)$ is the *Frobenius number* of *S* $g(S) = |\mathbb{N} \setminus S|$ is the *genus* of *S*

Example: if $S = \langle 6, 9, 20 \rangle$, then F(S) = 43 and g(S) = 22 since $\mathbb{N} \setminus S = \{1, 2, 3, 4, 5, 7, 8, 10, 11, 13, \dots, 31, 34, 37, 43\}$

Computing the Frobenius number for general S is hard

• If
$$S = \langle a, b
angle$$
, then $F(S) = ab - (a + b)$

• If $S = \langle n_1, n_2, n_3 \rangle$, then there is a fast algorithm for F(S)

• Formulas in a few other special cases

Computing the genus is equally hard

Motivating examples from discrete optimization

Motivating examples from discrete optimization

• Let $S = \langle 6, 9, 20 \rangle$. Cheapest way to buy 60 McNuggets?

Motivating examples from discrete optimization

• Let $S = \langle 6, 9, 20 \rangle$. Cheapest way to buy 60 McNuggets? 60 = 7(6) + 2(9) = 3(20)

Motivating examples from discrete optimization

• Let $S = \langle 6, 9, 20 \rangle$. Cheapest way to buy 60 McNuggets? 60 = 7(6) + 2(9)= 3(20)

Cheapest way to buy 50 McNuggets?

Motivating examples from discrete optimization • Let $S = \langle 6, 9, 20 \rangle$. Cheapest way to buy 60 McNuggets? 60 = 7(6) + 2(9) = 3(20)Cheapest way to buy 50 McNuggets? 50 = 5(6) + 1(20)

= 2(6) + 2(9) + 1(20)

Motivating examples from discrete optimization • Let $S = \langle 6, 9, 20 \rangle$. Cheapest way to buy 60 McNuggets? 60 = 7(6) + 2(9) = 3(20)Cheapest way to buy 50 McNuggets? 50 = 5(6) + 1(20)

$$0 = 5(6) + 1(20) = 2(6) + 2(9) + 1(20)$$

• New pack sizes: $S = \langle 3, 13, 20 \rangle$. Buy 29, minimize # packs?

Motivating examples from discrete optimization • Let $S = \langle 6, 9, 20 \rangle$. Cheapest way to buy 60 McNuggets? 60 = 7(6) + 2(9) = 3(20)Cheapest way to buy 50 McNuggets? 50 = 5(6) + 1(20) = 2(6) + 2(9) + 1(20)• New pack sizes: $S = \langle 3, 13, 20 \rangle$. Buy 29, minimize # packs?

29 = 3(3) + 1(20)

Motivating examples from discrete optimization • Let $S = \langle 6, 9, 20 \rangle$. Cheapest way to buy 60 McNuggets? 60 = 7(6) + 2(9)3(20)=Cheapest way to buy 50 McNuggets? 50 = 5(6) + 1(20)= 2(6) + 2(9) + 1(20)• New pack sizes: $S = \langle 3, 13, 20 \rangle$. Buy 29, minimize # packs? 29 = 3(3) + 1(20)= 1(3) + 2(13)

Motivating examples from discrete optimization • Let $S = \langle 6, 9, 20 \rangle$. Cheapest way to buy 60 McNuggets? 60 = 7(6) + 2(9)3(20)=Cheapest way to buy 50 McNuggets? 50 = 5(6) + 1(20)= 2(6) + 2(9) + 1(20)• New pack sizes: $S = \langle 3, 13, 20 \rangle$. Buy 29, minimize # packs? 29 = 3(3) + 1(20)= 1(3) + 2(13)

These are knapsack problems: fill a knapsack "optimally"

Motivating examples from discrete optimization • Let $S = \langle 6, 9, 20 \rangle$. Cheapest way to buy 60 McNuggets? 60 = 7(6) + 2(9)3(20)=Cheapest way to buy 50 McNuggets? 50 = 5(6) + 1(20)= 2(6) + 2(9) + 1(20)• New pack sizes: $S = \langle 3, 13, 20 \rangle$. Buy 29, minimize # packs? 29 = 3(3) + 1(20)= 1(3) + 2(13)

These are *knapsack problems*: fill a knapsack "optimally" Key difficulty: some variables (e.g., # packs) are non-negative integers

Motivating examples from discrete optimization • Let $S = \langle 6, 9, 20 \rangle$. Cheapest way to buy 60 McNuggets? 60 = 7(6) + 2(9)3(20)Cheapest way to buy 50 McNuggets? 50 = 5(6) + 1(20)= 2(6) + 2(9) + 1(20)• New pack sizes: $S = \langle 3, 13, 20 \rangle$. Buy 29, minimize # packs? 29 = 3(3) + 1(20)= 1(3) + 2(13)

These are *knapsack problems*: fill a knapsack "optimally" Key difficulty: some variables (e.g., # packs) are non-negative integers

Goal (as mathematicians)

Understand the structure of numerical semigroups

Christopher O'Neill (SDSU)

Genus $g = g(S) = |\mathbb{Z}_{\geq 0} \setminus S|$: number of "gaps" of S

Genus $g = g(S) = |\mathbb{Z}_{\geq 0} \setminus S|$: number of "gaps" of S $n_g = \#$ of numerical semigroups with genus g

Genus $g = g(S) = |\mathbb{Z}_{\geq 0} \setminus S|$: number of "gaps" of S $n_g = \#$ of numerical semigroups with genus gExample: $n_3 = 4$

$\langle 2,7 angle = \{0,$	2, 4,	$6,7,8,\ldots\}$
$\langle {\bf 3}, {\bf 4} \rangle = \{ {\bf 0},$	3, 4,	$6,7,8,\ldots\}$
$\langle 3,5,7\rangle = \{0,$	3, 5	$,6,7,8,\ldots\}$
$\langle 4,5,6,7 angle = \{0,$	4,5	, 6, 7, 8, }

Genus $g = g(S) = |\mathbb{Z}_{\geq 0} \setminus S|$: number of "gaps" of S $n_g = \#$ of numerical semigroups with genus gExample: $n_3 = 4$

$$\begin{array}{ll} \langle 2,7\rangle = \{0, \ 2, \ 4, \ 6,7,8,\ldots\} \\ \langle 3,4\rangle = \{0, \ 3,4, \ 6,7,8,\ldots\} \\ \langle 3,5,7\rangle = \{0, \ 3, \ 5,6,7,8,\ldots\} \\ \langle 4,5,6,7\rangle = \{0, \ 4,5,6,7,8,\ldots\} \end{array}$$

Genus $g = g(S) = |\mathbb{Z}_{\geq 0} \setminus S|$: number of "gaps" of S $n_g = \#$ of numerical semigroups with genus gExample: $n_3 = 4$

$$\begin{array}{ll} \langle 2,7\rangle = \{0, \ 2, \ 4, \ 6,7,8,\ldots\} \\ \langle 3,4\rangle = \{0, \ 3,4, \ 6,7,8,\ldots\} \\ \langle 3,5,7\rangle = \{0, \ 3, \ 5,6,7,8,\ldots\} \\ \langle 4,5,6,7\rangle = \{0, \ 4,5,6,7,8,\ldots\} \end{array}$$

Genus $g = g(S) = |\mathbb{Z}_{\geq 0} \setminus S|$: number of "gaps" of S $n_g = \#$ of numerical semigroups with genus gExample: $n_3 = 4$

$$\begin{array}{ll} \langle 2,7\rangle = \{0, \ 2, \ 4, \ 6,7,8,\ldots\} \\ \langle 3,4\rangle = \{0, \ 3,4, \ 6,7,8,\ldots\} \\ \langle 3,5,7\rangle = \{0, \ 3, \ 5,6,7,8,\ldots\} \\ \langle 4,5,6,7\rangle = \{0, \ 4,5,6,7,8,\ldots\} \end{array}$$

Genus $g = g(S) = |\mathbb{Z}_{\geq 0} \setminus S|$: number of "gaps" of S $n_g = \#$ of numerical semigroups with genus gExample: $n_3 = 4$

$\langle 2,7 angle = \{0,$	2, 4,	$6,7,8,\ldots\}$
$\langle {\bf 3}, {\bf 4} \rangle = \{ {\bf 0},$	3, 4,	$6,7,8,\ldots\}$
$\langle 3,5,7\rangle = \{0,$	3, 5	,6,7,8,}
$\langle 4,5,6,7\rangle = \{0,$	4,5	,6,7,8,}

Genus $g = g(S) = |\mathbb{Z}_{\geq 0} \setminus S|$: number of "gaps" of S $n_g = \#$ of numerical semigroups with genus gExample: $n_3 = 4$

$\langle 2,7 angle = \{0,$	2, 4, 6	,7,8,}
$\langle {\bf 3}, {\bf 4} \rangle = \{ {\bf 0},$	3,4, 6	,7,8,}
$\langle 3,5,7\rangle = \{0,$	3, 5,6	,7,8,}
$\langle 4,5,6,7\rangle = \{0,$	4, 5, 6	,7,8,}

Conjecture (Bras-Amoros, 2008)

For all g, we have $n_g \ge n_{g-1}$.

December 3, 2024

$$\mathsf{F}(S) = \max(\mathbb{Z}_{\geq 0} \setminus S)$$
 $\mathsf{g}(S) = |\mathbb{Z}_{\geq 0} \setminus S|$

A couple of long-standing (hard) conjectures

$$\mathsf{F}(S) = \max(\mathbb{Z}_{\geq 0} \setminus S) \qquad \qquad \mathsf{g}(S) = |\mathbb{Z}_{\geq 0} \setminus S|$$

Wilf's Conjecture

For any $S = \langle n_1, \ldots, n_k \rangle$, we have $F(S) + 1 \leq k(F(S) + 1 - g(S))$.

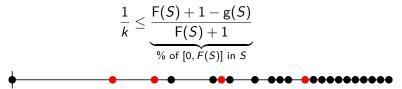
A couple of long-standing (hard) conjectures

$$\mathsf{F}(S) = \max(\mathbb{Z}_{\geq 0} \setminus S) \qquad \qquad \mathsf{g}(S) = |\mathbb{Z}_{\geq 0} \setminus S|$$

Wilf's Conjecture

For any
$$S = \langle n_1, \ldots, n_k \rangle$$
, we have $F(S) + 1 \le k(F(S) + 1 - g(S))$.

Equivalently,



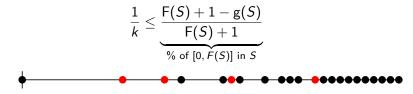
A couple of long-standing (hard) conjectures

$$\mathsf{F}(S) = \max(\mathbb{Z}_{\geq 0} \setminus S) \qquad \qquad \mathsf{g}(S) = |\mathbb{Z}_{\geq 0} \setminus S|$$

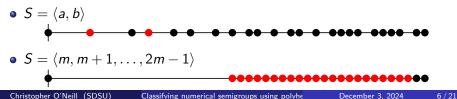
Wilf's Conjecture

For any
$$S = \langle n_1, \ldots, n_k \rangle$$
, we have $F(S) + 1 \le k(F(S) + 1 - g(S))$.

Equivalently,



Equality holds when:



Fix a numerical semigroup S with m(S) = m.

Fix a numerical semigroup S with m(S) = m.

Definition

The Apéry set of S is

$$\mathsf{Ap}(S) = \{a \in S : a - m \notin S\}$$

Fix a numerical semigroup S with m(S) = m.

Definition

The Apéry set of S is

$$\mathsf{Ap}(S) = \{a \in S : a - m \notin S\}$$

If $S = \langle 6, 9, 20 \rangle$, then

$$\mathsf{Ap}(S) = \{0, 49, 20, 9, 40, 29\}$$

Fix a numerical semigroup S with m(S) = m.

Definition

The Apéry set of S is

$$\mathsf{Ap}(S) = \{a \in S : a - m \notin S\}$$

If $S = \langle 6, 9, 20 \rangle$, then

$$\mathsf{Ap}(S) = \{0, 49, 20, 9, 40, 29\}$$

For 2 mod 6: $\{2, 8, 14, 20, 26, 32, \ldots\} \cap S = \{20, 26, 32, \ldots\}$ For 3 mod 6: $\{3, 9, 15, 21, \ldots\} \cap S = \{9, 15, 21, \ldots\}$ For 4 mod 6: $\{4, 10, 16, 22, \ldots\} \cap S = \{40, 46, 52, \ldots\}$

Fix a numerical semigroup S with m(S) = m.

Definition

The Apéry set of S is

$$\mathsf{Ap}(S) = \{a \in S : a - m \notin S\}$$

If $S = \langle 6, 9, 20 \rangle$, then

$$\mathsf{Ap}(S) = \{0, 49, \frac{20}{9}, \frac{9}{40}, 29\}$$

For 2 mod 6: $\{2, 8, 14, 20, 26, 32, \ldots\} \cap S = \{20, 26, 32, \ldots\}$ For 3 mod 6: $\{3, 9, 15, 21, \ldots\} \cap S = \{9, 15, 21, \ldots\}$ For 4 mod 6: $\{4, 10, 16, 22, \ldots\} \cap S = \{40, 46, 52, \ldots\}$

Fix a numerical semigroup S with m(S) = m.

Definition

The Apéry set of S is

$$\mathsf{Ap}(S) = \{a \in S : a - m \notin S\}$$

If $S = \langle 6, 9, 20 \rangle$, then

$$\mathsf{Ap}(S) = \{0, 49, 20, 9, 40, 29\}$$

For 2 mod 6: $\{2, 8, 14, 20, 26, 32, \ldots\} \cap S = \{20, 26, 32, \ldots\}$ For 3 mod 6: $\{3, 9, 15, 21, \ldots\} \cap S = \{9, 15, 21, \ldots\}$ For 4 mod 6: $\{4, 10, 16, 22, \ldots\} \cap S = \{40, 46, 52, \ldots\}$

Fix a numerical semigroup S with m(S) = m.

Definition

The Apéry set of S is

$$\mathsf{Ap}(S) = \{a \in S : a - m \notin S\}$$

If $S = \langle 6, 9, 20 \rangle$, then

$$\mathsf{Ap}(S) = \{0, 49, 20, 9, 40, 29\}$$

For 2 mod 6: $\{2, 8, 14, 20, 26, 32, \ldots\} \cap S = \{20, 26, 32, \ldots\}$ For 3 mod 6: $\{3, 9, 15, 21, \ldots\} \cap S = \{9, 15, 21, \ldots\}$ For 4 mod 6: $\{4, 10, 16, 22, \ldots\} \cap S = \{40, 46, 52, \ldots\}$

Facts: $|\operatorname{Ap}(S)| = m$, and the elements of $\operatorname{Ap}(S)$ are distinct modulo m $\operatorname{Ap}(S) = \{0, a_1, \dots, a_{m-1}\}$ where each $a_i \equiv i \mod m$

Fix a numerical semigroup S with m(S) = m.

Definition

The Apéry set of S is

$$\mathsf{Ap}(S) = \{a \in S : a - m \notin S\}$$

Fix a numerical semigroup S with m(S) = m.

Definition

The Apéry set of S is

$$\mathsf{Ap}(S) = \{a \in S : a - m \notin S\}$$

Many things can be easily recovered from the Apéry set.

Fix a numerical semigroup S with m(S) = m.

Definition

The Apéry set of S is

$$\mathsf{Ap}(S) = \{a \in S : a - m \notin S\}$$

Many things can be easily recovered from the Apéry set.

• Fast membership test:

 $n \in S$ if $n \ge a$ for $a \in Ap(S)$ with $a \equiv n \mod m$

Fix a numerical semigroup S with m(S) = m.

Definition

The Apéry set of S is

$$\mathsf{Ap}(S) = \{a \in S : a - m \notin S\}$$

Many things can be easily recovered from the Apéry set.

• Fast membership test:

 $n \in S$ if $n \ge a$ for $a \in Ap(S)$ with $a \equiv n \mod m$

• Frobenius number: F(S) = max(Ap(S)) - m

Fix a numerical semigroup S with m(S) = m.

Definition

The Apéry set of S is

$$\mathsf{Ap}(S) = \{a \in S : a - m \notin S\}$$

Many things can be easily recovered from the Apéry set.

• Fast membership test:

 $n \in S$ if $n \ge a$ for $a \in Ap(S)$ with $a \equiv n \mod m$

- Frobenius number: F(S) = max(Ap(S)) m
- Number of gaps (the genus):

$$g(S) = |\mathbb{N} \setminus S| = \sum_{a \in Ap(S)} \left\lfloor \frac{a}{m} \right\rfloor$$

1 - 1

Fix a numerical semigroup S with m(S) = m.

Definition

The Apéry set of S is

$$\mathsf{Ap}(S) = \{a \in S : a - m \notin S\}$$

Many things can be easily recovered from the Apéry set.

• Fast membership test:

 $n \in S$ if $n \ge a$ for $a \in Ap(S)$ with $a \equiv n \mod m$

• Frobenius number: F(S) = max(Ap(S)) - m

• Number of gaps (the genus):

$$g(S) = |\mathbb{N} \setminus S| = \sum_{a \in Ap(S)} \left\lfloor \frac{a}{m} \right\rfloor$$

. .

8/21

The Apéry set is a "one stop shop" for computation.

Is $A = \{0, 11, 7, 23, 19\}$ the Apéry set of some numerical semigroup?

Is $A = \{0, 11, 7, 23, 19\}$ the Apéry set of some numerical semigroup? m = |A| = 5, $a_1 = 11$, $a_2 = 7$, $a_3 = 23$, $a_4 = 19$

Is $\{0, 13, 14, 27, 10, 11\}$ the Apéry set of some numerical semigroup? m = |A| = 6, $a_1 = 13$, $a_2 = 14$, $a_3 = 27$, $a_4 = 10$, $a_5 = 11$

Is $\{0, 13, 14, 27, 10, 11\}$ the Apéry set of some numerical semigroup? m = |A| = 6, $a_1 = 13$, $a_2 = 14$, $a_3 = 27$, $a_4 = 10$, $a_5 = 11$ but $a_4 + a_5 \equiv 3 \mod 6$ and $a_4 + a_5 < a_3$.

Is $\{0, 13, 14, 27, 10, 11\}$ the Apéry set of some numerical semigroup? m = |A| = 6, $a_1 = 13$, $a_2 = 14$, $a_3 = 27$, $a_4 = 10$, $a_5 = 11$ but $a_4 + a_5 \equiv 3 \mod 6$ and $a_4 + a_5 < a_3$.

Theorem

If $A = \{0, a_1, \dots, a_{m-1}\}$ with each $a_i > m$ and $a_i \equiv i \mod m$, then there exists a numerical semigroup S with Ap(S) = A if and only if $a_i + a_j \ge a_{i+j}$ whenever $i + j \ne 0$.

Is $\{0, 13, 14, 27, 10, 11\}$ the Apéry set of some numerical semigroup? m = |A| = 6, $a_1 = 13$, $a_2 = 14$, $a_3 = 27$, $a_4 = 10$, $a_5 = 11$ but $a_4 + a_5 \equiv 3 \mod 6$ and $a_4 + a_5 < a_3$.

Theorem

If $A = \{0, a_1, \dots, a_{m-1}\}$ with each $a_i > m$ and $a_i \equiv i \mod m$, then there exists a numerical semigroup S with Ap(S) = A if and only if $a_i + a_j \ge a_{i+j}$ whenever $i + j \ne 0$.

Big idea: the inequalities " $a_i + a_j \ge a_{i+j}$ " to define a **cone** C_m .

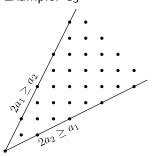
Definition

The Kunz cone $C_m \subseteq \mathbb{R}^{m-1}$ is a pointed cone with defining inequalities $a_i + a_j \ge a_{i+j}$ whenever $i + j \ne 0$.

$$\{S \subseteq \mathbb{Z}_{\geq 0} : \mathsf{m}(S) = m\} \longrightarrow C_m$$
$$\mathsf{Ap}(S) = \{0, a_1, \dots, a_{m-1}\} \longmapsto (a_1, \dots, a_{m-1})$$

Definition

The Kunz cone $C_m \subseteq \mathbb{R}^{m-1}$ is a pointed cone with defining inequalities $a_i + a_j \ge a_{i+j}$ whenever $i + j \ne 0$. $\{S \subseteq \mathbb{Z}_{\ge 0} : m(S) = m\} \longrightarrow C_m$ $Ap(S) = \{0, a_1, \dots, a_{m-1}\} \longmapsto (a_1, \dots, a_{m-1})$ Example: C_3



Definition

The Kunz cone $C_m \subseteq \mathbb{R}^{m-1}$ is a pointed cone with defining inequalities $a_i + a_i \ge a_{i+i}$ whenever $i + j \ne 0$. $\{S \subseteq \mathbb{Z}_{\geq 0} : \mathsf{m}(S) = m\} \longrightarrow C_m$ $\mathsf{Ap}(S) = \{0, a_1, \dots, a_{m-1}\} \longmapsto (a_1, \dots, a_{m-1})$ Example: C_3 $S = \langle 3, 5, 7 \rangle$ $Ap(S) = \{0, 7, 5\}$ 50' 202 2 01

Definition

The Kunz cone $C_m \subseteq \mathbb{R}^{m-1}$ is a pointed cone with defining inequalities $a_i + a_i \ge a_{i+i}$ whenever $i + j \ne 0$. $\{S \subseteq \mathbb{Z}_{\geq 0} : \mathsf{m}(S) = m\} \longrightarrow C_m$ $Ap(S) = \{\overline{0}, a_1, \dots, a_{m-1}\} \mapsto (a_1, \dots, a_{m-1})$ Example: C_3 $S = \langle 3, 5, 7 \rangle$ $Ap(S) = \{0, 7, 5\}$ $S = \langle 3, 4 \rangle$ $Ap(S) = \{0, 4, 8\}$ 50' 202 2 01

Definition

The Kunz cone $C_m \subseteq \mathbb{R}^{m-1}$ is a pointed cone with defining inequalities $a_i + a_j \ge a_{i+j}$ whenever $i + j \ne 0$.

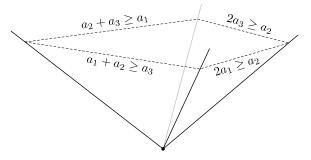
$$\{S \subseteq \mathbb{Z}_{\geq 0} : \mathsf{m}(S) = m\} \longrightarrow C_m$$
$$\mathsf{Ap}(S) = \{0, a_1, \dots, a_{m-1}\} \longmapsto (a_1, \dots, a_{m-1})$$

Definition

The Kunz cone $C_m \subseteq \mathbb{R}^{m-1}$ is a pointed cone with defining inequalities $a_i + a_j \ge a_{i+j}$ whenever $i + j \ne 0$.

$$\begin{cases} S \subseteq \mathbb{Z}_{\geq 0} : \mathsf{m}(S) = m \} & \longrightarrow & C_m \\ \mathsf{Ap}(S) = \{0, a_1, \dots, a_{m-1}\} & \longmapsto & (a_1, \dots, a_{m-1}) \end{cases}$$

Example: C₄



Question

When are numerical semigroups in (the relative interior of) the same face?

Question

When are numerical semigroups in (the relative interior of) the same face?

Big picture: "moduli space" approach for studying XYZ's

- Define a space with XYZ's as points
 Small changes to an XYZ → small movements in space
- Let geometric/topological structure inform study of XYZ's

Question

When are numerical semigroups in (the relative interior of) the same face?

Big picture: "moduli space" approach for studying XYZ's

- Define a space with XYZ's as points
 Small changes to an XYZ → small movements in space
- Let geometric/topological structure inform study of XYZ's

Basic example: $\operatorname{GL}_n(\mathbb{R}) \hookrightarrow \mathbb{R}^{n^2}$

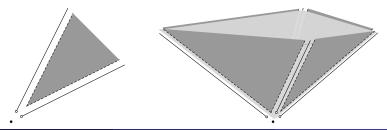
Question

When are numerical semigroups in (the relative interior of) the same face?

Big picture: "moduli space" approach for studying XYZ's

- Define a space with XYZ's as points
 Small changes to an XYZ → small movements in space
- Let geometric/topological structure inform study of XYZ's

Basic example: $GL_n(\mathbb{R}) \hookrightarrow \mathbb{R}^{n^2}$ More interesting example: C_m

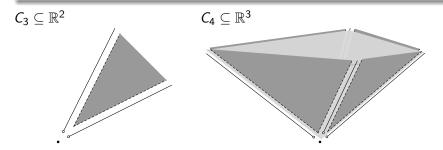


Question

When are numerical semigroups in (the relative interior of) the same face?

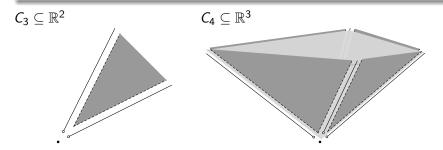
Question

When are numerical semigroups in (the relative interior of) the same face?



Question

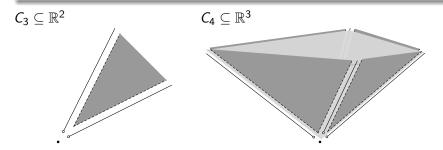
When are numerical semigroups in (the relative interior of) the same face?



 $C_5 \subseteq \mathbb{R}^4$?

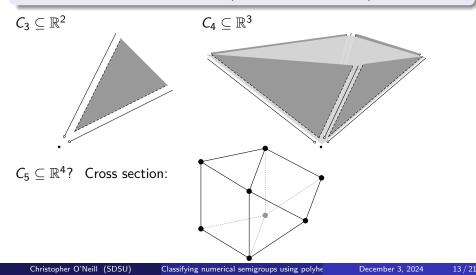
Question

When are numerical semigroups in (the relative interior of) the same face?



 $C_5 \subseteq \mathbb{R}^4$? Cross section:

Question



Question

When are numerical semigroups in (the relative interior of) the same face?

Question

When are numerical semigroups in (the relative interior of) the same face?

First steps: $S \in Int(C_m)$ if and only if S has max embedding dimension

Question

When are numerical semigroups in (the relative interior of) the same face?

First steps: $S \in Int(C_m)$ if and only if S has max embedding dimension If $S = \langle n_1, \dots, n_k \rangle$, then $n_i \neq n_i \mod n_1 \implies k \leq m(S)$

Question

When are numerical semigroups in (the relative interior of) the same face?

First steps: $S \in Int(C_m)$ if and only if S has max embedding dimension If $S = \langle n_1, \dots, n_k \rangle$, then $n_i \not\equiv n_j \mod n_1 \implies k \leq m(S)$

If k = m(S), then S has max embedding dimension

Question

When are numerical semigroups in (the relative interior of) the same face?

First steps: $S \in Int(C_m)$ if and only if S has max embedding dimension If $S = \langle n_1, \dots, n_k \rangle$, then $n_i \not\equiv n_j \mod n_1 \implies k \le m(S)$ If k = m(S), then S has max embedding dimension $S = \langle m, a_1, \dots, a_{m-1} \rangle$ where $Ap(S) = \{0, a_1, \dots, a_{m-1}\}$

Question

When are numerical semigroups in (the relative interior of) the same face?

First steps: $S \in Int(C_m)$ if and only if S has max embedding dimension If $S = \langle n_1, \ldots, n_k \rangle$, then $n_i \neq n_j \mod n_1 \implies k \leq m(S)$ If k = m(S), then S has max embedding dimension

 $S = \langle m, a_1, \dots, a_{m-1} \rangle$ where $Ap(S) = \{0, a_1, \dots, a_{m-1}\}$

Geometrically: "most" numerical semigroups with m(S) = m are MED

Question

When are numerical semigroups in (the relative interior of) the same face?

First steps: $S \in Int(C_m)$ if and only if S has max embedding dimension If $S = \langle n_1, \dots, n_k \rangle$, then $n_i \not\equiv n_j \mod n_1 \implies k \le m(S)$ If k = m(S), then S has max embedding dimension $S = \langle m, a_1, \dots, a_{m-1} \rangle$ where $Ap(S) = \{0, a_1, \dots, a_{m-1}\}$ Geometrically: "most" numerical semigroups with m(S) = m are MED What about the other faces?

Question

When are numerical semigroups in (the relative interior of) the same face?

Question

Example:
$$S = \langle 4, 10, 11, 13 \rangle$$

 $Ap(S) = \{0, 13, 10, 11\}$
 $a_1 = 13, a_2 = 10, a_3 = 11$
 $2a_1 > a_2$
 $a_1 + a_2 > a_3$
 $a_2 + a_3 > a_1$

Question

Example:
$$S = \langle 4, 10, 11, 13 \rangle$$

 $Ap(S) = \{0, 13, 10, 11\}$
 $a_1 = 13, a_2 = 10, a_3 = 11$
Example: $S = \langle 4, 10, 13 \rangle$
 $Ap(S) = \{0, 13, 10, 23\}$
 $a_1 = 13, a_2 = 10, a_3 = 23$
 $2a_1 > a_2$
 $2a_1 > a_2$
 $a_1 + a_2 > a_3$
 $2a_1 > a_2$
 $a_1 + a_2 = a_3$
 $a_1 + a_2 = a_3$
 $a_2 + a_3 > a_1$

Question

Example:
$$S = \langle 4, 10, 11, 13 \rangle$$

Ap $(S) = \{0, 13, 10, 11\}$
 $a_1 = 13, a_2 = 10, a_3 = 11$
Example: $S = \langle 4, 10, 13 \rangle$
Ap $(S) = \{0, 13, 10, 23\}$
 $a_1 = 13, a_2 = 10, a_3 = 23$
Example: $S = \langle 4, 13 \rangle$
Ap $(S) = \{0, 13, 26, 39\}$
 $a_1 = 13, a_2 = 26, a_3 = 39$
 $2a_1 > a_2$
 $a_1 + a_2 = a_3$
 $a_1 + a_2 = a_3$
 $a_2 + a_3 > a_1$

Question

Question

When are numerical semigroups in (the relative interior of) the same face?

Definition

The *Apéry poset* of *S*: define $a \leq a'$ whenever $a' - a \in S$.

Question

Question

$$S = \langle 6, 9, 20 \rangle$$

Ap(S) = {0, 49, 20, 9, 40, 29}

$$S' = \langle 6, 26, 27
angle$$

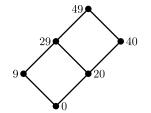
Ap $(S') = \{0, 79, 26, 27, 52, 53\}$

Question

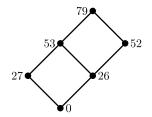
When are numerical semigroups in (the relative interior of) the same face?

$$S = \langle 6, 9, 20
angle$$

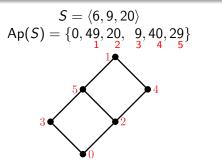
Ap $(S) = \{0, 49, 20, 9, 40, 29\}$

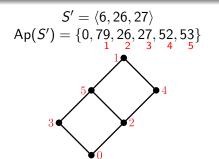


 $\begin{array}{l} S' = \langle 6, 26, 27 \rangle \\ \mathsf{Ap}(S') = \{0, 79, 26, 27, 52, 53\} \end{array}$



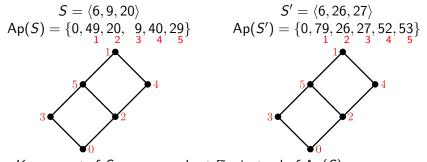
Question





Question

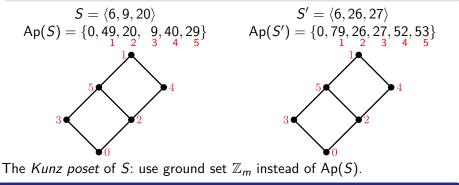
When are numerical semigroups in (the relative interior of) the same face?



The *Kunz poset* of *S*: use ground set \mathbb{Z}_m instead of Ap(*S*).

Question

When are numerical semigroups in (the relative interior of) the same face?

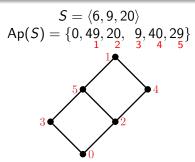


Theorem (Bruns–García-Sánchez–O.–Wilburne)

Numerical semigroups lie in the relative interior of the same face of C_m if and only if their Kunz posets are identical.

Question

When are numerical semigroups in (the relative interior of) the same face?



The *Kunz poset* of *S*: use ground set \mathbb{Z}_m instead of Ap(*S*).

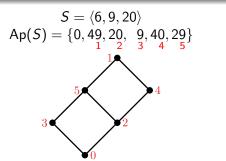
Theorem (Bruns–García-Sánchez–O.–Wilburne)

Numerical semigroups lie in the relative interior of the same face of C_m if and only if their Kunz posets are identical.

Christopher O'Neill (SDSU) Classifying numerical semigroups using polyhe December 3, 2024

Question

When are numerical semigroups in (the relative interior of) the same face?



Defining facet equations:

18 / 21

$$2a_2 = a_4$$

$$a_2 + a_3 = a_5$$

$$a_2 + a_5 = a_1$$

 $a_3 + a_4 = a_1$

The *Kunz poset* of *S*: use ground set \mathbb{Z}_m instead of Ap(*S*).

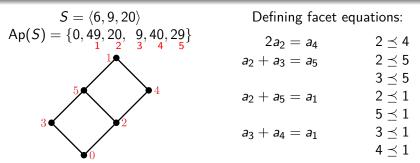
Theorem (Bruns–García-Sánchez–O.–Wilburne)

Numerical semigroups lie in the relative interior of the same face of C_m if and only if their Kunz posets are identical.

Christopher O'Neill (SDSU) Classifying numerical semigroups using polyhe December 3, 2024

Question

When are numerical semigroups in (the relative interior of) the same face?

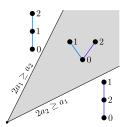


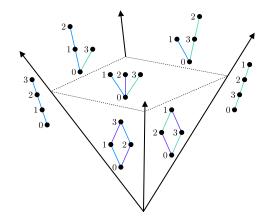
The *Kunz poset* of *S*: use ground set \mathbb{Z}_m instead of Ap(*S*).

Theorem (Bruns–García-Sánchez–O.–Wilburne)

Numerical semigroups lie in the relative interior of the same face of C_m if and only if their Kunz posets are identical.

 C_3 and C_4

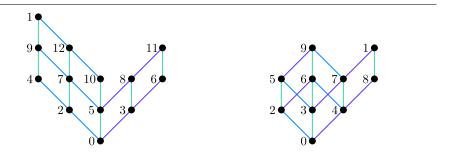




What properties are determined by the Kunz poset *P* of $S = \langle n_1, \ldots, n_k \rangle$?

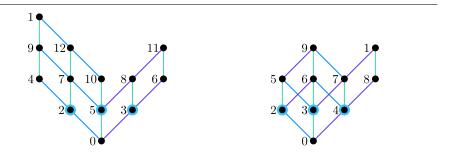
What properties are determined by the Kunz poset *P* of $S = \langle n_1, \ldots, n_k \rangle$?

• k = 1 + # atoms of P



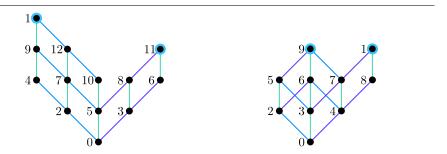
What properties are determined by the Kunz poset *P* of $S = \langle n_1, \ldots, n_k \rangle$?

• k = 1 + # atoms of P



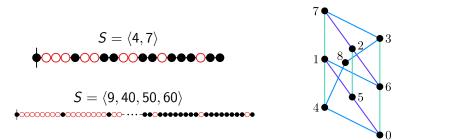
What properties are determined by the Kunz poset *P* of $S = \langle n_1, \ldots, n_k \rangle$?

- k = 1 + # atoms of P
- t(S) = # maximal elements (Cohen-Macaulay type of S)



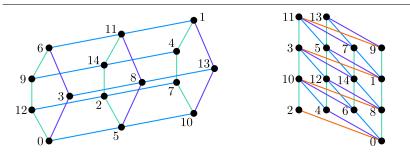
What properties are determined by the Kunz poset *P* of $S = \langle n_1, \ldots, n_k \rangle$?

- k = 1 + # atoms of P
- t(S) = # maximal elements (Cohen-Macaulay type of S)
- Symmetric/Gorenstein?



What properties are determined by the Kunz poset *P* of $S = \langle n_1, \ldots, n_k \rangle$?

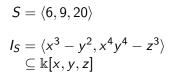
- k = 1 + # atoms of P
- t(S) = # maximal elements (Cohen-Macaulay type of S)
- Symmetric/Gorenstein?
- Complete intersection?
- Generalized arithmetical?

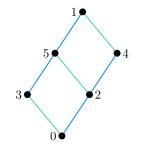


What properties are determined by the Kunz poset *P* of $S = \langle n_1, \ldots, n_k \rangle$?

- k = 1 + # atoms of P
- t(S) = # maximal elements (Cohen-Macaulay type of S)
- Symmetric/Gorenstein?
- Complete intersection?
- Generalized arithmetical?

• Minimal binomial generators of
the *defining toric ideal* of *S*:
$$I_S = \ker (\mathbb{k}[\overline{x}] \to \mathbb{k}[t])$$

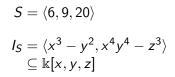


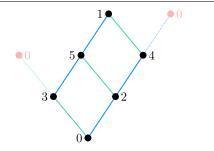


What properties are determined by the Kunz poset *P* of $S = \langle n_1, \ldots, n_k \rangle$?

- k = 1 + # atoms of P
- t(S) = # maximal elements (Cohen-Macaulay type of S)
- Symmetric/Gorenstein?
- Complete intersection?
- Generalized arithmetical?

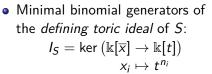
• Minimal binomial generators of the *defining toric ideal* of *S*: $I_S = \ker (\mathbb{k}[\overline{x}] \to \mathbb{k}[t])$ $x_i \mapsto t^{n_i}$

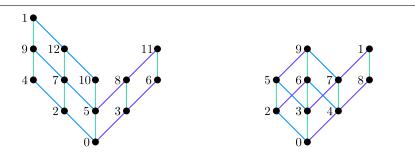




What properties are determined by the Kunz poset *P* of $S = \langle n_1, \ldots, n_k \rangle$?

- k = 1 + # atoms of P
- t(S) = # maximal elements (Cohen-Macaulay type of S)
- Symmetric/Gorenstein?
- Complete intersection?
- Generalized arithmetical?

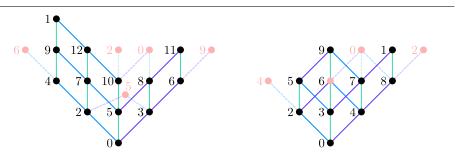




What properties are determined by the Kunz poset *P* of $S = \langle n_1, \ldots, n_k \rangle$?

- k = 1 + # atoms of P
- t(S) = # maximal elements (Cohen-Macaulay type of S)
- Symmetric/Gorenstein?
- Complete intersection?
- Generalized arithmetical?

• Minimal binomial generators of the *defining toric ideal* of *S*: $I_S = \ker (\mathbb{k}[\overline{x}] \to \mathbb{k}[t])$ $x_i \mapsto t^{n_i}$



What properties are determined by the Kunz poset *P* of $S = \langle n_1, \ldots, n_k \rangle$?

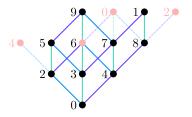
- k = 1 + # atoms of P
- t(S) = # maximal elements (Cohen-Macaulay type of S)
- Symmetric/Gorenstein?
- Complete intersection?
- Generalized arithmetical?

• Minimal binomial generators of the *defining toric ideal* of *S*: $I_S = \ker (\mathbb{k}[\overline{x}] \to \mathbb{k}[t])$ $x_i \mapsto t^{n_i}$

$$S = \langle 10, a_2, a_3, a_4 \rangle$$

 $V_S = \langle x_2^2 - y^* x_4, x_2 x_4 - x_3^2, x_5 \rangle$

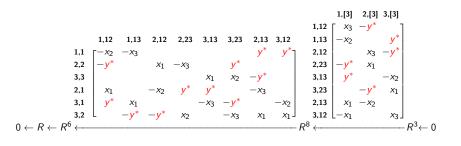
$$x_{3}^{2}x_{4} - y^{*}, \quad x_{4}^{3} - y^{*}x_{2}^{2} \rangle$$
$$\subseteq \mathbb{k}[y, x_{2}, x_{3}, x_{4}]$$



What properties are determined by the Kunz poset *P* of $S = \langle n_1, \ldots, n_k \rangle$?

- k = 1 + # atoms of P
- t(S) = # maximal elements (Cohen-Macaulay type of S)
- Symmetric/Gorenstein?
- Complete intersection?
- Generalized arithmetical?

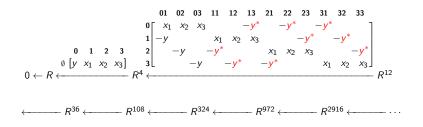
- Minimal binomial generators of the *defining toric ideal* of *S*: $I_S = \ker (\mathbb{k}[\overline{x}] \to \mathbb{k}[t])$ $x_i \mapsto t^{n_i}$
- Betti numbers of I_S over $\Bbbk[\overline{x}]$



What properties are determined by the Kunz poset P of $S = \langle n_1, \ldots, n_k \rangle$?

- k = 1 + # atoms of P
- t(S) = # maximal elements (Cohen-Macaulay type of S)
- Symmetric/Gorenstein?
- Complete intersection?
- Generalized arithmetical?

- Minimal binomial generators of the *defining toric ideal* of *S*: $I_S = \ker (\mathbb{k}[\overline{x}] \to \mathbb{k}[t])$ $x_i \mapsto t^{n_i}$
- Betti numbers of I_S over $\Bbbk[\overline{x}]$
- Betti numbers of \Bbbk over $\Bbbk[\overline{x}]/I_S$



References

W. Bruns, P. García-Sánchez, C. O'Neill, D. Wilburne (2020)
Wilf's conjecture in fixed multiplicity
International Journal of Algebra and Computation 30 (2020), no. 4, 861–882. (arXiv:1903.04342)

N. Kaplan, C. O'Neill, (2021)

Numerical semigroups, polyhedra, and posets I: the group cone Combinatorial Theory 1 (2021), #19. (arXiv:1912.03741)

J. Autry, A. Ezell, T. Gomes, C. O'Neill, C. Preuss, T. Saluja, E. Torres Davila (2022) Numerical semigroups, polyhedra, and posets II: locating certain families of semigroups. Advances in Geometry **22** (2022), no. 1, 33–48. (arXiv:1912.04460)

T. Gomes, C. O'Neill, E. Torres Davila (2023)

Numerical semigroups, polyhedra, and posets III: minimal presentations and face dimension.

Electronic Journal of Combinatorics 30 (2023), no. 2, #P2.5. (arXiv:2009.05921)

B. Braun, T. Gomes, E. Miller, C. O'Neill, and A. Sobieska (2023) Minimal free resolutions of numerical semigroup algebras via Apéry specialization under review. (arXiv:2310.03612)

References

W. Bruns, P. García-Sánchez, C. O'Neill, D. Wilburne (2020)
Wilf's conjecture in fixed multiplicity
International Journal of Algebra and Computation 30 (2020), no. 4, 861–882. (arXiv:1903.04342)

N. Kaplan, C. O'Neill, (2021)

Numerical semigroups, polyhedra, and posets I: the group cone Combinatorial Theory 1 (2021), #19. (arXiv:1912.03741)

J. Autry, A. Ezell, T. Gomes, C. O'Neill, C. Preuss, T. Saluja, E. Torres Davila (2022) Numerical semigroups, polyhedra, and posets II: locating certain families of semigroups. Advances in Geometry **22** (2022), no. 1, 33–48. (arXiv:1912.04460)

T. Gomes, C. O'Neill, E. Torres Davila (2023)

Numerical semigroups, polyhedra, and posets III: minimal presentations and face dimension.

Electronic Journal of Combinatorics 30 (2023), no. 2, #P2.5. (arXiv:2009.05921)

B. Braun, T. Gomes, E. Miller, C. O'Neill, and A. Sobieska (2023) Minimal free resolutions of numerical semigroup algebras via Apéry specialization under review. (arXiv:2310.03612)

Thanks!