Math 21B: Calculus II

 Fall 2016, Sections B01-B02

 Fall 2016, Sections B01-B02}

Homework Sheet 2
Due: Tuesday, October 4th, 2016

Submit your solutions to the following problems at the beginning of your discussion section on Tuesday, October 4th. You should present your work in a clean and organized fashion, either on a printed copy of this document or a separate sheet of paper. As stated in the syllabus, late submissions will not be accepted.

1. Suppose the following information is known for continuous functions $f(x)$ and $g(x)$.

$$
\begin{array}{ll}
\int_{4}^{6} f(x) d x=5 & \int_{6}^{9} f(x) d x=3 \\
\int_{4}^{9} g(x) d x=7 & \int_{6}^{9} g(x) d x=9
\end{array}
$$

(a) Find $\int_{4}^{9} f(x) d x-\int_{4}^{6} g(x) d x$.
(b) Find $\int_{4}^{9}(2 f(x)+3 g(x)) d x$.
2. Is the following statement true? Justify your answer.

$$
\int \sqrt{x^{2}+1} d x=\frac{1}{2} x \sqrt{x^{2}+1}+\frac{1}{2} \ln \left(\sqrt{x^{2}+1}+x\right)+C
$$

3. Evaluate the following integrals.
(a) $\int(3 x+1)^{2} d x$
(b) $\int \frac{1}{2 x} d x$
(c) $\int\left(\csc ^{2}(x)+\csc (x) \cot (x)\right) d x$
(d) $\int_{1}^{2} \frac{1}{(5 x)^{2}} d x$
(e) $\int_{0}^{\pi} \sin \left(\frac{1}{2} x\right) d x$
