Fall 2014, Math 302.504 Exam 2 - Review Sheet

Name:

\qquad
Given below are some problems to help review for Exam 2. These problems may not be turned in for credit, but you are welcome to ask questions about them.

Please note that simply doing these problems will not guarantee a passing grade on the exam. You should use these problems as a guide to help determine which topics you feel most comfortable with and which topics you should spend more time reviewing.
(1) Let A, B, C and D be sets.
(a) Show that $(A-B)-C$ is not necessarily equal to $A-(B-C)$.
(b) Prove or disprove: $(A-B)-C=(A-C)-B$.
(c) Prove or disprove: $(A-B)-(C-D)=(A-C)-(B-D)$.
(2) Let $f:\{1,2,3,4\} \rightarrow\{a, b, c, d\}$ and $g:\{a, b, c, d\} \rightarrow\{1,2,3,4\}$ be functions given by:

$$
\begin{array}{|c|c|c|c|}
\hline f(1)=d & f(2)=c & f(3)=a & f(4)=b \\
\hline g(a)=2 & g(b)=1 & g(c)=3 & g(d)=2 \\
\hline
\end{array}
$$

(a) If f one-to-one? Is g one-to-one? Is f onto? Is g onto?
(b) Determine which of the following sums makes sense, and evaluate those that do.

$$
\sum_{i=1}^{4} f(i)
$$

$$
\sum_{\ell \in\{a, b, c, d\}} g(\ell)
$$

(3) Determine the value of $\sum_{i=1}^{10000}(i+1)^{2}-(i-1)^{2}$.
(4) Find a formula for $\frac{1}{2}+\frac{1}{4}+\cdots+\frac{1}{2^{n}}$ by examining the values of this expression for small values of n. Prove that this formula is correct.
(5) Use strong induction to show that every positive integer n can be written as a sum of distinct powers of two, that is, as a sum of a subset of the integers $2^{0}, 2^{1}, 2^{2}, \ldots$ (Hint: your inductive step will likely have 2 cases.)
(6) Prove that if $A_{1}, A_{2}, \ldots, A_{n}$ and $B_{1}, B_{2}, \ldots, B_{n}$ are sets with the property that $A_{j} \subset B_{j}$ for $j=1,2, \ldots, n$, then

$$
\bigcup_{j=1}^{n} A_{j} \subset \bigcup_{j=1}^{n} B_{j} .
$$

(7) Determine whether each of these proposed definitions is a valid recursive definition of a function f from the set of nonnegative integers to the set of integers. If f is well-defined, find a formula for $f(n)$ when n is a non-negative integer and prove that your formula is valid.
(a) $f(0)=1, f(n)=-f(n-1)$ for $n \geq 1$.
(b) $f(0)=1, f(1)=0, f(2)=2, f(n)=2 f(n-3)$ for $n \geq 3$.
(c) $f(0)=0, f(1)=1, f(n)=2 f(n+1)$ for $n \geq 2$.

