Fall 2015, Math 431: Review Problems Due: Friday, December 11th, 2015 Exam 3 Review

Exam review problems. As the name suggests, these problems are intended to help you prepare for the upcoming exam.
(ER1) A lattice path is a path consisting only of unit moves up and right. For example:

Find the number of lattice paths between $(0,0)$ and (m, n) for $m, n \in \mathbb{Z}_{\geq 0}$.
(ER2) Give a combinatorial proof that for all $n \geq 2$,

$$
\sum_{k=0}^{n} k(k-1)\binom{n}{k}=n(n-1) 2^{n-2}
$$

(ER3) Give another proof of the above identity using the binomial theorem.
(ER4) Recall that $S(n, k)$ denotes the number of partitions of the set $[n]=\{1,2, \ldots, n\}$ into exactly k blocks, and $B(n)=\sum_{k=0}^{n} S(n, k)$ denotes the number of partitions of $[n]$ into any number of blocks. Give a combinatorial proof of the identity

$$
B(n+1)-B(n)=\sum_{k=1}^{n} k S(n, k)
$$

(ER5) Find all automorphisms of the complete bipartite graph $K_{m, n}$.
(ER6) Suppose a simple, connected graph G with n vertices has a unique cycle, the length of which is 3 . Find the chromatic polynomial of G.
(ER7) Determine the minimum number of vertices that must be removed from a complete bipartite graph $K_{m, n}$ in order to yield a planar graph.
(ER8) Determine when two trees T_{1} and T_{2} have isomorphic dual graphs.
(ER9) In each theorem involving a composition $F(G(x))$ of formal power series, we have required that $G(x)$ have constant term 0 . Why is this?
(ER10) Find a simple expression for the ordinary generating function of the sequence $a_{n}=n^{2}$. Do the same for its exponential generating function.
(ER11) Use ordinary generating functions to find a closed form for the recurrence relation given by $b_{0}=1$ and $b_{n}=2 b_{n-1}+n^{2}$.
(ER12) Fix power series $F(x)=\sum_{n=0}^{\infty} f_{n} x^{n}$ and $G(x)=\sum_{n=0}^{\infty} g_{n} x^{n}$, and let $\frac{d}{d x}$ denote term-byterm differentation. For instance, $\frac{d}{d x} F(x)=\sum_{n=1}^{\infty} n x^{n-1}=\sum_{n=0}^{\infty}(n+1) x^{n}$.
Verify the product rule for formal power series:

$$
\frac{d}{d x}(F(x) G(x))=\left(\frac{d}{d x} F(x)\right) G(x)+F(x)\left(\frac{d}{d x} G(x)\right) .
$$

If you are feeling adventurous, verify the quotient rule for formal power series:

$$
\frac{d}{d x}\left(\frac{F(x)}{G(x)}\right)=\frac{\left(\frac{d}{d x} F(x)\right) G(x)-F(x)\left(\frac{d}{d x} G(x)\right)}{(G(x))^{2}}
$$

Where in your proof of the quotient rule did you use that $g_{0} \neq 0$?
(ER13) Use induction and the product rule for formal power series (given above) to prove

$$
\frac{d}{d x}(F(x))^{k}=k(F(x))^{k-1}\left(\frac{d}{d x} F(x)\right)
$$

for all $k \geq 1$. Hint: this can be done without writing any infinite sums.
(ER14) Recall that $e^{x}=\sum_{n=0}^{\infty} \frac{1}{n!} x^{n}$, and consider the formal power series $\ln (x)$ defined so that

$$
\ln (1+x)=\sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{n+1} x^{n+1}
$$

(a) Justify the above definition by differentiating both sides (using calculus).
(b) Prove that $\left(e^{x}\right)^{m}=e^{m x}$ for all $m \geq 0$. Hint: induct on m.
(c) Prove that $\ln \left(e^{x}\right)=x$.
(d) Pick your favorite algebraic property involving $\ln (x)$ and/or e^{x}, and prove that it holds in formal power series-land. Alternatively, look up the power series expansions for $\sin (x)$ and $\cos (x)$ in your favorite Calculus textbook, and prove (using formal power series) that $\sin (2 x)=2 \sin (x) \cos (x)$, or that $(\sin (x))^{2}+(\cos (x))^{2}=1$.
(ER15) For $k \geq 1$, find an expression for the exponential generating function

$$
S_{k}(x)=\sum_{n=0}^{\infty} S(n, k) \frac{x^{n}}{n!}
$$

in terms of familiar exponential generating functions $\left(e^{x}, \ln (x)\right.$, etc.). Use this to find a closed form when $k=1, k=2$ and $k=3$. Note: there is no known closed form for general k, so do not attempt to solve for the coefficients in general!
(ER16) A permutation of $[n]=\{1, \ldots, n\}$ is called indecomposable if it cannot be split into a permutation on $\{1, \ldots, k\}$ and a permutation on $\{k+1, \ldots, n\}$ for $1 \leq k \leq n-1$. For example, 54321 is indecomposable, but $23154=(231)(54)$ is not.

Let c_{n} denote the number of indecomposable permutations on $[n]$, and let $c_{0}=0$. Find an equation relating the ordinary generating function $C(x)$ for c_{n} and the ordinary generating function for the number of permutations of $[n]$, that is, $P(x)=\sum_{n=0}^{\infty}(n!) x^{n}$.

