Fall 2015, Math 431: Review Problems Due: Thursday, October 29th, 2015 Exam 2 Review

Exam review problems. As the name suggests, these problems are intended to help you prepare for the upcoming exam.

- (ER1) Find the number of paths (no repeated vertices) in the complete bipartite graph $K_{n.m.}$
- (ER2) Find all automorphisms of K_n with one edge removed.
- (ER3) Which complete graphs K_n have Eulerian cycles? Which complete bipartite graphs $K_{n,m}$ have Eulerian cycles?
- (ER4) How many Hamiltonian cycles does the wheel graph W_n have?
- (ER5) Prove that all longest paths in a tree (not just any two) have a vertex in common. Is it always just a single vertex?
- (ER6) Find the number of spanning trees of the complete bipartite graph $K_{n,2}$, $n \ge 2$. Use the Matrix-Tree Theorem to verify your answer.
- (ER7) Find the chromatic polynomial of the cycle graph C_n .
- (ER8) Prove that the constant term of the chromatic polynomial of any simple graph G is 0.
- (ER9) Let G = (X, Y) denote the bipartite graph from problem (R4) on Problem Set 7. Use Hall's Marriage Theorem to prove that there exists a perfect matching from X into Y.
- (ER10) Fix $n \ge 5$. What is the maximum number of edges we can remove from K_n without producing a planar graph? What if we require the resulting graph to be connected? Challenge: What is the minimum number of edges we can remove from K_n to produce a planar graph?