Fall 2014, Math 302.504 - Homework Set 2 Due: Wednesday, September 17, 2014 Propositional Logic

Name: _

Given below are the required problems for this assignment. Please submit your answers on a printed copy of this sheet.

- (1) Which of these are propositions? For those that are propositions, find their truth values.
 - (a) Do not pass go.
 - (b) What time is it?
 - (c) There are no black flies in Maine.
 - (d) 4 + x = 5.
 - (e) The moon is made of green cheese.
 - (f) $2^n \ge 100$.
- $\left(2\right)$ Find the negation of each of the following propositions.
 - (a) Jennifer and Teja are friends.
 - (b) There are 13 items in a baker's dozen.
 - (c) Abby sends more than 100 text messages every day.
 - (d) 121 is a perfect square.

- (3) Let P, Q and R be the propositions
 - P: "You get an A on the final exam."
 - Q: "You do every exercise in this book."
 - R: "You get an A in this class."

Write these propositions using P, Q, and R and logical connectives.

- (a) You get an A in this class, but you do not do every exercise in this book.
- (b) You get an A on the final, you do every exercise in this book, and you get an A in this class.
- (c) To get an A in the class, it is necessary for you to get an A on the final.
- (d) You get an A on the final, but you don't do every exercise in this book; nevertheless, you get an A in this class.
- (e) Getting an A on the final and doing every exercise in this book is sufficient for getting an A in this class.
- (f) You will get an A in this class if and only if you either do every exercise in this book or you get an A on the final.
- (4) Determine whether each of these biconditionals is true or false.
 - (a) 2+2=4 if and only if 1+1=2.
 - (b) 1 + 1 = 2 if and only if 2 + 3 = 4.
 - (c) 1 + 1 = 3 if and only if monkeys can fly.
 - (d) 0 > 1 if and only if 2 > 1.

 $\mathbf{2}$

- (5) Write each of these statements in the form "if P, then Q" in English.
 - (a) If you keep your textbook, it will be a useful reference in your future courses.
 - (b) To be a citizen of this country, it is sufficient that you were born in the United States.
 - (c) Speakers will sound their best only if you play them for a long time to break them in.
 - (d) The Red Wings will win the Stanley Cup if their goalie plays well.
 - (e) That you get the job implies that you had the best credentials.
 - (f) The beach erodes whenever there is a storm.
 - (g) It is necessary to have a valid password to log on to the server.
 - (h) You will reach the summit unless you begin your climb too late.
- (6) Use truth tables to verify the commutative laws (a) $P \lor Q \equiv Q \lor P$. (b) $P \land Q \equiv Q \land P$.

(7) Show that each of these conditional statements is a tautology by using truth tables. Do the same without using truth tables.

(a) $[\neg P \land (P \lor Q)] \to Q$

(b)
$$[(P \to Q) \land (Q \to R)] \to (P \to R)$$

(c)
$$[P \land (P \to Q)] \to Q$$

(d)
$$[(P \lor Q) \land (P \to R) \land (Q \to R)] \to R$$

4

(8) Show that $\neg(P \oplus Q)$ and $P \leftrightarrow Q$ are logically equivalent using truth tables.

(9) Show that $(P \to Q) \land (P \to R)$ and $P \to (Q \land R)$ are logically equivalent without using truth tables. What might this property be called?

(10) Let Q(x) be the statement "x + 1 > 2x." If the domain consists of all integers, what are these truth values?

(a)
$$Q(0)$$
 (b) $Q(-1)$ (c) $Q(1)$

(d)
$$\exists x Q(x)$$
 (e) $\forall x Q(x)$ (f) $\exists x \neg Q(x)$

(g) $\forall x \neg Q(x)$

- (11) Translate each of these statements into logical expensions *in three different ways* by varying the domain and by using predicates with one and with two variables.
 - (a) Someone in your school has visited Uzbekistan.

(b) Everyone in your class has studied calculus and C++.

(c) No one in your school owns both a bicycle and a motorcycle.

(d) There is a person in your school who is not happy.

(e) Everyone in your school was born in the twentieth century.

6

- (12) Determine which of the following universally quantified statements is true, where the domain for all variables consists of all real numbers. For those that are false, give a counterexample.
 (a) ∀x (x² ≠ x).
 - (b) $\exists x (x^2 \neq x).$
 - (c) $\forall x (x^2 \neq 2)$
 - (d) $\exists x (x^2 \neq 2)$
 - (e) $\forall x (|x| > 0)$
 - (f) $\exists x (|x| > 0)$
- (13) Translate these system specifications into English where the predicate S(x, y) is "x is in state y" and where the domain for x and y consists of all possible systems and all possible states, respectively.
 - (a) $\exists x S(x, \text{open}).$
 - (b) $\forall x (S(x, \text{malfunctioning}) \lor S(x, \text{diagnostic})).$
 - (c) $\exists x S(x, \text{open}) \lor \exists x S(x, \text{diagnostic})$
 - (d) $\exists x \neg S(x, \text{available})$
 - (e) $\forall x \neg S(x, \text{working})$