Fall 2018, Math 320
 Final Exam Cheat Sheet

You will receive a copy of this sheet with the midterm exam. No other notes will be allowed. Be sure to specify when you use one of the theorems lised here!
Theorem 1 (Division algorithm). For any $a, b \in \mathbb{Z}$ with $b>0$, there exist unique $q, r \in \mathbb{Z}$ with $0 \leq r<b$ so that $a=q b+r$.
Theorem 2. Given $a, b, d \in \mathbb{Z}$, we have $(a, b)=d$ if and only if (i) $d \mid a$, (ii) $d \mid b$, and (iii) there exist $x, y \in \mathbb{Z}$ so that $d=a x+b y$.
Theorem 3. For any $a, b, c \in \mathbb{Z}$, the following hold.
(a) If $c>0$, then $c(a, b)=(c a, c b)$.
(b) For any $k \in \mathbb{Z}$, we have $(a, b)=(a, b+k a)$.

Theorem 4. An integer p is prime if and only if for every $a, b \in \mathbb{Z}$, if $p \mid a b$, then $p \mid a$ or $p \mid b$.
Theorem 5 (Fundamental theorem of arithmetic). For any $n \in \mathbb{Z}$ with $n \neq 0,1,-1$, there exist primes p_{1}, \ldots, p_{k} with

$$
n=p_{1} p_{2} \cdots p_{k}
$$

Moreover, this expression for n is unique: if $n=q_{1} q_{2} \cdots q_{r}$ for some primes $q_{1}, q_{2}, \ldots, q_{r}$, then $r=k$ and, after potentially reording q_{1}, \ldots, q_{r}, we have $p_{i}=q_{i}$ or $p_{i}=-q_{i}$ for every i.
Theorem 6. An integer is divisible by 9 if and only the sum of its digits is divisible by 9 .
Theorem 7. Fix $n \geq 2$.
(a) The relation $a \equiv b \bmod n$ is an equivalence relation on \mathbb{Z}.
(b) For any $a, b \in \mathbb{Z},[a]_{n}=[b]_{n}$ if and only if $a \equiv b \bmod n$.
(c) The set \mathbb{Z}_{n} is a ring under the usual addition and multiplication of equivalence classes.
(d) If n is prime, then \mathbb{Z}_{n} is a field. Otherwise, \mathbb{Z}_{n} has zero-divisors.

Theorem 8. Suppose R is a ring and $S \subset R$ is a subset. Then $(S,+, \cdot)$ is a ring if and only if (i) S is closed under addition, (ii) S is closed under multiplication, (iii) $0_{R} \in S$, and (iv) for every $a \in S$, we have $-a \in S$.
Theorem 9. Suppose R is a ring.
(a) The additive identity $0_{R} \in R$ is unique.
(b) $0_{R} \cdot a=0_{R}$ for all $a \in R$.
(c) Every element $a \in R$ has a unique additive inverse.
(d) If R has a multiplicative identity $1_{R} \in R$, then 1_{R} is the only multiplicative identity in R.
(e) If $a \in R$ is a unit, then a has a unique multiplicative inverse.
(f) If R is an integral domain and $a, b, c \in R$ satisfy $a b=a c$, then $b=c$.
(g) If $a \in R$ is a unit, then a is not a zero-divisor.

Theorem 10. If R and S are rings and $\phi: R \rightarrow S$ is a homomorphism, then the following hold.
(a) $\phi\left(0_{R}\right)=0_{S}$.
(b) $\phi(-a)=-\phi(a)$ for all $a \in R$.
(c) If R has a unity $1_{R} \in R$ and ϕ is surjective, then S has unity and $\phi\left(1_{R}\right)=1_{S}$.
(d) If R has a unity $1_{R} \in R$ and ϕ is surjective, then $\phi\left(a^{-1}\right)=(\phi(a))^{-1}$ for all units $a \in R$.

Theorem 11 (Division algorithm). Fix a field F. For any $a(x), b(x) \in F[x]$ with $\operatorname{deg} b(x)>0$, there exist unique $q(x), r(x) \in F[x]$ with $\operatorname{deg} r(x)<\operatorname{deg} b(x)$ so that $a(x)=q(x) b(x)+r(x)$.
Theorem 12. Fix a field F. Given $a(x), b(x), d(x) \in F[x]$, we have $\operatorname{gcd}(a(x), b(x))=d(x)$ if and only if (i) $d(x) \mid a(x)$, (ii) $d(x) \mid b(x$, and (iii) there exist $u(x), v(x) \in F[x]$ so that $d(x)=a(x) u(x)+b(x) v(x)$.

Theorem 13. Fix a field F. For any $a(x) \in F[x]$ with $\operatorname{deg} a(x)>0$, there exist irreducible polynomials $g_{1}(x), \ldots, g_{k}(x) \in F[x]$ such that

$$
a(x)=g_{1}(x) g_{2}(x) \cdots g_{k}(x)
$$

Moreover, this expression for $a(x)$ is unique: if $a(x)=h_{1}(x) h_{2}(x) \cdots h_{r}(x)$ for some irreducible polynomials $h_{1}(x), h_{2}(x), \ldots, h_{r}(x) \in F[x]$, then $r=k$ and, after potentially reording $h_{1}(x), \ldots, h_{r}(x)$, we have, for each $i, g_{i}(x)=c h_{i}(x)$ for some constant $c \in F$.

Theorem 14 (Root Theorem). Fix a field F, an element $r \in F$, and a polynomial $a(x) \in F[x]$. We have $(x-r) \mid a(x)$ if and only if r is a root of $a(x)$.
Theorem 15. Fix a ring R and elements $r_{1}, \ldots, r_{k} \in R$. The set

$$
\left\langle r_{1}, \ldots, r_{k}\right\rangle=\left\{t_{1} r_{1}+t_{2} r_{2}+\cdots+t_{k} r_{k}: t_{1}, \ldots, t_{k} \in R\right\}
$$

is an ideal in R. Note: as a special case, $\langle r\rangle=\{t r: t \in R\}$ is an ideal of R.
Theorem 16. Fix a ring R and an ideal $I \subset R$.
(a) The relation $r \equiv t \bmod I$ is an equivalence relation on R.
(b) For any $r, t \in R,[r]=[t]$ in R / I if and only if $r \equiv t \bmod I$.
(c) The set R / I is a ring under the usual addition and multiplication of equivalence classes.

Theorem 17. Fix a field F and a polynomial $p(x) \in F[x]$ with $\operatorname{deg} p(x) \geq 1$. If $p(x)$ is irreducible, then $F[x] /\langle p(x)\rangle$ is a field. Otherwise, $F[x] /\langle p(x)\rangle$ has zero-divisors.

Theorem 18. If R and S are rings and $\varphi: R \rightarrow S$ is a homomorphism, then the $\operatorname{kernel} \operatorname{ker}(\varphi)$ is an ideal of R.

Theorem 19 (First Isomorphism Theorem). If R and S are rings and $\varphi: R \rightarrow S$ is a surjective homomorphism, then $R / \operatorname{ker}(\varphi) \cong S$.

Theorem 20. Every permutation can be written as a product of disjoint cycles, and as a product of (not necessarily disjoint) 2-cycles.

Theorem 21. Every finite group G with $|G|=n$ is isomorphic to a subgroup of S_{n}.

