Fall 2015, Math 431: Review Problems Due: Thursday, October 1th, 2015 Exam 1 Review

Exam review problems. As the name suggests, these problems are intended to help you prepare for the upcoming exam.
(ER1) Let $f_{0}=0, f_{1}=1$, and $f_{n+1}=f_{n}+f_{n-1}$ for $n \geq 2$. Use induction to prove that

$$
f_{n+1} f_{n-1}-f_{n}^{2}=(-1)^{n}
$$

(ER2) Suppose $n \geq 2$. Pick $n+1$ integers from the set $[2 n]=\{1,2, \ldots, 2 n\}$. Is it necessarily true that one of the selected integers is twice another? Is it necessarily true that one of the selected integer is a multiple of another?
Note: if you prefer, you may restrict your attention to the case $n=8$.
(ER3) How many 6-digit positive integers are there whose digits sum to at most 51 ?
(ER4) A classroom has 25 students, 10 males and 15 females. How many ways are there to form a committee of 5 people, with at least one male and one female?
(ER5) How many 5-digit positive integers are there whose digits sum to a multiple of 5 ?
(ER6) A palendrome is a sequence that reads the same forward and backward. How any ways are there to list the digits in $(1,1,2,2,3,3,4,4)$ so that the middle 4 digits form a palendrome?
(ER7) Use the binomial theorem to prove that

$$
\sum_{\substack{k=0 \\ k \text { even }}}^{n}\binom{n}{k} 2^{k}=\frac{3^{n}+(-1)^{n}}{2}
$$

(ER8) Prove that

$$
\sum_{a_{1}+a_{2}+a_{3}=n}\binom{n}{a_{1}, a_{2}, a_{3}}(-1)^{a_{2}}=1
$$

(ER9) Give a combinatorial proof that

$$
\binom{k}{k}+\binom{k+1}{k}+\cdots+\binom{n}{k}=\binom{n+1}{k+1}
$$

(ER10) How many 2×2 matrices with entries in $\{0,1,2 \ldots, n\}$ have at least one nonzero entry in each row and column?
(ER11) Find a closed formula for $S(n, 2)$.

