Classifying numerical semigroups using polyhedral geometry

Christopher O'Neill

San Diego State University

cdoneill@sdsu edu

Joint with (i) Winfred Bruns, Pedro García-Sánchez, Dane Wilbourne; (ii) Nathan Kaplan;

(iii) J. Autry, *A. Ezell, *T. Gomes, *C. Preuss, *T. Saluja, *E. Torres Dávila

(iv) B. Braun, T. Gomes, E. Miller, C. O'Neill, and A. Sobieska

* = undergraduate student

Slides available: https://cdoneill.sdsu.edu/

May 1, 2025

Definition

A numerical semigroup $S \subseteq \mathbb{Z}_{>0}$: closed under addition, $|\mathbb{Z}_{>0} \setminus S| < \infty$.

Definition

A numerical semigroup $S \subseteq \mathbb{Z}_{\geq 0}$: closed under addition, $|\mathbb{Z}_{\geq 0} \setminus S| < \infty$.

Example:

$$McN = \langle 6, 9, 20 \rangle = \left\{ \begin{array}{l} 0, 6, 9, 12, 15, 18, 20, 21, 24, \dots \\ \dots, 36, 38, 39, 40, 41, 42, 44 \rightarrow \end{array} \right\}$$

Definition

A numerical semigroup $S \subseteq \mathbb{Z}_{\geq 0}$: closed under addition, $|\mathbb{Z}_{\geq 0} \setminus S| < \infty$.

Example: "McNugget Semigroup"

$$\textit{McN} = \langle 6, 9, 20 \rangle = \left\{ egin{array}{ll} 0, 6, 9, 12, 15, 18, 20, 21, 24, \dots \\ \dots, 36, 38, 39, 40, 41, 42, 44 \rightarrow \end{array}
ight\}$$

Definition

A numerical semigroup $S \subseteq \mathbb{Z}_{\geq 0}$: closed under addition, $|\mathbb{Z}_{\geq 0} \setminus S| < \infty$.

Example: "McNugget Semigroup"

$$\textit{McN} = \langle 6, 9, 20 \rangle = \left\{ egin{array}{l} 0, 6, 9, 12, 15, 18, 20, 21, 24, \dots \\ \dots, 36, 38, 39, 40, 41, 42, 44 \rightarrow \end{array}
ight\}$$

Example: S = (6, 9, 18, 20, 32)

Definition

A numerical semigroup $S \subseteq \mathbb{Z}_{\geq 0}$: closed under **addition**, $|\mathbb{Z}_{\geq 0} \setminus S| < \infty$.

Example: "McNugget Semigroup"

$$\textit{McN} = \langle 6, 9, 20 \rangle = \left\{ egin{array}{l} 0, 6, 9, 12, 15, 18, 20, 21, 24, \dots \\ \dots, 36, 38, 39, 40, 41, 42, 44 \rightarrow \end{array}
ight\}$$

Example: $S = (6, 9, \frac{18}{18}, 20, \frac{32}{18})$

Definition

A numerical semigroup $S \subseteq \mathbb{Z}_{\geq 0}$: closed under **addition**, $|\mathbb{Z}_{\geq 0} \setminus S| < \infty$.

Example: "McNugget Semigroup"

$$\textit{McN} = \langle 6, 9, 20 \rangle = \left\{ egin{array}{ll} 0, 6, 9, 12, 15, 18, 20, 21, 24, \dots \\ \dots, 36, 38, 39, 40, 41, 42, 44 \rightarrow \end{array}
ight\}$$

Example: $S = (6, 9, \frac{18}{18}, 20, \frac{32}{32}) = McN$

Definition

A numerical semigroup $S \subseteq \mathbb{Z}_{\geq 0}$: closed under addition, $|\mathbb{Z}_{\geq 0} \setminus S| < \infty$.

Example: "McNugget Semigroup"

$$\textit{McN} = \langle 6, 9, 20 \rangle = \left\{ egin{array}{l} 0, 6, 9, 12, 15, 18, 20, 21, 24, \dots \\ \dots, 36, 38, 39, 40, 41, 42, 44 \rightarrow \end{array}
ight\}$$

Example: $S = \langle 6, 9, \frac{18}{18}, 20, \frac{32}{32} \rangle = McN$

Fact

Every numerical semigroup has a unique minimal generating set.

Definition

A numerical semigroup $S \subseteq \mathbb{Z}_{\geq 0}$: closed under addition, $|\mathbb{Z}_{\geq 0} \setminus S| < \infty$.

Example: "McNugget Semigroup"

$$\textit{McN} = \langle 6, 9, 20 \rangle = \left\{ egin{array}{ll} 0, 6, 9, 12, 15, 18, 20, 21, 24, \dots \\ \dots, 36, 38, 39, 40, 41, 42, 44 \rightarrow \end{array}
ight\}$$

Example: $S = \langle 6, 9, \frac{18}{18}, 20, \frac{32}{32} \rangle = McN$

Fact

Every numerical semigroup has a unique minimal generating set.

Multiplicity: m(S) = smallest nonzero element

Fix a numerical semigroup S with m(S) = m.

Fix a numerical semigroup S with m(S) = m.

Definition

$$\mathsf{Ap}(S) = \{ a \in S : a - m \notin S \}$$

Fix a numerical semigroup S with m(S) = m.

Definition

$$\mathsf{Ap}(S) = \{ a \in S : a - m \notin S \}$$

If
$$S = \langle 6, 9, 20 \rangle$$
, then

$$\mathsf{Ap}(S) = \{0, 49, 20, 9, 40, 29\}$$

Fix a numerical semigroup S with m(S) = m.

Definition

$$\mathsf{Ap}(S) = \{a \in S : a - m \notin S\}$$

If
$$S = \langle 6, 9, 20 \rangle$$
, then

$$\mathsf{Ap}(S) = \{0, 49, 20, 9, 40, 29\}$$

For 2 mod 6:
$$\{2, 8, 14, 20, 26, 32, ...\} \cap S = \{20, 26, 32, ...\}$$

For 3 mod 6:
$$\{3, 9, 15, 21, \ldots\} \cap S = \{9, 15, 21, \ldots\}$$

For 4 mod 6:
$$\{4,10,16,22,\ldots\} \cap S = \{40,46,52,\ldots\}$$

Fix a numerical semigroup S with m(S) = m.

Definition

$$\mathsf{Ap}(S) = \{ a \in S : a - m \notin S \}$$

If
$$S=\langle 6,9,20 \rangle$$
, then
$$\mathsf{Ap}(S)=\{0,49,\underbrace{20,9,40,29}\}$$
 For 2 mod 6: $\{2,8,14,20,26,32,\ldots\}\cap S=\{20,26,32,\ldots\}$ For 3 mod 6: $\{3,9,15,21,\ldots\}\cap S=\{9,15,21,\ldots\}$ For 4 mod 6: $\{4,10,16,22,\ldots\}\cap S=\{40,46,52,\ldots\}$

Fix a numerical semigroup S with m(S) = m.

Definition

$$\mathsf{Ap}(S) = \{a \in S : a - m \notin S\}$$

If
$$S = \langle 6, 9, 20 \rangle$$
, then

$$\mathsf{Ap}(S) = \{0, 49, 20, 9, 40, 29\}$$

For 2 mod 6:
$$\{2, 8, 14, 20, 26, 32, ...\} \cap S = \{20, 26, 32, ...\}$$

For 3 mod 6:
$$\{3, 9, 15, 21, \ldots\} \cap S = \{9, 15, 21, \ldots\}$$

For 4 mod 6:
$$\{4,10,16,22,\ldots\} \cap S = \{40,46,52,\ldots\}$$

Fix a numerical semigroup S with m(S) = m.

Definition

The *Apéry set* of *S* is

$$\mathsf{Ap}(S) = \{ a \in S : a - m \notin S \}$$

If
$$S = \langle 6, 9, 20 \rangle$$
, then

$$\mathsf{Ap}(S) = \{0, 49, 20, 9, 40, 29\}$$

For 2 mod 6:
$$\{2, 8, 14, 20, 26, 32, \ldots\} \cap S = \{20, 26, 32, \ldots\}$$

For 3 mod 6:
$$\{3,9,15,21,\ldots\} \cap S = \{9,15,21,\ldots\}$$

For 4 mod 6:
$$\{4, 10, 16, 22, \ldots\} \cap S = \{40, 46, 52, \ldots\}$$

Observations:

Fix a numerical semigroup S with m(S) = m.

Definition

The *Apéry set* of *S* is

$$\mathsf{Ap}(S) = \{ a \in S : a - m \notin S \}$$

If
$$S = \langle 6, 9, 20 \rangle$$
, then

$$\mathsf{Ap}(S) = \{0, 49, 20, 9, 40, 29\}$$

For 2 mod 6:
$$\{2, 8, 14, 20, 26, 32, \ldots\} \cap S = \{20, 26, 32, \ldots\}$$

For 3 mod 6:
$$\{3, 9, 15, 21, \ldots\} \cap S = \{9, 15, 21, \ldots\}$$

For 4 mod 6:
$$\{4, 10, 16, 22, \ldots\} \cap S = \{40, 46, 52, \ldots\}$$

Observations:

• The elements of Ap(S) are distinct modulo m

Fix a numerical semigroup S with m(S) = m.

Definition

The *Apéry set* of *S* is

$$\mathsf{Ap}(S) = \{ a \in S : a - m \notin S \}$$

If
$$S = \langle 6, 9, 20 \rangle$$
, then

$$\mathsf{Ap}(S) = \{0, 49, 20, 9, 40, 29\}$$

For 2 mod 6:
$$\{2, 8, 14, 20, 26, 32, \ldots\} \cap S = \{20, 26, 32, \ldots\}$$

For 3 mod 6:
$$\{3, 9, 15, 21, \ldots\} \cap S = \{9, 15, 21, \ldots\}$$

For 4 mod 6:
$$\{4, 10, 16, 22, \ldots\} \cap S = \{40, 46, 52, \ldots\}$$

Observations:

- The elements of Ap(S) are distinct modulo m
- |Ap(S)| = m

Fix a numerical semigroup S with m(S) = m.

Definition

$$\mathsf{Ap}(S) = \{ a \in S : a - m \notin S \}$$

Fix a numerical semigroup S with m(S) = m.

Definition

The *Apéry set* of *S* is

$$\mathsf{Ap}(S) = \{ a \in S : a - m \notin S \}$$

Many things can be easily recovered from the Apéry set.

Fix a numerical semigroup S with m(S) = m.

Definition

The *Apéry set* of *S* is

$$\mathsf{Ap}(S) = \{ a \in S : a - m \notin S \}$$

Many things can be easily recovered from the Apéry set.

• Fast membership test:

$$n \in S$$
 if $n \ge a$ for $a \in Ap(S)$ with $a \equiv n \mod m$

Fix a numerical semigroup S with m(S) = m.

Definition

The *Apéry set* of *S* is

$$\mathsf{Ap}(S) = \{ a \in S : a - m \notin S \}$$

Many things can be easily recovered from the Apéry set.

- Fast membership test:
 - $n \in S$ if $n \ge a$ for $a \in Ap(S)$ with $a \equiv n \mod m$
- Frobenius number: $F(S) = \max(Ap(S)) m$

Fix a numerical semigroup S with m(S) = m.

Definition

The *Apéry set* of *S* is

$$\mathsf{Ap}(S) = \{ a \in S : a - m \notin S \}$$

Many things can be easily recovered from the Apéry set.

• Fast membership test:

$$n \in S$$
 if $n \ge a$ for $a \in Ap(S)$ with $a \equiv n \mod m$

- Frobenius number: $F(S) = \max(Ap(S)) m$
- Number of gaps (the genus):

$$g(S) = |\mathbb{N} \setminus S| = \sum_{a \in \mathsf{Ap}(S)} \left\lfloor \frac{a}{m} \right\rfloor$$

Fix a numerical semigroup S with m(S) = m.

Definition

The *Apéry set* of *S* is

$$\mathsf{Ap}(S) = \{ a \in S : a - m \notin S \}$$

Many things can be easily recovered from the Apéry set.

• Fast membership test:

$$n \in S$$
 if $n \ge a$ for $a \in Ap(S)$ with $a \equiv n \mod m$

- Frobenius number: $F(S) = \max(Ap(S)) m$
- Number of gaps (the genus):

$$g(S) = |\mathbb{N} \setminus S| = \sum_{a \in \mathsf{Ap}(S)} \left\lfloor \frac{a}{m} \right\rfloor$$

The Apéry set is a "one stop shop" for computation.

Is $A = \{0, 11, 7, 23, 19\}$ the Apéry set of some numerical semigroup?

Is $A = \{0, 11, 7, 23, 19\}$ the Apéry set of some numerical semigroup? m = |A| = 5, $a_1 = 11$, $a_2 = 7$, $a_3 = 23$, $a_4 = 19$

Is $A = \{0, 11, 7, 23, 19\}$ the Apéry set of some numerical semigroup? m = |A| = 5, $a_1 = 11$, $a_2 = 7$, $a_3 = 23$, $a_4 = 19$ but $a_1 + a_2 \equiv 3 \mod 5$ and $a_1 + a_2 < a_3$.

Is $A = \{0, 11, 7, 23, 19\}$ the Apéry set of some numerical semigroup? m = |A| = 5, $a_1 = 11$, $a_2 = 7$, $a_3 = 23$, $a_4 = 19$ but $a_1 + a_2 \equiv 3 \mod 5$ and $a_1 + a_2 < a_3$.

Is $\{0, 13, 14, 27, 10, 11\}$ the Apéry set of some numerical semigroup? m = |A| = 6, $a_1 = 13$, $a_2 = 14$, $a_3 = 27$, $a_4 = 10$, $a_5 = 11$

Is $A = \{0, 11, 7, 23, 19\}$ the Apéry set of some numerical semigroup? m = |A| = 5, $a_1 = 11$, $a_2 = 7$, $a_3 = 23$, $a_4 = 19$ but $a_1 + a_2 \equiv 3 \mod 5$ and $a_1 + a_2 < a_3$.

Is $\{0, 13, 14, 27, 10, 11\}$ the Apéry set of some numerical semigroup? m=|A|=6, $a_1=13$, $a_2=14$, $a_3=27$, $a_4=10$, $a_5=11$ but $a_4+a_5\equiv 3 \bmod 6$ and $a_4+a_5< a_3$.

Is $A = \{0, 11, 7, 23, 19\}$ the Apéry set of some numerical semigroup? m = |A| = 5, $a_1 = 11$, $a_2 = 7$, $a_3 = 23$, $a_4 = 19$ but $a_1 + a_2 \equiv 3 \mod 5$ and $a_1 + a_2 < a_3$.

Is $\{0, 13, 14, 27, 10, 11\}$ the Apéry set of some numerical semigroup? m = |A| = 6, $a_1 = 13$, $a_2 = 14$, $a_3 = 27$, $a_4 = 10$, $a_5 = 11$ but $a_4 + a_5 \equiv 3 \mod 6$ and $a_4 + a_5 < a_3$.

Theorem

If $A = \{0, a_1, \dots, a_{m-1}\}$ with each $a_i > m$ and $a_i \equiv i \mod m$, then there exists a numerical semigroup S with $\operatorname{Ap}(S) = A$ if and only if $a_i + a_j \geq a_{i+j}$ whenever $i + j \neq 0$.

Is $A = \{0, 11, 7, 23, 19\}$ the Apéry set of some numerical semigroup? m = |A| = 5, $a_1 = 11$, $a_2 = 7$, $a_3 = 23$, $a_4 = 19$ but $a_1 + a_2 \equiv 3 \mod 5$ and $a_1 + a_2 < a_3$.

Is $\{0, 13, 14, 27, 10, 11\}$ the Apéry set of some numerical semigroup? m = |A| = 6, $a_1 = 13$, $a_2 = 14$, $a_3 = 27$, $a_4 = 10$, $a_5 = 11$ but $a_4 + a_5 \equiv 3 \mod 6$ and $a_4 + a_5 < a_3$.

Theorem

If $A = \{0, a_1, \dots, a_{m-1}\}$ with each $a_i > m$ and $a_i \equiv i \mod m$, then there exists a numerical semigroup S with $\operatorname{Ap}(S) = A$ if and only if $a_i + a_j \geq a_{i+j}$ whenever $i + j \neq 0$.

Big idea: the inequalities " $a_i + a_j \ge a_{i+j}$ " to define a **cone** C_m .

Definition

The Kunz cone $C_m \subseteq \mathbb{R}^{m-1}$ is a pointed cone with defining inequalities $a_i + a_j \ge a_{i+j}$ whenever $i + j \ne 0$.

$$\{S \subseteq \mathbb{Z}_{\geq 0} : \mathsf{m}(S) = m\} \longrightarrow C_m$$

 $\mathsf{Ap}(S) = \{0, a_1, \dots, a_{m-1}\} \longmapsto (a_1, \dots, a_{m-1})$

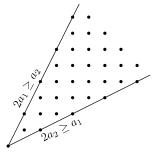
Definition

The Kunz cone $C_m \subseteq \mathbb{R}^{m-1}$ is a pointed cone with defining inequalities $a_i + a_j \ge a_{i+j}$ whenever $i + j \ne 0$.

$$\{S \subseteq \mathbb{Z}_{\geq 0} : \mathsf{m}(S) = m\} \longrightarrow C_m$$

$$\mathsf{Ap}(S) = \{0, a_1, \dots, a_{m-1}\} \longmapsto (a_1, \dots, a_{m-1})$$

Example: C_3



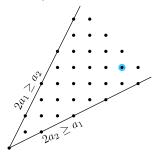
Definition

The Kunz cone $C_m \subseteq \mathbb{R}^{m-1}$ is a pointed cone with defining inequalities $a_i + a_j \ge a_{i+j}$ whenever $i + j \ne 0$.

$$\{S \subseteq \mathbb{Z}_{\geq 0} : \mathsf{m}(S) = m\} \longrightarrow C_m$$

$$\mathsf{Ap}(S) = \{0, a_1, \dots, a_{m-1}\} \longmapsto (a_1, \dots, a_{m-1})$$

Example: C_3



$$S = \langle 3, 5, 7 \rangle$$

Ap $(S) = \{0, 7, 5\}$

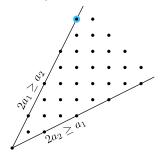
Definition

The Kunz cone $C_m \subseteq \mathbb{R}^{m-1}$ is a pointed cone with defining inequalities $a_i + a_j \ge a_{i+j}$ whenever $i + j \ne 0$.

$$\{S \subseteq \mathbb{Z}_{\geq 0} : \mathsf{m}(S) = m\} \longrightarrow C_m$$

 $\mathsf{Ap}(S) = \{0, a_1, \dots, a_{m-1}\} \longmapsto (a_1, \dots, a_{m-1})$

Example: C_3



$$S = \langle 3, 5, 7 \rangle$$
$$Ap(S) = \{0, 7, 5\}$$

$$S = \langle 3, 4 \rangle$$

Ap(S) = {0, 4, 8}

Definition

The Kunz cone $C_m \subseteq \mathbb{R}^{m-1}$ is a pointed cone with defining inequalities $a_i + a_j \ge a_{i+j}$ whenever $i + j \ne 0$.

$$\{S \subseteq \mathbb{Z}_{\geq 0} : \mathsf{m}(S) = m\} \longrightarrow C_m$$

 $\mathsf{Ap}(S) = \{0, a_1, \dots, a_{m-1}\} \longmapsto (a_1, \dots, a_{m-1})$

Kunz cone

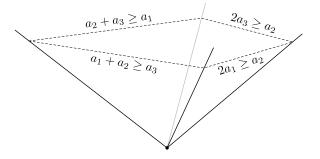
Definition

The Kunz cone $C_m \subseteq \mathbb{R}^{m-1}$ is a pointed cone with defining inequalities $a_i + a_j \ge a_{i+j}$ whenever $i + j \ne 0$.

$$\{S \subseteq \mathbb{Z}_{\geq 0} : \mathsf{m}(S) = m\} \longrightarrow C_m$$

 $\mathsf{Ap}(S) = \{0, a_1, \dots, a_{m-1}\} \longmapsto (a_1, \dots, a_{m-1})$

Example: C_4



Question

Question

When are numerical semigroups in (the relative interior of) the same face?

Big picture: "moduli space" approach for studying XYZ's

- Define a space with XYZ's as points
 Small changes to an XYZ → small movements in space
- Let geometric/topological structure inform study of XYZ's

Question

When are numerical semigroups in (the relative interior of) the same face?

Big picture: "moduli space" approach for studying XYZ's

- Define a space with XYZ's as points Small changes to an $XYZ \leadsto$ small movements in space
- Let geometric/topological structure inform study of XYZ's

Basic example: $GL_n(\mathbb{R}) \hookrightarrow \mathbb{R}^{n^2}$

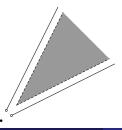
Question

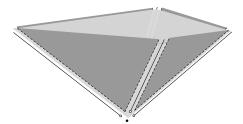
When are numerical semigroups in (the relative interior of) the same face?

Big picture: "moduli space" approach for studying XYZ's

- Define a space with XYZ's as points Small changes to an $XYZ \rightsquigarrow$ small movements in space
- ullet Let geometric/topological structure inform study of XYZ's

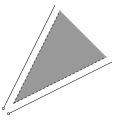
Basic example: $GL_n(\mathbb{R}) \hookrightarrow \mathbb{R}^{n^2}$ More interesting example: C_m

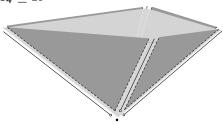




Question

Question

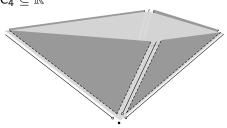




Question



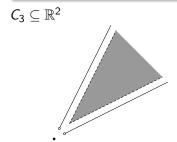
$$C_4 \subseteq \mathbb{R}^3$$

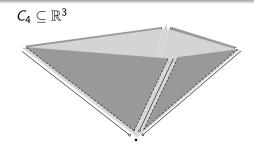


$$C_5 \subseteq \mathbb{R}^4$$
?

Question

When are numerical semigroups in (the relative interior of) the same face?

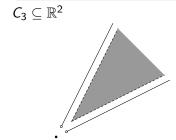




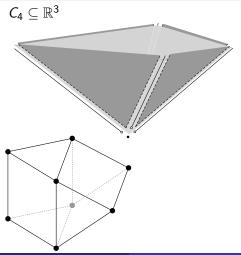
 $C_5 \subseteq \mathbb{R}^4$? Cross section:

Question

When are numerical semigroups in (the relative interior of) the same face?



 $C_5 \subseteq \mathbb{R}^4$? Cross section:



Question

Question

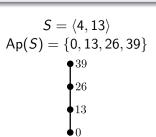
When are numerical semigroups in (the relative interior of) the same face?

Definition

The *Apéry poset* of *S*: define $a \leq a'$ whenever $a' - a \in S$.

$$S = \langle 4, 10, 13 \rangle$$

$$Ap(S) = \{0, 13, 10, 23\}$$



Question

Question

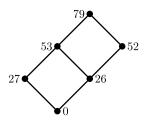
$$S = \langle 6, 9, 20 \rangle \qquad \qquad S' = \langle 6, 26, 27 \rangle \\ \mathsf{Ap}(S) = \{0, 49, 20, 9, 40, 29\} \qquad \qquad \mathsf{Ap}(S') = \{0, 79, 26, 27, 52, 53\}$$

Question

$$S = \langle 6, 9, 20 \rangle$$

$$Ap(S) = \{0, 49, 20, 9, 40, 29\}$$

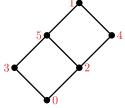
$$S = \langle 6, 9, 20 \rangle$$
 $S' = \langle 6, 26, 27 \rangle$
Ap $(S) = \{0, 49, 20, 9, 40, 29\}$ Ap $(S') = \{0, 79, 26, 27, 52, 53\}$



Question

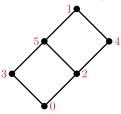
$$S = \langle 6, 9, 20 \rangle$$

$$Ap(S) = \{0, 49, 20, 9, 40, 29\}$$



$$S' = \langle 6, 26, 27 \rangle$$

 $Ap(S') = \{0, 79, 26, 27, 52, 53\}$



Question

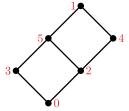
When are numerical semigroups in (the relative interior of) the same face?

$$S = \langle 6, 9, 20 \rangle$$

$$Ap(S) = \{0, 49, 20, 9, 40, 29\}$$

$$S = \langle 6, 9, 20 \rangle \qquad S' = \langle 6, 26, 27 \rangle$$

$$Ap(S) = \{0, 49, 20, 9, 40, 29\} \qquad Ap(S') = \{0, 79, 26, 27, 52, 53\}$$



The *Kunz poset* of S: use ground set \mathbb{Z}_m instead of Ap(S).

Question

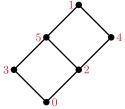
When are numerical semigroups in (the relative interior of) the same face?

$$S = \langle 6, 9, 20 \rangle$$

$$Ap(S) = \{0, 49, 20, 9, 40, 29\}$$

$$S' = \langle 6, 26, 27 \rangle$$

$$Ap(S') = \{0, 79, 26, 27, 52, 53\}$$



The *Kunz poset* of *S*: use ground set \mathbb{Z}_m instead of Ap(S).

Theorem (Bruns-García-Sánchez-O.-Wilburne)

Question

When are numerical semigroups in (the relative interior of) the same face?

$$S = \langle 6, 9, 20 \rangle$$

$$Ap(S) = \{0, 49, 20, 9, 40, 29\}$$

$$10$$

$$3$$

The *Kunz poset* of *S*: use ground set \mathbb{Z}_m instead of Ap(*S*).

Theorem (Bruns-García-Sánchez-O.-Wilburne)

Question

When are numerical semigroups in (the relative interior of) the same face?

Defining facet equations:

$$2a_2 = a_4$$
$$a_2 + a_3 = a_5$$

$$a_2+a_5=a_1$$

$$a_3+a_4=a_1$$

The *Kunz poset* of *S*: use ground set \mathbb{Z}_m instead of Ap(S).

Theorem (Bruns-García-Sánchez-O.-Wilburne)

Question

When are numerical semigroups in (the relative interior of) the same face?

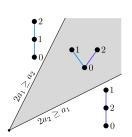
Defining facet equations:

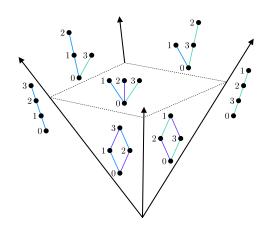
$$2a_2 = a_4$$
 $2 \le 4$
 $a_2 + a_3 = a_5$ $2 \le 5$
 $3 \le 5$

The *Kunz poset* of S: use ground set \mathbb{Z}_m instead of Ap(S).

Theorem (Bruns-García-Sánchez-O.-Wilburne)

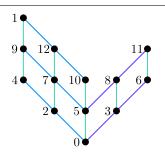
C_3 and C_4

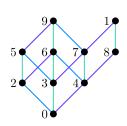




What properties are determined by the Kunz poset P of $S = \langle n_1, \ldots, n_k \rangle$?

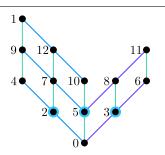
• k = 1 + # atoms of P

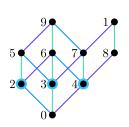




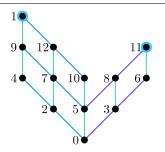
What properties are determined by the Kunz poset P of $S = \langle n_1, \dots, n_k \rangle$?

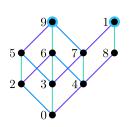
• k = 1 + # atoms of P



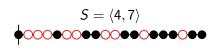


- k = 1 + # atoms of *P*
- t(S) = # maximal elements
 (Cohen-Macaulay type of S)

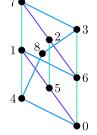




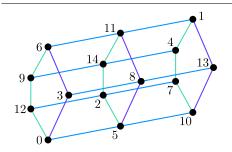
- k = 1 + # atoms of P
- t(S) = # maximal elements
 (Cohen-Macaulay type of S)
- Symmetric/Gorenstein?

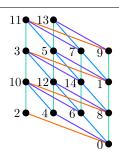


$$S = \langle 9, 40, 50, 60 \rangle$$



- k = 1 + # atoms of P
- t(S) = # maximal elements
 (Cohen-Macaulay type of S)
- Symmetric/Gorenstein?
- Complete intersection?
- Generalized arithmetical?



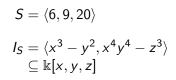


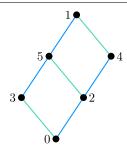
What properties are determined by the Kunz poset P of $S = \langle n_1, \dots, n_k \rangle$?

- k = 1 + # atoms of P
- t(S) = # maximal elements (Cohen-Macaulay type of S)
- Symmetric/Gorenstein?
- Complete intersection?
- Generalized arithmetical?

$$I_S = \ker \left(\mathbb{k}[\overline{x}] \to \mathbb{k}[t] \right)$$

 $x_i \mapsto t^{n_i}$

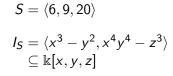


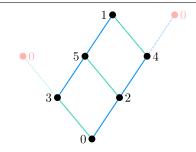


What properties are determined by the Kunz poset P of $S = \langle n_1, \dots, n_k \rangle$?

- k = 1 + # atoms of P
- t(S) = # maximal elements
 (Cohen-Macaulay type of S)
- Symmetric/Gorenstein?
- Complete intersection?
- Generalized arithmetical?

$$I_{\mathcal{S}} = \ker \left(\mathbb{k}[\overline{x}] \to \mathbb{k}[t] \right) \ x_i \mapsto t^{n_i}$$



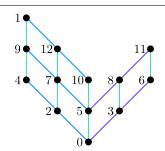


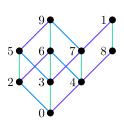
What properties are determined by the Kunz poset P of $S = \langle n_1, \ldots, n_k \rangle$?

- k = 1 + # atoms of *P*
- t(S) = # maximal elements (Cohen-Macaulay type of S)
- Symmetric/Gorenstein?
- Complete intersection?
- Generalized arithmetical?

$$I_S = \ker \left(\mathbb{k}[\overline{x}] \to \mathbb{k}[t] \right)$$

 $x_i \mapsto t^{n_i}$



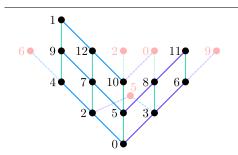


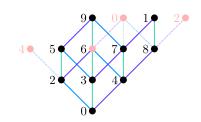
What properties are determined by the Kunz poset P of $S = \langle n_1, \ldots, n_k \rangle$?

- k = 1 + # atoms of *P*
- t(S) = # maximal elements
 (Cohen-Macaulay type of S)
- Symmetric/Gorenstein?
- Complete intersection?
- Generalized arithmetical?

$$I_{S} = \ker \left(\mathbb{k}[\overline{x}] \to \mathbb{k}[t] \right)$$

 $x_{i} \mapsto t^{n_{i}}$





What properties are determined by the Kunz poset P of $S = \langle n_1, \dots, n_k \rangle$?

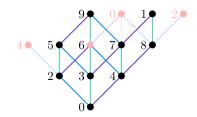
- k = 1 + # atoms of P
- t(S) = # maximal elements (Cohen-Macaulay type of S)
- Symmetric/Gorenstein?
- Complete intersection?
- Generalized arithmetical?

$$I_S = \ker \left(\mathbb{k}[\overline{x}] \to \mathbb{k}[t] \right) \ x_i \mapsto t^{n_i}$$

$$S = \langle 10, a_2, a_3, a_4 \rangle$$

$$I_S = \langle x_2^2 - y^* x_4, x_2 x_4 - x_3^2, x_4^2 - y^*, x_4^3 - y^* x_2 \rangle$$

$$\subseteq \mathbb{k}[y, x_2, x_3, x_4]$$



What properties are determined by the Kunz poset P of $S = \langle n_1, \dots, n_k \rangle$?

- k = 1 + # atoms of *P*
- t(S) = # maximal elements
 (Cohen-Macaulay type of S)
- Symmetric/Gorenstein?
- Complete intersection?
- Generalized arithmetical?

 Minimal binomial generators of the defining toric ideal of S:

$$I_S = \ker \left(\mathbb{k}[\overline{x}] \to \mathbb{k}[t] \right)$$

 $x_i \mapsto t^{n_i}$

• Betti numbers of I_S over $\mathbb{k}[\overline{x}]$

What properties are determined by the Kunz poset P of $S = \langle n_1, \dots, n_k \rangle$?

- k = 1 + # atoms of P
- t(S) = # maximal elements
 (Cohen-Macaulay type of S)
- Symmetric/Gorenstein?
- Complete intersection?
- Generalized arithmetical?

 Minimal binomial generators of the defining toric ideal of S:

$$I_S = \ker \left(\mathbb{k}[\overline{x}] \to \mathbb{k}[t] \right)$$

 $x_i \mapsto t^{n_i}$

- Betti numbers of I_S over $k[\overline{x}]$
- Betti numbers of k over $k[\overline{x}]/I_S$

 $R^{36} \leftarrow R^{108} \leftarrow R^{324} \leftarrow R^{972} \leftarrow R^{2916} \leftarrow \dots$

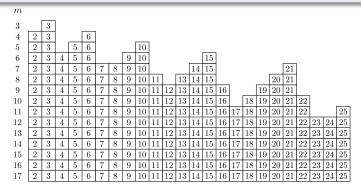
Application 1: classifying minimal trades

Question

Given the multiplicity m = m(S) and k = # minimal generators of S, what can $\beta_1(I_S) = \#$ minimal generators of I_S be?

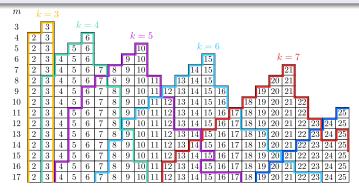
Question

Given the multiplicity m = m(S) and k = # minimal generators of S, what can $\beta_1(I_S) = \#$ minimal generators of I_S be?



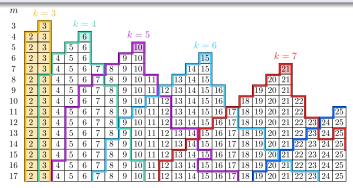
Question

Given the multiplicity m = m(S) and k = # minimal generators of S, what can $\beta_1(I_S) = \#$ minimal generators of I_S be?



Question

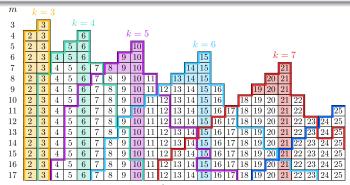
Given the multiplicity m = m(S) and k = # minimal generators of S, what can $\beta_1(I_S) = \#$ minimal generators of I_S be?



Well known: $\beta_1(S) \leq {m \choose 2}$, with equality if and only if k = m if k = 3, then $\beta_1(S) = 2, 3$

Question

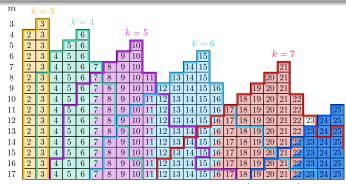
Given the multiplicity m = m(S) and k = # minimal generators of S, what can $\beta_1(I_S) = \#$ minimal generators of I_S be?



Prior work: a family has $\beta_1(S) = \binom{k}{2}$ for $3 \le k \le m$ (Rosales) if $r = m - k \le 2$, then $\beta_1(S) \in \left[\binom{k}{2} - r, \binom{k}{2}\right]$ (GS-R)

Question

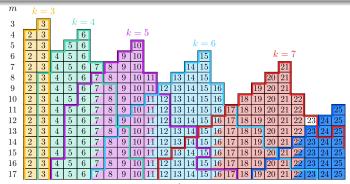
Given the multiplicity m = m(S) and k = # minimal generators of S, what can $\beta_1(I_S) = \#$ minimal generators of I_S be?



Using Kunz posets: a family hits each $\beta_1(S) \in [\binom{k}{2} - r, \binom{k}{2}]$ for $r = m - k \le k - 2$ a family hits $\beta_1(S) = \binom{k}{2} + 1$ for each m > k + 3

Question

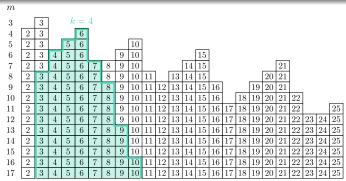
Given the multiplicity m = m(S) and k = # minimal generators of S, what can $\beta_1(I_S) = \#$ minimal generators of I_S be?



Bounds from Kunz posets: $\beta_1(S) \ge {k \choose 2} - r$, where r = m - k if m - k = 3, then $\beta_1(S) \in [{k \choose 2} - 3, {k \choose 2} + 1]$

Question

Given the multiplicity m = m(S) and k = # minimal generators of S, what can $\beta_1(I_S) = \#$ minimal generators of I_S be?



One more family: for k=4, achieves each $\beta_1(S)$ with $(\beta_1(S)-2)^2 \leq 4m$ conjectured to achieve every possible $\beta_1(S)$ for k=4

$$\mathsf{F}(S) = \mathsf{max}(\mathbb{Z}_{\geq 0} \setminus S)$$
 $\mathsf{g}(S) = |\mathbb{Z}_{\geq 0} \setminus S|$

$$\mathsf{F}(S) = \mathsf{max}(\mathbb{Z}_{\geq 0} \setminus S)$$

$$\mathsf{g}(S) = |\mathbb{Z}_{\geq 0} \setminus S|$$

Wilf's Conjecture

For any $S = \langle n_1, \dots, n_k \rangle$, we have $F(S) + 1 \le k(F(S) + 1 - g(S))$.

$$\mathsf{F}(S) = \mathsf{max}(\mathbb{Z}_{\geq 0} \setminus S)$$

$$\mathsf{g}(S) = |\mathbb{Z}_{\geq 0} \setminus S|$$

Wilf's Conjecture

For any
$$S = \langle n_1, \dots, n_k \rangle$$
, we have $F(S) + 1 \le k(F(S) + 1 - g(S))$.

Equivalently,

$$\frac{1}{k} \le \underbrace{\frac{\mathsf{F}(S) + 1 - \mathsf{g}(S)}{\mathsf{F}(S) + 1}}_{\text{\% of } [0, F(S)] \text{ in } S}$$

$$\mathsf{F}(S) = \mathsf{max}(\mathbb{Z}_{\geq 0} \setminus S)$$

$$\mathsf{g}(S) = |\mathbb{Z}_{\geq 0} \setminus S|$$

Wilf's Conjecture

For any
$$S = \langle n_1, \dots, n_k \rangle$$
, we have $F(S) + 1 \le k(F(S) + 1 - g(S))$.

Equivalently,

$$\frac{1}{k} \le \underbrace{\frac{\mathsf{F}(S) + 1 - \mathsf{g}(S)}{\mathsf{F}(S) + 1}}_{\text{\% of } [0, F(S)] \text{ in } S}$$

Equality holds when:

•
$$S = \langle a, b \rangle$$

•
$$S = \langle m, m+1, \ldots, 2m-1 \rangle$$

$$\mathsf{F}(S) = \mathsf{max}(\mathbb{Z}_{\geq 0} \setminus S)$$

$$\mathsf{g}(S) = |\mathbb{Z}_{\geq 0} \setminus S|$$

Wilf's Conjecture

For any $S = \langle n_1, \dots, n_k \rangle$, we have $F(S) + 1 \le k(F(S) + 1 - g(S))$.

$$\mathsf{F}(S) = \mathsf{max}(\mathbb{Z}_{\geq 0} \setminus S)$$

$$\mathsf{g}(S) = |\mathbb{Z}_{\geq 0} \setminus S|$$

Wilf's Conjecture

For any $S = \langle n_1, \dots, n_k \rangle$, we have $F(S) + 1 \le k(F(S) + 1 - g(S))$.

Proved in many special cases, including $g(S) \le 66$

$$\mathsf{F}(S) = \mathsf{max}(\mathbb{Z}_{\geq 0} \setminus S)$$

$$\mathsf{g}(S) = |\mathbb{Z}_{\geq 0} \setminus S|$$

Wilf's Conjecture

For any
$$S = \langle n_1, \dots, n_k \rangle$$
, we have $F(S) + 1 \le k(F(S) + 1 - g(S))$.

Proved in many special cases, including $g(S) \le 66 \ 100$

$$\mathsf{F}(S) = \mathsf{max}(\mathbb{Z}_{\geq 0} \setminus S)$$

$$\mathsf{g}(S) = |\mathbb{Z}_{\geq 0} \setminus S|$$

Wilf's Conjecture

For any
$$S = \langle n_1, \dots, n_k \rangle$$
, we have $F(S) + 1 \le k(F(S) + 1 - g(S))$.

Proved in many special cases, including $g(S) \le 66 \ 100 \ (\sim 10^{21} \ \text{sgps})$

$$\mathsf{F}(S) = \mathsf{max}(\mathbb{Z}_{\geq 0} \setminus S)$$

$$\mathsf{g}(S) = |\mathbb{Z}_{\geq 0} \setminus S|$$

Wilf's Conjecture

For any $S = \langle n_1, \dots, n_k \rangle$, we have $F(S) + 1 \le k(F(S) + 1 - g(S))$.

Proved in many special cases, including $g(S) \le 66 \ 100 \ (\sim 10^{21} \ \text{sgps})$

Theorem (Bruns-García-Sánchez-O.-Wilburne, 2020)

Wilf's conjecture holds for all numerical semigroups S with $m \leq 18$.

$$\mathsf{F}(S) = \mathsf{max}(\mathbb{Z}_{\geq 0} \setminus S)$$

$$\mathsf{g}(S) = |\mathbb{Z}_{\geq 0} \setminus S|$$

Wilf's Conjecture

For any $S = \langle n_1, \dots, n_k \rangle$, we have $F(S) + 1 \le k(F(S) + 1 - g(S))$.

Proved in many special cases, including $g(S) \le 66 \ 100 \ (\sim 10^{21} \ \text{sgps})$

Theorem (Bruns-García-Sánchez-O.-Wilburne, 2020)

Wilf's conjecture holds for all numerical semigroups S with $m \leq 18$.

Proved computationally!!?! But that's infinitely many semigroups!

$$\mathsf{F}(S) = \mathsf{max}(\mathbb{Z}_{\geq 0} \setminus S)$$

$$\mathsf{g}(S) = |\mathbb{Z}_{\geq 0} \setminus S|$$

Wilf's Conjecture

For any $S = \langle n_1, \dots, n_k \rangle$, we have $F(S) + 1 \le k(F(S) + 1 - g(S))$.

Proved in many special cases, including $g(S) \le 66 \ 100 \ (\sim 10^{21} \ \text{sgps})$

Theorem (Bruns-García-Sánchez-O.-Wilburne, 2020)

Wilf's conjecture holds for all numerical semigroups S with $m \leq 18$.

Proved *computationally*!!?! But that's infinitely many semigroups! The key: discrete optimization (integer solutions to linear inequalities)

$$\mathsf{F}(S) = \mathsf{max}(\mathbb{Z}_{\geq 0} \setminus S)$$

$$\mathsf{g}(S) = |\mathbb{Z}_{\geq 0} \setminus S|$$

Wilf's Conjecture

For any $S = \langle n_1, \dots, n_k \rangle$, we have $F(S) + 1 \le k(F(S) + 1 - g(S))$.

Proved in many special cases, including $g(S) \le 66 \ 100 \ (\sim 10^{21} \ \text{sgps})$

Theorem (Bruns-García-Sánchez-O.-Wilburne, 2020)

Wilf's conjecture holds for all numerical semigroups S with $m \leq 18$.

Proved *computationally*!!?! But that's infinitely many semigroups! The key: discrete optimization (integer solutions to linear inequalities)

If S corresponds to $x = (a_1, \ldots, a_{m-1}) \in C_m$,

$$g(S) = ||x||_1 - \frac{1}{2}m(m-1), \qquad F(S) = ||x||_{\infty} - m,$$

and # generators k is determined by the face $F \subseteq C_m$ containing x.

References

W. Bruns, P. García-Sánchez, C. O'Neill, D. Wilburne (2020) Wilf's conjecture in fixed multiplicity

International Journal of Algebra and Computation 30 (2020), no. 4, 861–882. (arXiv:1903.04342)

N. Kaplan, C. O'Neill, (2021)

Numerical semigroups, polyhedra, and posets I: the group cone Combinatorial Theory 1 (2021), #19. (arXiv:1912.03741)

J. Autry, A. Ezell, T. Gomes, C. O'Neill, C. Preuss, T. Saluja, E. Torres Davila (2022) Numerical semigroups, polyhedra, and posets II: locating certain families of semigroups. Advances in Geometry 22 (2022), no. 1, 33–48. (arXiv:1912.04460)

T. Gomes, C. O'Neill, E. Torres Davila (2023)

Numerical semigroups, polyhedra, and posets III: minimal presentations and face dimension.

Electronic Journal of Combinatorics 30 (2023), no. 2, #P2.5. (arXiv:2009.05921)

B. Braun, T. Gomes, E. Miller, C. O'Neill, and A. Sobieska (2023) Minimal free resolutions of numerical semigroup algebras via Apéry specialization under review. (arXiv:2310.03612)

References

W. Bruns, P. García-Sánchez, C. O'Neill, D. Wilburne (2020) Wilf's conjecture in fixed multiplicity

International Journal of Algebra and Computation 30 (2020), no. 4, 861–882. (arXiv:1903.04342)

N. Kaplan, C. O'Neill, (2021)

Numerical semigroups, polyhedra, and posets I: the group cone Combinatorial Theory 1 (2021), #19. (arXiv:1912.03741)

J. Autry, A. Ezell, T. Gomes, C. O'Neill, C. Preuss, T. Saluja, E. Torres Davila (2022) Numerical semigroups, polyhedra, and posets II: locating certain families of semigroups. Advances in Geometry 22 (2022), no. 1, 33–48. (arXiv:1912.04460)

T. Gomes, C. O'Neill, E. Torres Davila (2023)

Numerical semigroups, polyhedra, and posets III: minimal presentations and face dimension.

Electronic Journal of Combinatorics 30 (2023), no. 2, #P2.5. (arXiv:2009.05921)

B. Braun, T. Gomes, E. Miller, C. O'Neill, and A. Sobieska (2023) Minimal free resolutions of numerical semigroup algebras via Apéry specialization under review. (arXiv:2310.03612)

Thanks!