Fall 2015, Math 431: Review Problems
Due: Friday, December 11th, 2015
Exam 3 Review

Exam review problems. As the name suggests, these problems are intended to help you
prepare for the upcoming exam.
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A lattice path is a path consisting only of unit moves up and right. For example:

Find the number of lattice paths between (0,0) and (m,n) for m,n € Zxo.

Give a combinatorial proof that for all n > 2,
S k(k-1) (Z) = n(n—1)2"2.
k=0

Give another proof of the above identity using the binomial theorem.

Recall that S(n,k) denotes the number of partitions of the set [n] = {1,2,...,n} into
exactly k blocks, and B(n) = >, _,S(n, k) denotes the number of partitions of [n] into
any number of blocks. Give a combinatorial proof of the identity

B(n+1)—B(n) = zn:kS(n,k‘).
k=1

Find all automorphisms of the complete bipartite graph K, ;.

Suppose a simple, connected graph G with n vertices has a unique cycle, the length of
which is 3. Find the chromatic polynomial of G.

Determine the minimum number of vertices that must be removed from a complete
bipartite graph K,, , in order to yield a planar graph.

Determine when two trees T} and 75 have isomorphic dual graphs.

In each theorem involving a composition F(G(z)) of formal power series, we have required
that G(z) have constant term 0. Why is this?

Find a simple expression for the ordinary generating function of the sequence a, = n2.

Do the same for its exponential generating function.

Use ordinary generating functions to find a closed form for the recurrence relation given
by bp = 1 and b,, = 2b,,_1 + n>.



(ER12) Fix power series F(z) = > 0" | fo2™ and G(z) = Yoo gna™, and let - denote term-by-
term differentation. For instance, £ F(z) =3 " na"~1 =3 (n+1)2".

Verify the product rule for formal power series:

4 (F@GE) = (£ F@) 6)+ F@) (56).
If you are feeling adventurous, verify the quotient rule for formal power series:

IREGCNE (£F(@) G@) - Fa) (G)
dz \ G(z) (G(x))?

Where in your proof of the quotient rule did you use that gy # 07

(ER13) Use induction and the product rule for formal power series (given above) to prove

d

_ d
P =k(F@) (L)

for all £ > 1. Hint: this can be done without writing any infinite sums.

(ER14) Recall that e® = 3> - Lam and consider the formal power series In(z) defined so that

n=0 n!
— (D)™
In(1 = L gntl
n(l+x) 7; v T

(a) Justify the above definition by differentiating both sides (using calculus).
(b) Prove that (e*)™ = e™* for all m > 0. Hint: induct on m.
) Prove that In(e®) = z.

)

Pick your favorite algebraic property involving In(z) and/or e*, and prove that it
holds in formal power series-land. Alternatively, look up the power series expansions
for sin(x) and cos(z) in your favorite Calculus textbook, and prove (using formal
power series) that sin(2z) = 2sin(z) cos(z), or that (sin(x))? + (cos(x))? = 1.

(ER15) For k > 1, find an expression for the exponential generating function
[ee] 1:”
Sk(x) =) _S(n.k)—
n=0

in terms of familiar exponential generating functions (e*, In(x), etc.). Use this to find
a closed form when £ = 1, K = 2 and £ = 3. Note: there is no known closed form for
general k, so do not attempt to solve for the coefficients in general!

(ER16) A permutation of [n] = {1,...,n} is called indecomposable if it cannot be split into
a permutation on {1,...,k} and a permutation on {k + 1,...,n} for 1 < k < n — 1.
For example, 54321 is indecomposable, but 23154 = (231)(54) is not.

Let ¢, denote the number of indecomposable permutations on [n], and let ¢y = 0. Find
an equation relating the ordinary generating function C(z) for ¢, and the ordinary gen-
erating function for the number of permutations of [n], that is, P(z) = > 7 (n!)z".



