Math 16A, Section 3 - Fall 2017
 Instructor: Christopher O'Neill Practice Exam 2

Last Name: \qquad First Name: \qquad

Directions:

- The use of a calculator, cell phone, laptop or computer is prohibited.
- TURN OFF cell phones and put them away. If a cell phone is seen during the exam, your exam will be collected and you will receive a zero.
- Answer all of the questions, and present your solutions in the space provided. Show all your work neatly and concisely and clearly indicate your final answer. You will be graded not merely on the final answer, but on the quality and correctness of the work leading up to it.

The UC Davis Code of Academic Conduct

I will conduct myself with honesty, fairness, and integrity.

Signature: \qquad
(1) Using the graph of $f(x)$ below, complete each statement with either " $<$ ", " $>$ ", or "=".
$f(1)$
$f(2)$
$f(3) \quad 0$ 0
0
$f(4)$ \qquad 0
$f^{\prime}(1)$ \qquad 0
$f^{\prime}(2)$ \qquad 0
$f^{\prime}(3)$ \qquad 0
$f^{\prime}(4)$ \qquad 0

(2) Find each of the following derivatives. You may use any derivative rule we learned in this class. (a) $\frac{d}{d x}\left[2 x^{7}+7 x-57-\frac{9}{\sqrt{x}}\right]$
(b) $\frac{d}{d x}\left[\left(4-\frac{1}{x^{2}}\right)\left(x^{2}-3 x\right)\right]$
(c) $\frac{d}{d x}\left[\frac{x}{(1-x)^{3}}\right]$
(d) $\frac{d}{d x}\left[((2 x-4)(x+5))^{17}\right]$
(e) $\frac{d}{d x}\left[\sec ^{7}(x)-\tan ^{5}(x)\right]$
(3) Find the derivative of $f(x)$ using the definition of derivative. Note: you will not get credit for using derivative rules.

$$
f(x)=x^{2}+2 x+1
$$

(4) Find the equation for the tangent line to $f(x)$ at the specified point $x=a$. You may use any of the derivative rules we have learned in this class.

$$
f(x)=\frac{x^{2}+4}{3 x+2}, \quad a=6 .
$$

(5) Find an equation for $\frac{d y}{d x}$ using implicit differentation.

$$
(x+y)^{3}=x^{3}+y^{3}
$$

Trigonometric Identities

$$
\left.\begin{array}{c}
\sin (A+B)=\sin (A) \cos (B)+\cos (A) \sin (B) \\
\sin (A-B)=\sin (A) \cos (B)-\cos (A) \sin (B) \\
\cos (A+B)=\cos (A) \cos (B)-\sin (A) \sin (B) \\
\cos (A-B)=\cos (A) \cos (B)+\sin (A) \sin (B) \\
\sin (2 A)
\end{array}\right)=2 \sin (A) \cos (A) .
$$

$$
\begin{aligned}
& \sin ^{2}(A)+\cos ^{2}(A)=1 \\
& \tan ^{2}(A)+1=\sec ^{2}(x) \\
& 1+\cot ^{2}(A)=\csc ^{2}(x)
\end{aligned}
$$

