
Fall 2015, Math 431: Honors Project Topics

The goal of each project is to learn about a combinatorics topic not discussed in class, and
to introduce it to your classmates. Throughout the semester, the following will be expected.

• Choose a topic. Please speak with me before making your decision, to ensure it is an
appropriate level and so that we can narrow down a reasonable set of goals. Your should
choose a topic (and have it approved) no later than Friday, September 11th.

• Begin reading the agreed-upon background material. Plan to meet with me at least once
every two weeks, starting no later than early October, to ensure that you are on track.

• Write (in LATEX) a 5 page paper aimed at introducing your topic to a fellow honors stu-
dent. This should contain ample examples and explanations in addition to just theorem
statements and proofs. Keep the following deadlines in mind as you proceed.

– A rough draft of the paper will be due Thursday, November 19th. This draft will be
peer reviewed by a fellow student in the weeks that follow.

– The final paper will be due on the day of our final exam (Friday, December 11th).

• Give a 20 minute presentation introducing the main ideas of your topic. Presentations will
take place in class, during the last couple of weeks of the semester. You should keep in
mind your target audience and time available when deciding what and how to present.

Your final grade on the project will be determined by the content, quality, and completeness
of your final paper and your presentation. However, I reserve the right to deduct points if you
fail to meet regularly or are consistently unprepared for meetings.

Given below are several project ideas. I am open to projects not listed here, but please run
them by me before making your decision.

(A) Matroids. A matroid is a combinatorial structure that generalizes the notion of linear
independence in vector spaces, and also arises in undirected graphs, directed graphs (with a
different construction), matching sets, hyperplane arrangements, and many other settings.
Many constructions from these individual settings (such as graph duals and characteristic
polynomials) can be generalized to matroids, and thus simultaneously generalized to all
other settings (one combinatorial structure to rule them all?).

Primary source: F. Ardila’s video lectures and notes.

http://math.sfsu.edu/federico/Clase/Matroids/lectures.html

(B) Ehrhart polynomials. Ehrhart’s Theorem states that a certain function counting integer
points inside of polytopes (polygons in higher dimensions) is a polynomial whose degree
equals the ambiant dimension. Ehrhart’s theorem is extremely versitile, and can be used to
give combinatorial proofs of many results from far outside the realm of discrete geometry.

Primary source: Computing the continuous discretely, by M. Beck and S. Robins.

http://math.sfsu.edu/beck/papers/noprint.pdf

(C) Unlabeled structures. These can be thought of as “combinatorial structures up to isomor-
phism.” Examples include graphs and trees (under graph isomorphism), rooted trees, per-
mutations (isomorphic = same cycle type), and derangements (permutations with no fixed
points). Counting unlabeled structures is a natural question, and is often much more compli-
cated than counting the corresponding labeled structures. At work in the background is the
theory of combinatorial species, which takes a more high-level (in fact, category-theoretic)
approach to enumerative combinatorics.

Primary source: A walk through combinatorics (3rd edition), by M. Bóna, Chapter 18.
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(D) Error correcting codes. These arise frequently in computer science, and are vital to efficient
network transmission and computer storage.

Primary source: A walk through combinatorics (3rd edition), by M. Bóna, Chapter 17.

Note: This project is best suited for those interested in computational mathematics or
computer science, but no background in computer science is required.

(E) Computational complexity.

Alan Touring (recently portrayed in a movie by Benedict Cumberbatch) is often thought
of as the first computer scientist, but he was actually a mathematician. In his doctoral
dissertation, he developed a theoretical model for what is now called a Turing machine, and
used it to determine what computers are capable of computing (over 20 years before the
first real computer was even invented). Although a true Turing machine is impossible to
build (infinite memory is required), simplified models also arise in computer science, such
as finite state machines used in studying regular expressions.

Primary source: A walk through combinatorics (3rd edition), by M. Bóna, Chapter 20.

Note: This project is best suited for those interested in computational mathematics or
computer science, but no background in computer science is required.

(F) Combinatorial games. Combinatorial games are two-player games in which (i) all infor-
mation is available to both players (i.e. no hidden information), (ii) the same moves are
available to each player on their turn, and (iii) two games with the same sequence of moves
have the same outcome (i.e. no randomness). These conditions are sufficient to ensure that
precisely one player has a strategy, that is, a strategy ensuring victory regardless of his/her
opponent’s play. Many combinatorial games have the form “last player to move wins” (nor-
mal play) or “last player to move loses” (misère play). Misère play generally requires a more
complicated strategy than normal play, even in games as simple as Nim.

Primary source: Misere quotients for impartial games, by T. Blambeck and A. Siegel.

http://arxiv.org/abs/math/0609825

(G) Invariants of non-unique factorization. The fundamental theorem of arithmetic states that
any positive integer can be factored uniquely as a product of prime (irreducible) integers.
Non-unique factorization theory aims to classify aother lgebraic settings in which elements
fail to admit unique factorization as a product of irreducible elements. Factorization invari-
ants, which are often combinatorial in nature, play a major role in this field, as they provide
a concrete measure of the quantity and distribution of factorizations within a given setting.

Primary source: TBA, probably selected published articles.

Note: For this project, one semester of abstract algebra is helpful, but not required.

(H) Monomial ideals. In a polynomial ring, a monomial ideal is an ideal generated by mono-
mials. Monomial ideals are very combinatorial in nature, allowing many purely algebraic
constructions (such as irreducible decompositions, free resolutions, and Krull dimension) to
be expressed combinatorially. Conversely, the study of some combinatorial structures (such
as undirected graphs and simplicial complexes) can benefit from algebraic machinery by
encoding the objects as monomial ideals.

Primary source: Monomial ideals, by J. Herzog and T. Hibi, Chapter 1.

Note: This project requires at least one semester of abstract algebra, but preferably two.
At the very least, familiarity with ideals and polynomial rings is essential.
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