Fall 2018, Math 320: Week 1 Problem Set Due: Tuesday, September 4th, 2018 The Division Algorithm and Greatest Common Divisors

Discussion problems. The problems below should be completed in class.
(D1) Greatest Common Divisors. The goal of this problem is to build familiarity and intuition for gcd. Some of the questions are open-ended; you may find it helpful to compute several small(ish) examples to aide in formulating conjectures.
(a) Compare your answers to Preliminary Problem (P1). Agree on a correct definition, and write it on the board for reference.
(b) Find $d=(5,7)$, and find x and y so that $5 x+7 y=d$.
(c) Find $d=(35,21)$, and find x and y so that $35 x+21 y=d$.
(d) For $a, b \in \mathbb{Z}$ positive, how are $(a, b),(-a, b)$ and $(-a,-b)$ related?
(e) If $(a, 0)=1$, what can a possibly be?
(f) If $a \in \mathbb{Z}$, what are the possible values of $(a, a+2)$? What about $(a, a+6)$?
(g) Find a formula for $(a, a+24)$ in terms of a. Hint: this can be done in significantly fewer than 12 cases!
(h) Prove or disprove: if $a \mid b$ and $b \mid c$, then $a \mid c$.
(i) Prove or disprove: if $(a, b)=1$ and $(a, c)=1$, then $(a, b+c)=1$.
(j) Write proofs (as a group!) of your conjectures above, starting with part (d).
(D2) The Division Algorithm. The goal of this problem is to prove the following theorem.
Theorem. For any $a, b \in \mathbb{Z}$ with $b>0$, there exist unique integers $q, r \in \mathbb{Z}$ with $0 \leq r<b$ so that $a=q b+r$.
(a) First, we will prove that if $a \geq 0$, then $a=q b+r$ for some $q, r \in \mathbb{Z}$ with $0 \leq r<b$. The following proof uses induction on a, but contains some errors. Locate and correct the errors, and write (as a group!) a full, correct proof on the board.

Denote by $P(a)$ the statement " $a=q b+r$ for some $q, r \in \mathbb{Z}$ with $0 \leq r<b$ ". For the base case, suppose $a<b$. Choosing $q=0$ and $r=a$, we see $q b+r=a$. For the inductive step, suppose $a \geq b$ and that $P(a-1)$ holds (the inductive hypothesis). Since $a-b<a$, we know $P(a-b)$ holds by the inductive hypothesis, so $a-b=q^{\prime} b+r$ for some $q^{\prime}, r \in \mathbb{Z}$ with $0 \leq r<b$. Rearranging yields $a=\left(q^{\prime}+1\right) b+r$, and choosing $q=q^{\prime}+1$ and $r=r^{\prime}+1$ completes the proof.
(b) Next, we will prove that if $a<0$, then $a=q b+r$ for some $q, r \in \mathbb{Z}$ with $0 \leq r<b$. As a group, turn the following "proof sketch" into a formal proof.

The integer $a+d b$ is positive if d is large enough. We can then apply part (a) to write $a+d b=q^{\prime} b+r^{\prime}$, and rearrange accordingly to find q and r.
(c) It remains to prove the "uniqueness" part. Fill in the end of the following proof.

Suppose $q_{1}, r_{1} \in \mathbb{Z}$ with $0 \leq r_{1}<b$ satisfy $a=q_{1} b+r_{1}$, and that $q_{2}, r_{2} \in \mathbb{Z}$ with $0 \leq r_{2}<b$ satisfy $a=q_{2} b+r_{2}$. By way of contradiction, assume $r_{1} \neq r_{2}$. Without loss of generality, we can assume $r_{1}<r_{2}$. Rearranging the equation $a=q_{1} b+r_{1}=q_{2} b+r_{2}$, we obtain...
(d) Try to prove part (c) directly, i.e. without proof by contradiction. Start by assuming that $a=q_{1} b+r_{1}=q_{2} b+r_{2}$ as before, but without assuming $r_{1} \neq r_{2}$, and prove $r_{1}=r_{2}$.

Required problems. As the name suggests, you must submit all required problems with this homework set in order to receive full credit.

For this assigment only, do not use prime factorization in any of your arguments.
(R1) Find $d=(76,56)$, and find x and y so that $76 x+56 y=d$.
(R2) Use the division algorithm to prove that the square of any integer a is either of the form $3 k$ or of the form $3 k+1$ for some integer k.
(R3) Prove that $(c a, c b)=c(a, b)$ for all $a, b, c \in \mathbb{Z}$ with $c>0$.
(R4) Determine whether each of the following statements is true or false. Prove each true statement, and give a counterexample for each false statement.
(a) If $a \mid c$ and $b \mid c$, then $a b \mid c$.
(b) If $a \mid c$ and $b \mid c$, then $(a, b) \mid c$.
(c) If $(a, b)=1$ and $(a, c)=1$, then $(b, c)=1$.
(d) If $(a, b)=1$ and $(a, c)=1$, then $(a, b+c)=1$.
(R5) Prove $(a, b)=(a, b+a)$ for all $a, b \in \mathbb{Z}$.

Selection problems. You are required to submit all parts of one selection problem with this problem set. You may submit additional selection problems if you wish, but please indicate what you want graded. Although I am happy to provide written feedback on all submitted work, no extra credit will be awarded for completing additional selection problems.
(S1) Fix $a, b, c \in \mathbb{Z}$. Prove the equation $a x+b y=c$ has integer solutions if and only if $(a, b) \mid c$.
(S2) Prove that if $a \mid(b+c)$ and $(b, c)=1$, then $(a, b)=1$ and $(a, c)=1$.

Challenge problems. Challenge problems are not required for submission, but bonus points will be awarded for submitting a partial attempt or a complete solution.
(C1) Let (a, b, c) denote the largest integer d such that $d|a, d| b$, and $d \mid c$. Prove that (a, b, c) equals the smallest positive integer t such that $t=x a+y b+z c$ for some $x, y, z \in \mathbb{Z}$.

