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Numerical semigroups

Definition
A numerical semigroup S ⊆ Z≥0: closed under addition, |Z≥0 \ S| <∞.

Example:

McN = ⟨6, 9, 20⟩ =
{

0, 6, 9, 12, 15, 18, 20, 21, 24, . . .
. . . , 36, 38, 39, 40, 41, 42, 44→

}

Example: S = ⟨6, 9, 18, 20, 32⟩

Fact
Every numerical semigroup has a unique minimal generating set.

Multiplicity: m(S) = smallest nonzero element
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Apéry sets

Fix a numerical semigroup S with m(S) = m.

Definition
The Apéry set of S is

Ap(S) = {a ∈ S : a −m /∈ S}

If S = ⟨6, 9, 20⟩, then
Ap(S) = {0, 49, 20, 9, 40, 29}

For 2 mod 6: {2, 8, 14, 20, 26, 32, . . .} ∩ S = {20, 26, 32, . . .}
For 3 mod 6: {3, 9, 15, 21, . . .} ∩ S = {9, 15, 21, . . .}
For 4 mod 6: {4, 10, 16, 22, . . .} ∩ S = {40, 46, 52, . . .}

Observations:
The elements of Ap(S) are distinct modulo m
|Ap(S)| = m
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Apéry sets

Fix a numerical semigroup S with m(S) = m.

Definition
The Apéry set of S is

Ap(S) = {a ∈ S : a −m /∈ S}

Many things can be easily recovered from the Apéry set.
Fast membership test:

n ∈ S if n ≥ a for a ∈ Ap(S) with a ≡ n mod m
Frobenius number: F(S) = max(Ap(S))−m
Number of gaps (the genus):

g(S) = |N \ S| =
∑

a∈Ap(S)

⌊ a
m

⌋
The Apéry set is a “one stop shop” for computation.
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Fast membership test:
n ∈ S if n ≥ a for a ∈ Ap(S) with a ≡ n mod m

Frobenius number: F(S) = max(Ap(S))−m
Number of gaps (the genus):

g(S) = |N \ S| =
∑

a∈Ap(S)

⌊ a
m

⌋
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Apéry sets

Is A = {0, 11, 7, 23, 19} the Apéry set of some numerical semigroup?

m = |A| = 5, a1 = 11, a2 = 7, a3 = 23, a4 = 19
but a1 + a2 ≡ 3 mod 5 and a1 + a2 < a3.

Is {0, 13, 14, 27, 10, 11} the Apéry set of some numerical semigroup?
m = |A| = 6, a1 = 13, a2 = 14, a3 = 27, a4 = 10, a5 = 11

but a4 + a5 ≡ 3 mod 6 and a4 + a5 < a3.

Theorem
If A = {0, a1, . . . , am−1} with each ai > m and ai ≡ i mod m, then
there exists a numerical semigroup S with Ap(S) = A if and only if

ai + aj ≥ ai+j whenever i + j ̸= 0.

Big idea: the inequalities “ai + aj ≥ ai+j” to define a cone Cm.
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Is A = {0, 11, 7, 23, 19} the Apéry set of some numerical semigroup?
m = |A| = 5, a1 = 11, a2 = 7, a3 = 23, a4 = 19

but a1 + a2 ≡ 3 mod 5 and a1 + a2 < a3.
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Kunz cone

Definition
The Kunz cone Cm ⊆ Rm−1 is a pointed cone with defining inequalities

ai + aj ≥ ai+j whenever i + j ̸= 0.

{S ⊆ Z≥0 : m(S) = m} −→ Cm
Ap(S) = {0, a1, . . . , am−1} 7−→ (a1, . . . , am−1)

Example: C3
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ai + aj ≥ ai+j whenever i + j ̸= 0.

{S ⊆ Z≥0 : m(S) = m} −→ Cm
Ap(S) = {0, a1, . . . , am−1} 7−→ (a1, . . . , am−1)

Example: C3

S = ⟨3, 5, 7⟩
Ap(S) = {0, 7, 5}
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Kunz cone

Definition
The Kunz cone Cm ⊆ Rm−1 is a pointed cone with defining inequalities

ai + aj ≥ ai+j whenever i + j ̸= 0.

{S ⊆ Z≥0 : m(S) = m} −→ Cm
Ap(S) = {0, a1, . . . , am−1} 7−→ (a1, . . . , am−1)

Example: C3

S = ⟨3, 5, 7⟩
Ap(S) = {0, 7, 5}

S = ⟨3, 4⟩
Ap(S) = {0, 4, 8}
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Kunz cone

Definition
The Kunz cone Cm ⊆ Rm−1 is a pointed cone with defining inequalities

ai + aj ≥ ai+j whenever i + j ̸= 0.

{S ⊆ Z≥0 : m(S) = m} −→ Cm
Ap(S) = {0, a1, . . . , am−1} 7−→ (a1, . . . , am−1)

Example: C4
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Faces of the Kunz cone

Question
When are numerical semigroups in (the relative interior of) the same face?

Big picture: “parameter space” approach for studying XYZ ’s
Define a space with XYZ ’s as points
Small changes to an XYZ ⇝ small movements in space
Let geometric/topological structure inform study of XYZ ’s

Basic example: GLn(R) ↪→ Rn2

More interesting example: Cm
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Faces of the Kunz cone

Question
When are numerical semigroups in (the relative interior of) the same face?

C3 ⊆ R2 C4 ⊆ R3

C5 ⊆ R4? Cross section:
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Faces of the Kunz cone

Question
When are numerical semigroups in (the relative interior of) the same face?

Definition
The Apéry poset of S: define a ⪯ a′ whenever a′ − a ∈ S.

S = ⟨4, 10, 13⟩
Ap(S) = {0, 13, 10, 23}

S = ⟨4, 13⟩
Ap(S) = {0, 13, 26, 39}
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Faces of the Kunz cone

Question
When are numerical semigroups in (the relative interior of) the same face?

S = ⟨6, 9, 20⟩
Ap(S) = {0, 49, 20, 9, 40, 29}

S ′ = ⟨6, 26, 27⟩
Ap(S ′) = {0, 79, 26, 27, 52, 53}

The Kunz poset of S: use ground set Zm instead of Ap(S).

Theorem (Bruns–Garćıa-Sánchez–O.–Wilburne)
Numerical semigroups lie in the relative interior of the same face of Cm
if and only if their Kunz posets are identical.
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Theorem (Bruns–Garćıa-Sánchez–O.–Wilburne)
Numerical semigroups lie in the relative interior of the same face of Cm
if and only if their Kunz posets are identical.

Christopher O’Neill (SDSU) Classifying numerical semigroups using polyhedral geometrySep 24, 2025 11 / 18



Faces of the Kunz cone

Question
When are numerical semigroups in (the relative interior of) the same face?

S = ⟨6, 9, 20⟩
Ap(S) = {0, 49, 20, 9, 40, 29}

S ′ = ⟨6, 26, 27⟩
Ap(S ′) = {0, 79, 26, 27, 52, 53}

The Kunz poset of S: use ground set Zm instead of Ap(S).
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When are numerical semigroups in (the relative interior of) the same face?

S = ⟨6, 9, 20⟩
Ap(S) = {0, 49, 20, 9, 40, 29}

1 2 3 4 5

Defining facet equations:
2a2 = a4

a2 + a3 = a5

a2 + a5 = a1
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1 2 3 4 5

Defining facet equations:
2a2 = a4

a2 + a3 = a5

a2 + a5 = a1

a3 + a4 = a1

2 ⪯ 4
2 ⪯ 5
3 ⪯ 5
2 ⪯ 1
5 ⪯ 1
3 ⪯ 1
4 ⪯ 1
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Theorem (Bruns–Garćıa-Sánchez–O.–Wilburne)
Numerical semigroups lie in the relative interior of the same face of Cm
if and only if their Kunz posets are identical.

Christopher O’Neill (SDSU) Classifying numerical semigroups using polyhedral geometrySep 24, 2025 12 / 18



C3 and C4
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Shared properties within a face
What properties are determined by the Kunz poset P of S = ⟨n1, . . . , nk⟩?

k = 1 + # atoms of P
t(S) = # maximal elements
(Cohen-Macaulay type of S)
Symmetric/Gorenstein?
Complete intersection?
Generalized arithmetical?

Minimal binomial generators of
the defining toric ideal of S:

IS = ker
(
k[x ]→ k[t]

)
xi 7→ tni

Betti numbers of IS over k[x ]
Betti numbers of k over k[x ]/IS
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Shared properties within a face
What properties are determined by the Kunz poset P of S = ⟨n1, . . . , nk⟩?

k = 1 + # atoms of P
t(S) = # maximal elements
(Cohen-Macaulay type of S)
Symmetric/Gorenstein?

Complete intersection?
Generalized arithmetical?

Minimal binomial generators of
the defining toric ideal of S:

IS = ker
(
k[x ]→ k[t]

)
xi 7→ tni

Betti numbers of IS over k[x ]
Betti numbers of k over k[x ]/IS

S = ⟨4, 7⟩

S = ⟨9, 40, 50, 60⟩
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Shared properties within a face
What properties are determined by the Kunz poset P of S = ⟨n1, . . . , nk⟩?

k = 1 + # atoms of P
t(S) = # maximal elements
(Cohen-Macaulay type of S)
Symmetric/Gorenstein?
Complete intersection?
Generalized arithmetical?

Minimal binomial generators of
the defining toric ideal of S:

IS = ker
(
k[x ]→ k[t]

)
xi 7→ tni

Betti numbers of IS over k[x ]
Betti numbers of k over k[x ]/IS

S = ⟨6, 9, 20⟩

IS = ⟨x3 − y2, x4y4 − z3⟩
⊆ k[x , y , z ]
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Shared properties within a face
What properties are determined by the Kunz poset P of S = ⟨n1, . . . , nk⟩?

k = 1 + # atoms of P
t(S) = # maximal elements
(Cohen-Macaulay type of S)
Symmetric/Gorenstein?
Complete intersection?
Generalized arithmetical?

Minimal binomial generators of
the defining toric ideal of S:

IS = ker
(
k[x ]→ k[t]

)
xi 7→ tni

Betti numbers of IS over k[x ]
Betti numbers of k over k[x ]/IS

S = ⟨10, a2, a3, a4⟩

IS = ⟨ x2
2 − y∗x4, x2x4 − x2

3 ,
x2

3 x4 − y∗, x3
4 − y∗x2 ⟩

⊆ k[y , x2, x3, x4]

Christopher O’Neill (SDSU) Classifying numerical semigroups using polyhedral geometrySep 24, 2025 14 / 18



Shared properties within a face
What properties are determined by the Kunz poset P of S = ⟨n1, . . . , nk⟩?

k = 1 + # atoms of P
t(S) = # maximal elements
(Cohen-Macaulay type of S)
Symmetric/Gorenstein?
Complete intersection?
Generalized arithmetical?

Minimal binomial generators of
the defining toric ideal of S:

IS = ker
(
k[x ]→ k[t]

)
xi 7→ tni

Betti numbers of IS over k[x ]

Betti numbers of k over k[x ]/IS

1,12 1,13 2,12 2,23 3,13 3,23 2,13 3,12



1,1 −x2 −x3 y∗ y∗

2,2 −y∗ x1 −x3 y∗

3,3 x1 x2 −y∗

2,1 x1 −x2 y∗ y∗ −x3
3,1 y∗ x1 −x3 −y∗ −x2
3,2 −y∗ −y∗ x2 −x3 x1 x1

1,[3] 2,[3] 3,[3]



1,12 x3 −y∗

1,13 −x2 y∗

2,12 x3 −y∗

2,23 −y∗ x1
3,13 y∗ −x2
3,23 −y∗ x1
2,13 x1 −x2
3,12 −x1 x3

0← R ← R6←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−R8←−−−−−−−−−−−−−−−R3← 0
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Shared properties within a face
What properties are determined by the Kunz poset P of S = ⟨n1, . . . , nk⟩?

k = 1 + # atoms of P
t(S) = # maximal elements
(Cohen-Macaulay type of S)
Symmetric/Gorenstein?
Complete intersection?
Generalized arithmetical?

Minimal binomial generators of
the defining toric ideal of S:

IS = ker
(
k[x ]→ k[t]

)
xi 7→ tni

Betti numbers of IS over k[x ]
Betti numbers of k over k[x ]/IS

0 1 2 3
[ ]∅ y x1 x2 x3

01 02 03 11 12 13 21 22 23 31 32 33


0 x1 x2 x3 −y∗ −y∗ −y∗

1 −y x1 x2 x3 −y∗ −y∗

2 −y −y∗ x1 x2 x3 −y∗

3 −y −y∗ −y∗ x1 x2 x3
0← R ←−−−−−−−−−−−− R4←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− R12

←−−−−−− R36←−−−−−− R108←−−−−−− R324←−−−−−− R972←−−−−−− R2916←−−−−−− · · ·
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Application 1: classifying minimal trades

Question
Given the multiplicity m = m(S) and k = # minimal generators of S,
what can β1(IS) = # minimal generators of IS be?
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Application 1: classifying minimal trades

Question
Given the multiplicity m = m(S) and k = # minimal generators of S,
what can β1(IS) = # minimal generators of IS be?

Well known: β1(S) ≤
(m

2
)
, with equality if and only if k = m

if k = 3, then β1(S) = 2, 3
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Application 1: classifying minimal trades

Question
Given the multiplicity m = m(S) and k = # minimal generators of S,
what can β1(IS) = # minimal generators of IS be?

Prior work: a family has β1(S) =
(k

2
)

for 3 ≤ k ≤ m (Rosales)
if r = m − k ≤ 2, then β1(S) ∈ [

(k
2
)
− r ,

(k
2
)
] (GS-R)
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Application 1: classifying minimal trades

Question
Given the multiplicity m = m(S) and k = # minimal generators of S,
what can β1(IS) = # minimal generators of IS be?

Using Kunz posets: a family hits each β1(S) ∈ [
(k

2
)
− r ,

(k
2
)
]

for r = m − k ≤ k − 2
a family hits β1(S) =

(k
2
)

+ 1 for each m ≥ k + 3
Christopher O’Neill (SDSU) Classifying numerical semigroups using polyhedral geometrySep 24, 2025 15 / 18



Application 1: classifying minimal trades

Question
Given the multiplicity m = m(S) and k = # minimal generators of S,
what can β1(IS) = # minimal generators of IS be?

Bounds from Kunz posets: β1(S) ≥
(k

2
)
− r , where r = m − k

if m − k = 3, then β1(S) ∈ [
(k

2
)
− 3,

(k
2
)

+ 1]
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Application 1: classifying minimal trades

Question
Given the multiplicity m = m(S) and k = # minimal generators of S,
what can β1(IS) = # minimal generators of IS be?

One more family: for k = 4, achieves each β1(S) with (β1(S)− 2)2 ≤ 4m
conjectured to achieve every possible β1(S) for k = 4
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Application 2: a long-standing (hard) conjecture

F(S) = max(Z≥0 \ S) g(S) = |Z≥0 \ S|

Wilf’s Conjecture
For any S = ⟨n1, . . . , nk⟩, we have F(S) + 1 ≤ k(F(S) + 1− g(S)).

Equivalently,
1
k ≤

F(S) + 1− g(S)
F(S) + 1︸ ︷︷ ︸

% of [0, F (S)] in S

Equality holds when:
S = ⟨a, b⟩

S = ⟨m, m + 1, . . . , 2m − 1⟩
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Wilf’s Conjecture
For any S = ⟨n1, . . . , nk⟩, we have F(S) + 1 ≤ k(F(S) + 1− g(S)).

Proved in many special cases, including g(S) ≤ 66

Theorem (Bruns-Garćıa-Sánchez-O.-Wilburne, 2020)
Wilf’s conjecture holds for all numerical semigroups S with m ≤ 18.

Proved computationally!!?! But that’s infinitely many semigroups!
The key: discrete optimization (integer solutions to linear inequalities)

If S corresponds to x = (a1, . . . , am−1) ∈ Cm,

g(S) = ∥x∥1 − 1
2m(m − 1), F(S) = ∥x∥∞ −m,

and # generators k is determined by the face F ⊆ Cm containing x .
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