Fall 2014, Math 302.504 - Homework Set 7
 Due: Wednesday, October 29, 2014
 Induction, Induction, Induction!

Name: \qquad
Given below are the required problems for this assignment. Please submit your answers on a printed copy of this sheet.
(1) Use induction to prove that a set with $n \geq 2$ elements has $n(n-1) / 2$ subsets containing exactly two elements.
(2) Consider this variation of the game Nim. The game begins with single pile of n stones, and players alternate removing stones as in standard Nim. However, the player to take the last stone loses (this variation is called misère play). Use strong induction to prove that Player 1 has a winning strategy if either $n=4 j, n=4 j+2$ or $n=4 j+3$ for some integer j, and the second player has a winning strategy if $n=4 j+1$ for some integer j.
(3) Recall that the n-th Fibonacci number is defines recursively by $f_{0}=0, f_{1}=1$, and $f_{n}=$ $f_{n-1}+f_{n-2}$ for $n \geq 2$.
(a) Show that

$$
\left(\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]\right)^{n}=\left[\begin{array}{cc}
f_{n+1} & f_{n} \\
f_{n} & f_{n-1}
\end{array}\right]
$$

(b) Use induction to prove that $f_{n+1} f_{n-1}-f_{n}^{2}=(-1)^{n}$ for all $n \geq 1$.
(c) Give an alternate proof for part (b) by taking determinants in the equation in part (a).

